Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | /* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001, 2002 Red Hat, Inc. * * Created by David Woodhouse <dwmw2@cambridge.redhat.com> * * The original JFFS, from which the design for JFFS2 was derived, * was designed and implemented by Axis Communications AB. * * The contents of this file are subject to the Red Hat eCos Public * License Version 1.1 (the "Licence"); you may not use this file * except in compliance with the Licence. You may obtain a copy of * the Licence at http://www.redhat.com/ * * Software distributed under the Licence is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. * See the Licence for the specific language governing rights and * limitations under the Licence. * * The Original Code is JFFS2 - Journalling Flash File System, version 2 * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License version 2 (the "GPL"), in * which case the provisions of the GPL are applicable instead of the * above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the RHEPL, indicate your decision by * deleting the provisions above and replace them with the notice and * other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file * under either the RHEPL or the GPL. * * $Id: read.c,v 1.22 2002/03/02 22:08:27 dwmw2 Exp $ * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/crc32.h> #include <linux/pagemap.h> #include <linux/mtd/mtd.h> #include "nodelist.h" int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_full_dnode *fd, unsigned char *buf, int ofs, int len) { struct jffs2_raw_inode *ri; size_t readlen; uint32_t crc; unsigned char *decomprbuf = NULL; unsigned char *readbuf = NULL; int ret = 0; ri = jffs2_alloc_raw_inode(); if (!ri) return -ENOMEM; ret = jffs2_flash_read(c, fd->raw->flash_offset & ~3, sizeof(*ri), &readlen, (char *)ri); if (ret) { jffs2_free_raw_inode(ri); printk(KERN_WARNING "Error reading node from 0x%08x: %d\n", fd->raw->flash_offset & ~3, ret); return ret; } if (readlen != sizeof(*ri)) { jffs2_free_raw_inode(ri); printk(KERN_WARNING "Short read from 0x%08x: wanted 0x%x bytes, got 0x%x\n", fd->raw->flash_offset & ~3, sizeof(*ri), readlen); return -EIO; } crc = crc32(0, ri, sizeof(*ri)-8); D1(printk(KERN_DEBUG "Node read from %08x: node_crc %08x, calculated CRC %08x. dsize %x, csize %x, offset %x, buf %p\n", fd->raw->flash_offset & ~3, ri->node_crc, crc, ri->dsize, ri->csize, ri->offset, buf)); if (crc != ri->node_crc) { printk(KERN_WARNING "Node CRC %08x != calculated CRC %08x for node at %08x\n", ri->node_crc, crc, fd->raw->flash_offset & ~3); ret = -EIO; goto out_ri; } /* There was a bug where we wrote hole nodes out with csize/dsize swapped. Deal with it */ if (ri->compr == JFFS2_COMPR_ZERO && !ri->dsize && ri->csize) { ri->dsize = ri->csize; ri->csize = 0; } D1(if(ofs + len > ri->dsize) { printk(KERN_WARNING "jffs2_read_dnode() asked for %d bytes at %d from %d-byte node\n", len, ofs, ri->dsize); ret = -EINVAL; goto out_ri; }); if (ri->compr == JFFS2_COMPR_ZERO) { memset(buf, 0, len); goto out_ri; } /* Cases: Reading whole node and it's uncompressed - read directly to buffer provided, check CRC. Reading whole node and it's compressed - read into comprbuf, check CRC and decompress to buffer provided Reading partial node and it's uncompressed - read into readbuf, check CRC, and copy Reading partial node and it's compressed - read into readbuf, check checksum, decompress to decomprbuf and copy */ if (ri->compr == JFFS2_COMPR_NONE && len == ri->dsize) { readbuf = buf; } else { readbuf = kmalloc(ri->csize, GFP_KERNEL); if (!readbuf) { ret = -ENOMEM; goto out_ri; } } if (ri->compr != JFFS2_COMPR_NONE) { if (len < ri->dsize) { decomprbuf = kmalloc(ri->dsize, GFP_KERNEL); if (!decomprbuf) { ret = -ENOMEM; goto out_readbuf; } } else { decomprbuf = buf; } } else { decomprbuf = readbuf; } D2(printk(KERN_DEBUG "Read %d bytes to %p\n", ri->csize, readbuf)); ret = jffs2_flash_read(c, (fd->raw->flash_offset &~3) + sizeof(*ri), ri->csize, &readlen, readbuf); if (!ret && readlen != ri->csize) ret = -EIO; if (ret) goto out_decomprbuf; crc = crc32(0, readbuf, ri->csize); if (crc != ri->data_crc) { printk(KERN_WARNING "Data CRC %08x != calculated CRC %08x for node at %08x\n", ri->data_crc, crc, fd->raw->flash_offset & ~3); ret = -EIO; goto out_decomprbuf; } D2(printk(KERN_DEBUG "Data CRC matches calculated CRC %08x\n", crc)); if (ri->compr != JFFS2_COMPR_NONE) { D2(printk(KERN_DEBUG "Decompress %d bytes from %p to %d bytes at %p\n", ri->csize, readbuf, ri->dsize, decomprbuf)); ret = jffs2_decompress(ri->compr, readbuf, decomprbuf, ri->csize, ri->dsize); if (ret) { printk(KERN_WARNING "Error: jffs2_decompress returned %d\n", ret); goto out_decomprbuf; } } if (len < ri->dsize) { memcpy(buf, decomprbuf+ofs, len); } out_decomprbuf: if(decomprbuf != buf && decomprbuf != readbuf) kfree(decomprbuf); out_readbuf: if(readbuf != buf) kfree(readbuf); out_ri: jffs2_free_raw_inode(ri); return ret; } int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, unsigned char *buf, uint32_t offset, uint32_t len) { uint32_t end = offset + len; struct jffs2_node_frag *frag = f->fraglist; int ret; D1(printk(KERN_DEBUG "jffs2_read_inode_range: ino #%u, range 0x%08x-0x%08x\n", f->inocache->ino, offset, offset+len)); while(frag && frag->ofs + frag->size <= offset) { D2(printk(KERN_DEBUG "skipping frag %d-%d; before the region we care about\n", frag->ofs, frag->ofs + frag->size)); frag = frag->next; } /* XXX FIXME: Where a single physical node actually shows up in two frags, we read it twice. Don't do that. */ /* Now we're pointing at the first frag which overlaps our page */ while(offset < end) { D2(printk(KERN_DEBUG "jffs2_read_inode_range: offset %d, end %d\n", offset, end)); if (!frag || frag->ofs > offset) { uint32_t holesize = end - offset; if (frag) { D1(printk(KERN_NOTICE "Eep. Hole in ino #%u fraglist. frag->ofs = 0x%08x, offset = 0x%08x\n", f->inocache->ino, frag->ofs, offset)); holesize = min(holesize, frag->ofs - offset); D1(jffs2_print_frag_list(f)); } D1(printk(KERN_DEBUG "Filling non-frag hole from %d-%d\n", offset, offset+holesize)); memset(buf, 0, holesize); buf += holesize; offset += holesize; continue; } else if (frag->ofs < offset && (offset & (PAGE_CACHE_SIZE-1)) != 0) { D1(printk(KERN_NOTICE "Eep. Overlap in ino #%u fraglist. frag->ofs = 0x%08x, offset = 0x%08x\n", f->inocache->ino, frag->ofs, offset)); D1(jffs2_print_frag_list(f)); memset(buf, 0, end - offset); return -EIO; } else if (!frag->node) { uint32_t holeend = min(end, frag->ofs + frag->size); D1(printk(KERN_DEBUG "Filling frag hole from %d-%d (frag 0x%x 0x%x)\n", offset, holeend, frag->ofs, frag->ofs + frag->size)); memset(buf, 0, holeend - offset); buf += holeend - offset; offset = holeend; frag = frag->next; continue; } else { uint32_t readlen; readlen = min(frag->size, end - offset); D1(printk(KERN_DEBUG "Reading %d-%d from node at 0x%x\n", frag->ofs, frag->ofs+readlen, frag->node->raw->flash_offset & ~3)); ret = jffs2_read_dnode(c, frag->node, buf, frag->ofs - frag->node->ofs, readlen); D2(printk(KERN_DEBUG "node read done\n")); if (ret) { D1(printk(KERN_DEBUG"jffs2_read_inode_range error %d\n",ret)); memset(buf, 0, frag->size); return ret; } } buf += frag->size; offset += frag->size; frag = frag->next; D2(printk(KERN_DEBUG "node read was OK. Looping\n")); } return 0; } /* Core function to read symlink target. */ char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f) { char *buf; int ret; down(&f->sem); if (!f->metadata) { printk(KERN_NOTICE "No metadata for symlink inode #%u\n", f->inocache->ino); up(&f->sem); return ERR_PTR(-EINVAL); } buf = kmalloc(f->metadata->size+1, GFP_USER); if (!buf) { up(&f->sem); return ERR_PTR(-ENOMEM); } buf[f->metadata->size]=0; ret = jffs2_read_dnode(c, f->metadata, buf, 0, f->metadata->size); up(&f->sem); if (ret) { kfree(buf); return ERR_PTR(ret); } return buf; } |