Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /* * linux/mm/msync.c * * Copyright (C) 1994-1999 Linus Torvalds */ /* * The msync() system call. */ #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/mm.h> #include <linux/mman.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> /* * Called with mm->page_table_lock held to protect against other * threads/the swapper from ripping pte's out from under us. */ static int filemap_sync_pte(pte_t *ptep, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t pte = *ptep; if (pte_present(pte) && pte_dirty(pte)) { struct page *page; unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) { page = pfn_to_page(pfn); if (!PageReserved(page) && ptep_test_and_clear_dirty(ptep)) { flush_tlb_page(vma, address); set_page_dirty(page); } } } return 0; } static inline int filemap_sync_pte_range(pmd_t * pmd, unsigned long address, unsigned long end, struct vm_area_struct *vma, unsigned int flags) { pte_t *pte; int error; if (pmd_none(*pmd)) return 0; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return 0; } pte = pte_offset_map(pmd, address); if ((address & PMD_MASK) != (end & PMD_MASK)) end = (address & PMD_MASK) + PMD_SIZE; error = 0; do { error |= filemap_sync_pte(pte, vma, address, flags); address += PAGE_SIZE; pte++; } while (address && (address < end)); pte_unmap(pte - 1); return error; } static inline int filemap_sync_pmd_range(pgd_t * pgd, unsigned long address, unsigned long end, struct vm_area_struct *vma, unsigned int flags) { pmd_t * pmd; int error; if (pgd_none(*pgd)) return 0; if (pgd_bad(*pgd)) { pgd_ERROR(*pgd); pgd_clear(pgd); return 0; } pmd = pmd_offset(pgd, address); if ((address & PGDIR_MASK) != (end & PGDIR_MASK)) end = (address & PGDIR_MASK) + PGDIR_SIZE; error = 0; do { error |= filemap_sync_pte_range(pmd, address, end, vma, flags); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return error; } int filemap_sync(struct vm_area_struct * vma, unsigned long address, size_t size, unsigned int flags) { pgd_t * dir; unsigned long end = address + size; int error = 0; /* Aquire the lock early; it may be possible to avoid dropping * and reaquiring it repeatedly. */ spin_lock(&vma->vm_mm->page_table_lock); dir = pgd_offset(vma->vm_mm, address); flush_cache_range(vma, address, end); if (address >= end) BUG(); do { error |= filemap_sync_pmd_range(dir, address, end, vma, flags); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); flush_tlb_range(vma, end - size, end); spin_unlock(&vma->vm_mm->page_table_lock); return error; } /* * MS_SYNC syncs the entire file - including mappings. * * MS_ASYNC initiates writeout of just the dirty mapped data. * This provides no guarantee of file integrity - things like indirect * blocks may not have started writeout. MS_ASYNC is primarily useful * where the application knows that it has finished with the data and * wishes to intelligently schedule its own I/O traffic. */ static int msync_interval(struct vm_area_struct * vma, unsigned long start, unsigned long end, int flags) { int ret = 0; struct file * file = vma->vm_file; if (file && (vma->vm_flags & VM_SHARED)) { ret = filemap_sync(vma, start, end-start, flags); if (!ret && (flags & (MS_SYNC|MS_ASYNC))) { struct inode * inode = file->f_dentry->d_inode; int err; down(&inode->i_sem); ret = filemap_fdatawait(inode->i_mapping); err = filemap_fdatawrite(inode->i_mapping); if (!ret) ret = err; if (flags & MS_SYNC) { if (file->f_op && file->f_op->fsync) { err = file->f_op->fsync(file, file->f_dentry, 1); if (err && !ret) ret = err; } err = filemap_fdatawait(inode->i_mapping); if (!ret) ret = err; } up(&inode->i_sem); } } return ret; } asmlinkage long sys_msync(unsigned long start, size_t len, int flags) { unsigned long end; struct vm_area_struct * vma; int unmapped_error, error = -EINVAL; down_read(¤t->mm->mmap_sem); if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC)) goto out; if (start & ~PAGE_MASK) goto out; error = -ENOMEM; len = (len + ~PAGE_MASK) & PAGE_MASK; end = start + len; if (end < start) goto out; error = 0; if (end == start) goto out; /* * If the interval [start,end) covers some unmapped address ranges, * just ignore them, but return -ENOMEM at the end. */ vma = find_vma(current->mm, start); unmapped_error = 0; for (;;) { /* Still start < end. */ error = -ENOMEM; if (!vma) goto out; /* Here start < vma->vm_end. */ if (start < vma->vm_start) { unmapped_error = -ENOMEM; start = vma->vm_start; } /* Here vma->vm_start <= start < vma->vm_end. */ if (end <= vma->vm_end) { if (start < end) { error = msync_interval(vma, start, end, flags); if (error) goto out; } error = unmapped_error; goto out; } /* Here vma->vm_start <= start < vma->vm_end < end. */ error = msync_interval(vma, start, vma->vm_end, flags); if (error) goto out; start = vma->vm_end; vma = vma->vm_next; } out: up_read(¤t->mm->mmap_sem); return error; } |