Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
/*
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */

#include <linux/config.h>
#include <asm/uaccess.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/reiserfs_fs.h>

/* this is one and only function that is used outside (do_balance.c) */
int	balance_internal (
			  struct tree_balance * ,
			  int,
			  int,
			  struct item_head * ,
			  struct buffer_head ** 
			  );

/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
#define INTERNAL_SHIFT_FROM_S_TO_L 0
#define INTERNAL_SHIFT_FROM_R_TO_S 1
#define INTERNAL_SHIFT_FROM_L_TO_S 2
#define INTERNAL_SHIFT_FROM_S_TO_R 3
#define INTERNAL_INSERT_TO_S 4
#define INTERNAL_INSERT_TO_L 5
#define INTERNAL_INSERT_TO_R 6

static void	internal_define_dest_src_infos (
						int shift_mode,
						struct tree_balance * tb,
						int h,
						struct buffer_info * dest_bi,
						struct buffer_info * src_bi,
						int * d_key,
						struct buffer_head ** cf
						)
{
    memset (dest_bi, 0, sizeof (struct buffer_info));
    memset (src_bi, 0, sizeof (struct buffer_info));
    /* define dest, src, dest parent, dest position */
    switch (shift_mode) {
    case INTERNAL_SHIFT_FROM_S_TO_L:	/* used in internal_shift_left */
	src_bi->tb = tb;
	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
	dest_bi->tb = tb;
	dest_bi->bi_bh = tb->L[h];
	dest_bi->bi_parent = tb->FL[h];
	dest_bi->bi_position = get_left_neighbor_position (tb, h);
	*d_key = tb->lkey[h];
	*cf = tb->CFL[h];
	break;
    case INTERNAL_SHIFT_FROM_L_TO_S:
	src_bi->tb = tb;
	src_bi->bi_bh = tb->L[h];
	src_bi->bi_parent = tb->FL[h];
	src_bi->bi_position = get_left_neighbor_position (tb, h);
	dest_bi->tb = tb;
	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
	*d_key = tb->lkey[h];
	*cf = tb->CFL[h];
	break;
      
    case INTERNAL_SHIFT_FROM_R_TO_S:	/* used in internal_shift_left */
	src_bi->tb = tb;
	src_bi->bi_bh = tb->R[h];
	src_bi->bi_parent = tb->FR[h];
	src_bi->bi_position = get_right_neighbor_position (tb, h);
	dest_bi->tb = tb;
	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
	*d_key = tb->rkey[h];
	*cf = tb->CFR[h];
	break;

    case INTERNAL_SHIFT_FROM_S_TO_R:
	src_bi->tb = tb;
	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
	dest_bi->tb = tb;
	dest_bi->bi_bh = tb->R[h];
	dest_bi->bi_parent = tb->FR[h];
	dest_bi->bi_position = get_right_neighbor_position (tb, h);
	*d_key = tb->rkey[h];
	*cf = tb->CFR[h];
	break;

    case INTERNAL_INSERT_TO_L:
	dest_bi->tb = tb;
	dest_bi->bi_bh = tb->L[h];
	dest_bi->bi_parent = tb->FL[h];
	dest_bi->bi_position = get_left_neighbor_position (tb, h);
	break;
	
    case INTERNAL_INSERT_TO_S:
	dest_bi->tb = tb;
	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
	break;

    case INTERNAL_INSERT_TO_R:
	dest_bi->tb = tb;
	dest_bi->bi_bh = tb->R[h];
	dest_bi->bi_parent = tb->FR[h];
	dest_bi->bi_position = get_right_neighbor_position (tb, h);
	break;

    default:
	reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
    }
}



/* Insert count node pointers into buffer cur before position to + 1.
 * Insert count items into buffer cur before position to.
 * Items and node pointers are specified by inserted and bh respectively.
 */ 
static void internal_insert_childs (struct buffer_info * cur_bi,
				    int to, int count,
				    struct item_head * inserted,
				    struct buffer_head ** bh
    )
{
    struct buffer_head * cur = cur_bi->bi_bh;
    struct block_head * blkh;
    int nr;
    struct key * ih;
    struct disk_child new_dc[2];
    struct disk_child * dc;
    int i;

    if (count <= 0)
	return;

    blkh = B_BLK_HEAD(cur);
    nr = blkh_nr_item(blkh);

    RFALSE( count > 2,
	    "too many children (%d) are to be inserted", count);
    RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
	    "no enough free space (%d), needed %d bytes", 
	    B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));

    /* prepare space for count disk_child */
    dc = B_N_CHILD(cur,to+1);

    memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);

    /* copy to_be_insert disk children */
    for (i = 0; i < count; i ++) {
	put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
	put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
    }
    memcpy (dc, new_dc, DC_SIZE * count);

  
    /* prepare space for count items  */
    ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));

    memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);

    /* copy item headers (keys) */
    memcpy (ih, inserted, KEY_SIZE);
    if ( count > 1 )
	memcpy (ih + 1, inserted + 1, KEY_SIZE);

    /* sizes, item number */
    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
    set_blkh_free_space( blkh,
                        blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );

    do_balance_mark_internal_dirty (cur_bi->tb, cur,0);

    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
    check_internal (cur);
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/

    if (cur_bi->bi_parent) {
	struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
	put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
	do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);

	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
	check_internal (cur_bi->bi_parent);
	/*&&&&&&&&&&&&&&&&&&&&&&&&*/   
    }

}


/* Delete del_num items and node pointers from buffer cur starting from *
 * the first_i'th item and first_p'th pointers respectively.		*/
static void	internal_delete_pointers_items (
						struct buffer_info * cur_bi,
						int first_p, 
						int first_i, 
						int del_num
						)
{
  struct buffer_head * cur = cur_bi->bi_bh;
  int nr;
  struct block_head * blkh;
  struct key * key;
  struct disk_child * dc;

  RFALSE( cur == NULL, "buffer is 0");
  RFALSE( del_num < 0,
          "negative number of items (%d) can not be deleted", del_num);
  RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
          "first pointer order (%d) < 0 or "
          "no so many pointers (%d), only (%d) or "
          "first key order %d < 0", first_p, 
          first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
  if ( del_num == 0 )
    return;

  blkh = B_BLK_HEAD(cur);
  nr = blkh_nr_item(blkh);

  if ( first_p == 0 && del_num == nr + 1 ) {
    RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
    make_empty_node (cur_bi);
    return;
  }

  RFALSE( first_i + del_num > B_NR_ITEMS (cur),
          "first_i = %d del_num = %d "
          "no so many keys (%d) in the node (%b)(%z)",
          first_i, del_num, first_i + del_num, cur, cur);


  /* deleting */
  dc = B_N_CHILD (cur, first_p);

  memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
  key = B_N_PDELIM_KEY (cur, first_i);
  memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);


  /* sizes, item number */
  set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
  set_blkh_free_space( blkh,
                    blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );

  do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
  /*&&&&&&&&&&&&&&&&&&&&&&&*/
  check_internal (cur);
  /*&&&&&&&&&&&&&&&&&&&&&&&*/
 
  if (cur_bi->bi_parent) {
    struct disk_child *t_dc;
    t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
    put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );

    do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
    check_internal (cur_bi->bi_parent);
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/   
  }
}


/* delete n node pointers and items starting from given position */
static void  internal_delete_childs (struct buffer_info * cur_bi, 
				     int from, int n)
{
  int i_from;

  i_from = (from == 0) ? from : from - 1;

  /* delete n pointers starting from `from' position in CUR;
     delete n keys starting from 'i_from' position in CUR;
     */
  internal_delete_pointers_items (cur_bi, from, i_from, n);
}


/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest 
 */
static void internal_copy_pointers_items (
					  struct buffer_info * dest_bi,
					  struct buffer_head * src,
					  int last_first, int cpy_num
					  )
{
  /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
   * as delimiting key have already inserted to buffer dest.*/
  struct buffer_head * dest = dest_bi->bi_bh;
  int nr_dest, nr_src;
  int dest_order, src_order;
  struct block_head * blkh;
  struct key * key;
  struct disk_child * dc;

  nr_src = B_NR_ITEMS (src);

  RFALSE( dest == NULL || src == NULL, 
	  "src (%p) or dest (%p) buffer is 0", src, dest);
  RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
	  "invalid last_first parameter (%d)", last_first);
  RFALSE( nr_src < cpy_num - 1, 
	  "no so many items (%d) in src (%d)", cpy_num, nr_src);
  RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
  RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
	  "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
	  cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));

  if ( cpy_num == 0 )
    return;

	/* coping */
  blkh = B_BLK_HEAD(dest);
  nr_dest = blkh_nr_item(blkh);

  /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
  /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
  (last_first == LAST_TO_FIRST) ?	(dest_order = 0, src_order = nr_src - cpy_num + 1) :
    (dest_order = nr_dest, src_order = 0);

  /* prepare space for cpy_num pointers */
  dc = B_N_CHILD (dest, dest_order);

  memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);

	/* insert pointers */
  memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);


  /* prepare space for cpy_num - 1 item headers */
  key = B_N_PDELIM_KEY(dest, dest_order);
  memmove (key + cpy_num - 1, key,
	   KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));


  /* insert headers */
  memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));

  /* sizes, item number */
  set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
  set_blkh_free_space( blkh,
      blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );

  do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);

  /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  check_internal (dest);
  /*&&&&&&&&&&&&&&&&&&&&&&&&*/

  if (dest_bi->bi_parent) {
    struct disk_child *t_dc;
    t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
    put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );

    do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/
    check_internal (dest_bi->bi_parent);
    /*&&&&&&&&&&&&&&&&&&&&&&&&*/   
  }

}


/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
 * Delete cpy_num - del_par items and node pointers from buffer src.
 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
 */
static void internal_move_pointers_items (struct buffer_info * dest_bi, 
					  struct buffer_info * src_bi, 
					  int last_first, int cpy_num, int del_par)
{
    int first_pointer;
    int first_item;
    
    internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);

    if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
	first_pointer = 0;
	first_item = 0;
	/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, 
	   for key - with first_item */
	internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
    } else {			/* shift_right occurs */
	int i, j;

	i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;

	internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
    }
}

/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
static void internal_insert_key (struct buffer_info * dest_bi, 
				 int dest_position_before,                 /* insert key before key with n_dest number */
				 struct buffer_head * src, 
				 int src_position)
{
    struct buffer_head * dest = dest_bi->bi_bh;
    int nr;
    struct block_head * blkh;
    struct key * key;

    RFALSE( dest == NULL || src == NULL,
	    "source(%p) or dest(%p) buffer is 0", src, dest);
    RFALSE( dest_position_before < 0 || src_position < 0,
	    "source(%d) or dest(%d) key number less than 0", 
	    src_position, dest_position_before);
    RFALSE( dest_position_before > B_NR_ITEMS (dest) || 
	    src_position >= B_NR_ITEMS(src),
	    "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
	    dest_position_before, B_NR_ITEMS (dest), 
	    src_position, B_NR_ITEMS(src));
    RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
	    "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));

    blkh = B_BLK_HEAD(dest);
    nr = blkh_nr_item(blkh);

    /* prepare space for inserting key */
    key = B_N_PDELIM_KEY (dest, dest_position_before);
    memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);

    /* insert key */
    memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);

    /* Change dirt, free space, item number fields. */

    set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
    set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );

    do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);

    if (dest_bi->bi_parent) {
	struct disk_child *t_dc;
	t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
	put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );

	do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
    }
}



/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 
 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
 * Replace  d_key'th key in buffer cfl.
 * Delete pointer_amount items and node pointers from buffer src.
 */
/* this can be invoked both to shift from S to L and from R to S */
static void	internal_shift_left (
				     int mode,	/* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
				     struct tree_balance * tb,
				     int h,
				     int pointer_amount
				     )
{
  struct buffer_info dest_bi, src_bi;
  struct buffer_head * cf;
  int d_key_position;

  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);

  /*printk("pointer_amount = %d\n",pointer_amount);*/

  if (pointer_amount) {
    /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);

    if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
      if (src_bi.bi_position/*src->b_item_order*/ == 0)
	replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
    } else
      replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
  }
  /* last parameter is del_parameter */
  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);

}

/* Insert delimiting key to L[h].
 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
 * Delete n - 1 items and node pointers from buffer S[h].
 */
/* it always shifts from S[h] to L[h] */
static void	internal_shift1_left (
				      struct tree_balance * tb, 
				      int h, 
				      int pointer_amount
				      )
{
  struct buffer_info dest_bi, src_bi;
  struct buffer_head * cf;
  int d_key_position;

  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);

  if ( pointer_amount > 0 ) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
    internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
  /*		internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/

  /* last parameter is del_parameter */
  internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
  /*	internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
}


/* Insert d_key'th (delimiting) key from buffer cfr to head of dest. 
 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
 * Replace  d_key'th key in buffer cfr.
 * Delete n items and node pointers from buffer src.
 */
static void internal_shift_right (
				  int mode,	/* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
				  struct tree_balance * tb,
				  int h,
				  int pointer_amount
				  )
{
  struct buffer_info dest_bi, src_bi;
  struct buffer_head * cf;
  int d_key_position;
  int nr;


  internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);

  nr = B_NR_ITEMS (src_bi.bi_bh);

  if (pointer_amount > 0) {
    /* insert delimiting key from common father of dest and src to dest node into position 0 */
    internal_insert_key (&dest_bi, 0, cf, d_key_position);
    if (nr == pointer_amount - 1) {
	 RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ || 
		 dest_bi.bi_bh != tb->R[h],
		 "src (%p) must be == tb->S[h](%p) when it disappears",
		 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
      /* when S[h] disappers replace left delemiting key as well */
      if (tb->CFL[h])
	replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
    } else
      replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
  }      

  /* last parameter is del_parameter */
  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
}

/* Insert delimiting key to R[h].
 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
 * Delete n - 1 items and node pointers from buffer S[h].
 */
/* it always shift from S[h] to R[h] */
static void	internal_shift1_right (
				       struct tree_balance * tb, 
				       int h, 
				       int pointer_amount
				       )
{
  struct buffer_info dest_bi, src_bi;
  struct buffer_head * cf;
  int d_key_position;

  internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);

  if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
    internal_insert_key (&dest_bi, 0, cf, d_key_position);
  /*		internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
	
  /* last parameter is del_parameter */
  internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
  /*	internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
}


/* Delete insert_num node pointers together with their left items
 * and balance current node.*/
static void balance_internal_when_delete (struct tree_balance * tb, 
					  int h, int child_pos)
{
    int insert_num;
    int n;
    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
    struct buffer_info bi;

    insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
  
    /* delete child-node-pointer(s) together with their left item(s) */
    bi.tb = tb;
    bi.bi_bh = tbSh;
    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);

    internal_delete_childs (&bi, child_pos, -insert_num);

    RFALSE( tb->blknum[h] > 1,
	    "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);

    n = B_NR_ITEMS(tbSh);

    if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
	if ( tb->blknum[h] == 0 ) {
	    /* node S[h] (root of the tree) is empty now */
	    struct buffer_head *new_root;

	    RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
		    "buffer must have only 0 keys (%d)", n);
	    RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
		
	    /* choose a new root */
	    if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
		new_root = tb->R[h-1];
	    else
		new_root = tb->L[h-1];
	    /* switch super block's tree root block number to the new value */
            PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
	    //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
            PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );

	    do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
	    /*&&&&&&&&&&&&&&&&&&&&&&*/
	    if (h > 1)
		/* use check_internal if new root is an internal node */
		check_internal (new_root);
	    /*&&&&&&&&&&&&&&&&&&&&&&*/
	    tb->tb_sb->s_dirt = 1;

	    /* do what is needed for buffer thrown from tree */
	    reiserfs_invalidate_buffer(tb, tbSh);
	    return;
	}
	return;
    }

    if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */

	RFALSE( tb->rnum[h] != 0,
		"invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
		h, tb->rnum[h]);

	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
	reiserfs_invalidate_buffer(tb, tbSh);

	return;
    }

    if ( tb->R[h] &&  tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
	RFALSE( tb->lnum[h] != 0,
		"invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
		h, tb->lnum[h]);

	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);

	reiserfs_invalidate_buffer(tb,tbSh);
	return;
    }

    if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
	RFALSE( tb->rnum[h] != 0,
		"wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
	/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
	internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
	return;
    }

    if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
	 RFALSE( tb->lnum[h] != 0,
		 "invalid tb->lnum[%d]==%d when borrow from R[h]", 
		 h, tb->lnum[h]);
	internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
	return;
    }

    if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
	RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
		"invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
		h, tb->lnum[h], h, tb->rnum[h], n);

	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);

	reiserfs_invalidate_buffer (tb, tbSh);

	return;
    }
    reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
		    h, tb->lnum[h], h, tb->rnum[h]);
}


/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
void	replace_lkey (
		      struct tree_balance * tb,
		      int h,
		      struct item_head * key
		      )
{
   RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
	   "L[h](%p) and CFL[h](%p) must exist in replace_lkey", 
	   tb->L[h], tb->CFL[h]);

  if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
    return;

  memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);

  do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
}


/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
void	replace_rkey (
		      struct tree_balance * tb,
		      int h,
		      struct item_head * key
		      )
{
  RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
	  "R[h](%p) and CFR[h](%p) must exist in replace_rkey", 
	  tb->R[h], tb->CFR[h]);
  RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
	  "R[h] can not be empty if it exists (item number=%d)", 
	  B_NR_ITEMS(tb->R[h]));

  memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);

  do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
}


int balance_internal (struct tree_balance * tb,			/* tree_balance structure 		*/
		      int h,					/* level of the tree 			*/
		      int child_pos,
		      struct item_head * insert_key,		/* key for insertion on higher level   	*/
		      struct buffer_head ** insert_ptr	/* node for insertion on higher level*/
    )
    /* if inserting/pasting
       {
       child_pos is the position of the node-pointer in S[h] that	 *
       pointed to S[h-1] before balancing of the h-1 level;		 *
       this means that new pointers and items must be inserted AFTER *
       child_pos
       }
       else 
       {
   it is the position of the leftmost pointer that must be deleted (together with
   its corresponding key to the left of the pointer)
   as a result of the previous level's balancing.
   }
*/
{
    struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
    struct buffer_info bi;
    int order;		/* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
    int insert_num, n, k;
    struct buffer_head * S_new;
    struct item_head new_insert_key;
    struct buffer_head * new_insert_ptr = NULL;
    struct item_head * new_insert_key_addr = insert_key;

    RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);

    PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );

    order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;

  /* Using insert_size[h] calculate the number insert_num of items
     that must be inserted to or deleted from S[h]. */
    insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));

    /* Check whether insert_num is proper **/
    RFALSE( insert_num < -2  ||  insert_num > 2,
	    "incorrect number of items inserted to the internal node (%d)", 
	    insert_num);
    RFALSE( h > 1  && (insert_num > 1 || insert_num < -1),
	    "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", 
	    insert_num, h);

    /* Make balance in case insert_num < 0 */
    if ( insert_num < 0 ) {
	balance_internal_when_delete (tb, h, child_pos);
	return order;
    }
 
    k = 0;
    if ( tb->lnum[h] > 0 ) {
	/* shift lnum[h] items from S[h] to the left neighbor L[h].
	   check how many of new items fall into L[h] or CFL[h] after
	   shifting */
	n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
	if ( tb->lnum[h] <= child_pos ) {
	    /* new items don't fall into L[h] or CFL[h] */
	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
	    /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
	    child_pos -= tb->lnum[h];
	} else if ( tb->lnum[h] > child_pos + insert_num ) {
	    /* all new items fall into L[h] */
	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
	    /*			internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
				tb->lnum[h]-insert_num);
	    */
	    /* insert insert_num keys and node-pointers into L[h] */
	    bi.tb = tb;
	    bi.bi_bh = tb->L[h];
	    bi.bi_parent = tb->FL[h];
	    bi.bi_position = get_left_neighbor_position (tb, h);
	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
				    insert_num,insert_key,insert_ptr);

	    insert_num = 0; 
	} else {
	    struct disk_child * dc;

	    /* some items fall into L[h] or CFL[h], but some don't fall */
	    internal_shift1_left(tb,h,child_pos+1);
	    /* calculate number of new items that fall into L[h] */
	    k = tb->lnum[h] - child_pos - 1;
	    bi.tb = tb;
	    bi.bi_bh = tb->L[h];
	    bi.bi_parent = tb->FL[h];
	    bi.bi_position = get_left_neighbor_position (tb, h);
	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
				    insert_key,insert_ptr);

	    replace_lkey(tb,h,insert_key + k);

	    /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
	    dc = B_N_CHILD(tbSh, 0);
	    put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
	    put_dc_block_number( dc, insert_ptr[k]->b_blocknr );

	    do_balance_mark_internal_dirty (tb, tbSh, 0);

	    k++;
	    insert_key += k;
	    insert_ptr += k;
	    insert_num -= k;
	    child_pos = 0;
	}
    }	/* tb->lnum[h] > 0 */

    if ( tb->rnum[h] > 0 ) {
	/*shift rnum[h] items from S[h] to the right neighbor R[h]*/
	/* check how many of new items fall into R or CFR after shifting */
	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
	if ( n - tb->rnum[h] >= child_pos )
	    /* new items fall into S[h] */
	    /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
	    internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
	else
	    if ( n + insert_num - tb->rnum[h] < child_pos )
	    {
		/* all new items fall into R[h] */
		/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
	    tb->rnum[h] - insert_num);*/
		internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);

		/* insert insert_num keys and node-pointers into R[h] */
		bi.tb = tb;
		bi.bi_bh = tb->R[h];
		bi.bi_parent = tb->FR[h];
		bi.bi_position = get_right_neighbor_position (tb, h);
		internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
					insert_num,insert_key,insert_ptr);
		insert_num = 0;
	    }
	    else
	    {
		struct disk_child * dc;

		/* one of the items falls into CFR[h] */
		internal_shift1_right(tb,h,n - child_pos + 1);
		/* calculate number of new items that fall into R[h] */
		k = tb->rnum[h] - n + child_pos - 1;
		bi.tb = tb;
		bi.bi_bh = tb->R[h];
		bi.bi_parent = tb->FR[h];
		bi.bi_position = get_right_neighbor_position (tb, h);
		internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);

		replace_rkey(tb,h,insert_key + insert_num - k - 1);

		/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
		dc = B_N_CHILD(tb->R[h], 0);
		put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
    				    B_FREE_SPACE (insert_ptr[insert_num-k-1]));
		put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );

		do_balance_mark_internal_dirty (tb, tb->R[h],0);

		insert_num -= (k + 1);
	    }
    }

    /** Fill new node that appears instead of S[h] **/
    RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
    RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");

    if ( ! tb->blknum[h] )
    { /* node S[h] is empty now */
	RFALSE( ! tbSh, "S[h] is equal NULL");

	/* do what is needed for buffer thrown from tree */
	reiserfs_invalidate_buffer(tb,tbSh);
	return order;
    }

    if ( ! tbSh ) {
	/* create new root */
	struct disk_child  * dc;
	struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
        struct block_head *  blkh;


	if ( tb->blknum[h] != 1 )
	    reiserfs_panic(0, "balance_internal: One new node required for creating the new root");
	/* S[h] = empty buffer from the list FEB. */
	tbSh = get_FEB (tb);
        blkh = B_BLK_HEAD(tbSh);
        set_blkh_level( blkh, h + 1 );

	/* Put the unique node-pointer to S[h] that points to S[h-1]. */

	dc = B_N_CHILD(tbSh, 0);
	put_dc_block_number( dc, tbSh_1->b_blocknr );
	put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));

	tb->insert_size[h] -= DC_SIZE;
        set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );

	do_balance_mark_internal_dirty (tb, tbSh, 0);

	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
	check_internal (tbSh);
	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
    
    /* put new root into path structure */
	PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;

	/* Change root in structure super block. */
        PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
        PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
	do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
	tb->tb_sb->s_dirt = 1;
    }
	
    if ( tb->blknum[h] == 2 ) {
	int snum;
	struct buffer_info dest_bi, src_bi;


	/* S_new = free buffer from list FEB */
	S_new = get_FEB(tb);

        set_blkh_level( B_BLK_HEAD(S_new), h + 1 );

	dest_bi.tb = tb;
	dest_bi.bi_bh = S_new;
	dest_bi.bi_parent = 0;
	dest_bi.bi_position = 0;
	src_bi.tb = tb;
	src_bi.bi_bh = tbSh;
	src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
		
	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
	snum = (insert_num + n + 1)/2;
	if ( n - snum >= child_pos ) {
	    /* new items don't fall into S_new */
	    /*	store the delimiting key for the next level */
	    /* new_insert_key = (n - snum)'th key in S[h] */
	    memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
		    KEY_SIZE);
	    /* last parameter is del_par */
	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
	    /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
	} else if ( n + insert_num - snum < child_pos ) {
	    /* all new items fall into S_new */
	    /*	store the delimiting key for the next level */
	    /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
	    memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
		   KEY_SIZE);
	    /* last parameter is del_par */
	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
	    /*			internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/

	    /* insert insert_num keys and node-pointers into S_new */
	    internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
				    insert_num,insert_key,insert_ptr);

	    insert_num = 0;
	} else {
	    struct disk_child * dc;

	    /* some items fall into S_new, but some don't fall */
	    /* last parameter is del_par */
	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
	    /*			internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
	    /* calculate number of new items that fall into S_new */
	    k = snum - n + child_pos - 1;

	    internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);

	    /* new_insert_key = insert_key[insert_num - k - 1] */
	    memcpy(&new_insert_key,insert_key + insert_num - k - 1,
		   KEY_SIZE);
	    /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */

	    dc = B_N_CHILD(S_new,0);
	    put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
				B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
	    put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );

	    do_balance_mark_internal_dirty (tb, S_new,0);
			
	    insert_num -= (k + 1);
	}
	/* new_insert_ptr = node_pointer to S_new */
	new_insert_ptr = S_new;

	RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) &&
	       (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 ||
		!(buffer_journaled(S_new) || buffer_journal_dirty(S_new))),
	       "cm-00001: bad S_new (%b)", S_new);

	// S_new is released in unfix_nodes
    }

    n = B_NR_ITEMS (tbSh); /*number of items in S[h] */

	if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
	    bi.tb = tb;
	    bi.bi_bh = tbSh;
	    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
	    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
		internal_insert_childs (
		    &bi,/*tbSh,*/
		    /*		( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next,*/
		    child_pos,insert_num,insert_key,insert_ptr
		    );
	}


	memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
	insert_ptr[0] = new_insert_ptr;

	return order;
    }