Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/*
 *  linux/kernel/exit.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/tty.h>
#include <linux/namespace.h>
#include <linux/acct.h>
#include <linux/file.h>
#include <linux/binfmts.h>

#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>

extern void sem_exit (void);
extern struct task_struct *child_reaper;

int getrusage(struct task_struct *, int, struct rusage *);

static inline void __unhash_process(struct task_struct *p)
{
	struct dentry *proc_dentry;
	write_lock_irq(&tasklist_lock);
	nr_threads--;
	unhash_pid(p);
	REMOVE_LINKS(p);
	list_del(&p->thread_group);
	p->pid = 0;
	proc_dentry = p->proc_dentry;
	if (unlikely(proc_dentry != NULL)) {
		spin_lock(&dcache_lock);
		if (!list_empty(&proc_dentry->d_hash)) {
			dget_locked(proc_dentry);
			list_del_init(&proc_dentry->d_hash);
		} else
			proc_dentry = NULL;
		spin_unlock(&dcache_lock);
	}
	write_unlock_irq(&tasklist_lock);
	if (unlikely(proc_dentry != NULL)) {
		shrink_dcache_parent(proc_dentry);
		dput(proc_dentry);
	}
}

static void release_task(struct task_struct * p)
{
	if (p == current)
		BUG();
#ifdef CONFIG_SMP
	wait_task_inactive(p);
#endif
	atomic_dec(&p->user->processes);
	free_uid(p->user);
	unhash_process(p);

	release_thread(p);
	current->cmin_flt += p->min_flt + p->cmin_flt;
	current->cmaj_flt += p->maj_flt + p->cmaj_flt;
	current->cnswap += p->nswap + p->cnswap;
	sched_exit(p);
	put_task_struct(p);
}

/* we are using it only for SMP init */

void unhash_process(struct task_struct *p)
{
	return __unhash_process(p);
}

/*
 * This checks not only the pgrp, but falls back on the pid if no
 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 * without this...
 */
int session_of_pgrp(int pgrp)
{
	struct task_struct *p;
	int fallback;

	fallback = -1;
	read_lock(&tasklist_lock);
	for_each_task(p) {
 		if (p->session <= 0)
 			continue;
		if (p->pgrp == pgrp) {
			fallback = p->session;
			break;
		}
		if (p->pid == pgrp)
			fallback = p->session;
	}
	read_unlock(&tasklist_lock);
	return fallback;
}

/*
 * Determine if a process group is "orphaned", according to the POSIX
 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 * by terminal-generated stop signals.  Newly orphaned process groups are
 * to receive a SIGHUP and a SIGCONT.
 *
 * "I ask you, have you ever known what it is to be an orphan?"
 */
static int will_become_orphaned_pgrp(int pgrp, struct task_struct * ignored_task)
{
	struct task_struct *p;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if ((p == ignored_task) || (p->pgrp != pgrp) ||
		    (p->state == TASK_ZOMBIE) ||
		    (p->parent->pid == 1))
			continue;
		if ((p->parent->pgrp != pgrp) &&
		    (p->parent->session == p->session)) {
			read_unlock(&tasklist_lock);
 			return 0;
		}
	}
	read_unlock(&tasklist_lock);
	return 1;	/* (sighing) "Often!" */
}

int is_orphaned_pgrp(int pgrp)
{
	return will_become_orphaned_pgrp(pgrp, 0);
}

static inline int has_stopped_jobs(int pgrp)
{
	int retval = 0;
	struct task_struct * p;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if (p->pgrp != pgrp)
			continue;
		if (p->state != TASK_STOPPED)
			continue;
		retval = 1;
		break;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * reparent_to_init() - Reparent the calling kernel thread to the init task.
 *
 * If a kernel thread is launched as a result of a system call, or if
 * it ever exits, it should generally reparent itself to init so that
 * it is correctly cleaned up on exit.
 *
 * The various task state such as scheduling policy and priority may have
 * been inherited from a user process, so we reset them to sane values here.
 *
 * NOTE that reparent_to_init() gives the caller full capabilities.
 */
void reparent_to_init(void)
{
	write_lock_irq(&tasklist_lock);

	/* Reparent to init */
	REMOVE_LINKS(current);
	current->parent = child_reaper;
	current->real_parent = child_reaper;
	SET_LINKS(current);

	/* Set the exit signal to SIGCHLD so we signal init on exit */
	current->exit_signal = SIGCHLD;

	current->ptrace = 0;
	if ((current->policy == SCHED_OTHER) && (task_nice(current) < 0))
		set_user_nice(current, 0);
	/* cpus_allowed? */
	/* rt_priority? */
	/* signals? */
	current->cap_effective = CAP_INIT_EFF_SET;
	current->cap_inheritable = CAP_INIT_INH_SET;
	current->cap_permitted = CAP_FULL_SET;
	current->keep_capabilities = 0;
	memcpy(current->rlim, init_task.rlim, sizeof(*(current->rlim)));
	current->user = INIT_USER;

	write_unlock_irq(&tasklist_lock);
}

/*
 *	Put all the gunge required to become a kernel thread without
 *	attached user resources in one place where it belongs.
 */

void daemonize(void)
{
	struct fs_struct *fs;


	/*
	 * If we were started as result of loading a module, close all of the
	 * user space pages.  We don't need them, and if we didn't close them
	 * they would be locked into memory.
	 */
	exit_mm(current);

	current->session = 1;
	current->pgrp = 1;
	current->tty = NULL;

	/* Become as one with the init task */

	exit_fs(current);	/* current->fs->count--; */
	fs = init_task.fs;
	current->fs = fs;
	atomic_inc(&fs->count);
 	exit_files(current);
	current->files = init_task.files;
	atomic_inc(&current->files->count);
}

/*
 * When we die, we re-parent all our children.
 * Try to give them to another thread in our process
 * group, and if no such member exists, give it to
 * the global child reaper process (ie "init")
 */
static inline void forget_original_parent(struct task_struct * father)
{
	struct task_struct * p, *reaper;

	read_lock(&tasklist_lock);

	/* Next in our thread group */
	reaper = next_thread(father);
	if (reaper == father)
		reaper = child_reaper;

	for_each_task(p) {
		if (p->real_parent == father) {
			/* We dont want people slaying init */
			p->exit_signal = SIGCHLD;
			p->self_exec_id++;

			/* Make sure we're not reparenting to ourselves */
			if (p == reaper)
				p->real_parent = child_reaper;
			else
				p->real_parent = reaper;

			if (p->pdeath_signal) send_sig(p->pdeath_signal, p, 0);
		}
	}
	read_unlock(&tasklist_lock);
}

static inline void close_files(struct files_struct * files)
{
	int i, j;

	j = 0;
	for (;;) {
		unsigned long set;
		i = j * __NFDBITS;
		if (i >= files->max_fdset || i >= files->max_fds)
			break;
		set = files->open_fds->fds_bits[j++];
		while (set) {
			if (set & 1) {
				struct file * file = xchg(&files->fd[i], NULL);
				if (file)
					filp_close(file, files);
			}
			i++;
			set >>= 1;
		}
	}
}

void put_files_struct(struct files_struct *files)
{
	if (atomic_dec_and_test(&files->count)) {
		close_files(files);
		/*
		 * Free the fd and fdset arrays if we expanded them.
		 */
		if (files->fd != &files->fd_array[0])
			free_fd_array(files->fd, files->max_fds);
		if (files->max_fdset > __FD_SETSIZE) {
			free_fdset(files->open_fds, files->max_fdset);
			free_fdset(files->close_on_exec, files->max_fdset);
		}
		kmem_cache_free(files_cachep, files);
	}
}

static inline void __exit_files(struct task_struct *tsk)
{
	struct files_struct * files = tsk->files;

	if (files) {
		task_lock(tsk);
		tsk->files = NULL;
		task_unlock(tsk);
		put_files_struct(files);
	}
}

void exit_files(struct task_struct *tsk)
{
	__exit_files(tsk);
}

static inline void __put_fs_struct(struct fs_struct *fs)
{
	/* No need to hold fs->lock if we are killing it */
	if (atomic_dec_and_test(&fs->count)) {
		dput(fs->root);
		mntput(fs->rootmnt);
		dput(fs->pwd);
		mntput(fs->pwdmnt);
		if (fs->altroot) {
			dput(fs->altroot);
			mntput(fs->altrootmnt);
		}
		kmem_cache_free(fs_cachep, fs);
	}
}

void put_fs_struct(struct fs_struct *fs)
{
	__put_fs_struct(fs);
}

static inline void __exit_fs(struct task_struct *tsk)
{
	struct fs_struct * fs = tsk->fs;

	if (fs) {
		task_lock(tsk);
		tsk->fs = NULL;
		task_unlock(tsk);
		__put_fs_struct(fs);
	}
}

void exit_fs(struct task_struct *tsk)
{
	__exit_fs(tsk);
}

/*
 * We can use these to temporarily drop into
 * "lazy TLB" mode and back.
 */
struct mm_struct * start_lazy_tlb(void)
{
	struct mm_struct *mm = current->mm;
	current->mm = NULL;
	/* active_mm is still 'mm' */
	atomic_inc(&mm->mm_count);
	enter_lazy_tlb(mm, current, smp_processor_id());
	return mm;
}

void end_lazy_tlb(struct mm_struct *mm)
{
	struct mm_struct *active_mm = current->active_mm;

	current->mm = mm;
	if (mm != active_mm) {
		current->active_mm = mm;
		activate_mm(active_mm, mm);
	}
	mmdrop(active_mm);
}

/*
 * Turn us into a lazy TLB process if we
 * aren't already..
 */
static inline void __exit_mm(struct task_struct * tsk)
{
	struct mm_struct * mm = tsk->mm;

	mm_release();
	if (mm) {
		atomic_inc(&mm->mm_count);
		if (mm != tsk->active_mm) BUG();
		/* more a memory barrier than a real lock */
		task_lock(tsk);
		tsk->mm = NULL;
		enter_lazy_tlb(mm, current, smp_processor_id());
		task_unlock(tsk);
		mmput(mm);
	}
}

void exit_mm(struct task_struct *tsk)
{
	__exit_mm(tsk);
}

/*
 * Send signals to all our closest relatives so that they know
 * to properly mourn us..
 */
static void exit_notify(void)
{
	struct task_struct * p, *t;

	forget_original_parent(current);
	/*
	 * Check to see if any process groups have become orphaned
	 * as a result of our exiting, and if they have any stopped
	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
	 *
	 * Case i: Our father is in a different pgrp than we are
	 * and we were the only connection outside, so our pgrp
	 * is about to become orphaned.
	 */
	 
	t = current->parent;
	
	if ((t->pgrp != current->pgrp) &&
	    (t->session == current->session) &&
	    will_become_orphaned_pgrp(current->pgrp, current) &&
	    has_stopped_jobs(current->pgrp)) {
		kill_pg(current->pgrp,SIGHUP,1);
		kill_pg(current->pgrp,SIGCONT,1);
	}

	/* Let father know we died 
	 *
	 * Thread signals are configurable, but you aren't going to use
	 * that to send signals to arbitary processes. 
	 * That stops right now.
	 *
	 * If the parent exec id doesn't match the exec id we saved
	 * when we started then we know the parent has changed security
	 * domain.
	 *
	 * If our self_exec id doesn't match our parent_exec_id then
	 * we have changed execution domain as these two values started
	 * the same after a fork.
	 *	
	 */
	
	if(current->exit_signal != SIGCHLD &&
	    ( current->parent_exec_id != t->self_exec_id  ||
	      current->self_exec_id != current->parent_exec_id) 
	    && !capable(CAP_KILL))
		current->exit_signal = SIGCHLD;


	/*
	 * This loop does two things:
	 *
  	 * A.  Make init inherit all the child processes
	 * B.  Check to see if any process groups have become orphaned
	 *	as a result of our exiting, and if they have any stopped
	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
	 */

	write_lock_irq(&tasklist_lock);
	current->state = TASK_ZOMBIE;
	do_notify_parent(current, current->exit_signal);
	while ((p = eldest_child(current))) {
		list_del_init(&p->sibling);
		p->ptrace = 0;

		p->parent = p->real_parent;
		list_add_tail(&p->sibling,&p->parent->children);
		if (p->state == TASK_ZOMBIE)
			do_notify_parent(p, p->exit_signal);
		/*
		 * process group orphan check
		 * Case ii: Our child is in a different pgrp
		 * than we are, and it was the only connection
		 * outside, so the child pgrp is now orphaned.
		 */
		if ((p->pgrp != current->pgrp) &&
		    (p->session == current->session)) {
			int pgrp = p->pgrp;

			write_unlock_irq(&tasklist_lock);
			if (is_orphaned_pgrp(pgrp) && has_stopped_jobs(pgrp)) {
				kill_pg(pgrp,SIGHUP,1);
				kill_pg(pgrp,SIGCONT,1);
			}
			write_lock_irq(&tasklist_lock);
		}
	}

	/*
	 * No need to unlock IRQs, we'll schedule() immediately
	 * anyway. In the preemption case this also makes it
	 * impossible for the task to get runnable again (thus
	 * the "_raw_" unlock - to make sure we don't try to
	 * preempt here).
	 */
	_raw_write_unlock(&tasklist_lock);
}

NORET_TYPE void do_exit(long code)
{
	struct task_struct *tsk = current;

	if (in_interrupt())
		panic("Aiee, killing interrupt handler!");
	if (!tsk->pid)
		panic("Attempted to kill the idle task!");
	if (tsk->pid == 1)
		panic("Attempted to kill init!");
	tsk->flags |= PF_EXITING;
	del_timer_sync(&tsk->real_timer);

	if (unlikely(preempt_get_count()))
		printk(KERN_ERR "error: %s[%d] exited with preempt_count %d\n",
				current->comm, current->pid,
				preempt_get_count());

fake_volatile:
	acct_process(code);
	__exit_mm(tsk);

	sem_exit();
	__exit_files(tsk);
	__exit_fs(tsk);
	exit_namespace(tsk);
	exit_sighand(tsk);
	exit_thread();

	if (current->leader)
		disassociate_ctty(1);

	put_exec_domain(tsk->thread_info->exec_domain);
	if (tsk->binfmt && tsk->binfmt->module)
		__MOD_DEC_USE_COUNT(tsk->binfmt->module);

	tsk->exit_code = code;
	exit_notify();
	schedule();
	BUG();
/*
 * In order to get rid of the "volatile function does return" message
 * I did this little loop that confuses gcc to think do_exit really
 * is volatile. In fact it's schedule() that is volatile in some
 * circumstances: when current->state = ZOMBIE, schedule() never
 * returns.
 *
 * In fact the natural way to do all this is to have the label and the
 * goto right after each other, but I put the fake_volatile label at
 * the start of the function just in case something /really/ bad
 * happens, and the schedule returns. This way we can try again. I'm
 * not paranoid: it's just that everybody is out to get me.
 */
	goto fake_volatile;
}

NORET_TYPE void complete_and_exit(struct completion *comp, long code)
{
	if (comp)
		complete(comp);
	
	do_exit(code);
}

asmlinkage long sys_exit(int error_code)
{
	do_exit((error_code&0xff)<<8);
}

asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru)
{
	int flag, retval;
	DECLARE_WAITQUEUE(wait, current);
	struct task_struct *tsk;

	if (options & ~(WNOHANG|WUNTRACED|__WNOTHREAD|__WCLONE|__WALL))
		return -EINVAL;

	add_wait_queue(&current->wait_chldexit,&wait);
repeat:
	flag = 0;
	current->state = TASK_INTERRUPTIBLE;
	read_lock(&tasklist_lock);
	tsk = current;
	do {
		struct task_struct *p;
		struct list_head *_p;
		list_for_each(_p,&tsk->children) {
			p = list_entry(_p,struct task_struct,sibling);
			if (pid>0) {
				if (p->pid != pid)
					continue;
			} else if (!pid) {
				if (p->pgrp != current->pgrp)
					continue;
			} else if (pid != -1) {
				if (p->pgrp != -pid)
					continue;
			}
			/* Wait for all children (clone and not) if __WALL is set;
			 * otherwise, wait for clone children *only* if __WCLONE is
			 * set; otherwise, wait for non-clone children *only*.  (Note:
			 * A "clone" child here is one that reports to its parent
			 * using a signal other than SIGCHLD.) */
			if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
			    && !(options & __WALL))
				continue;
			flag = 1;
			switch (p->state) {
			case TASK_STOPPED:
				if (!p->exit_code)
					continue;
				if (!(options & WUNTRACED) && !(p->ptrace & PT_PTRACED))
					continue;
				read_unlock(&tasklist_lock);

				/* move to end of parent's list to avoid starvation */
				write_lock_irq(&tasklist_lock);
				remove_parent(p);
				add_parent(p, p->parent);
				write_unlock_irq(&tasklist_lock);
				retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 
				if (!retval && stat_addr) 
					retval = put_user((p->exit_code << 8) | 0x7f, stat_addr);
				if (!retval) {
					p->exit_code = 0;
					retval = p->pid;
				}
				goto end_wait4;
			case TASK_ZOMBIE:
				current->times.tms_cutime += p->times.tms_utime + p->times.tms_cutime;
				current->times.tms_cstime += p->times.tms_stime + p->times.tms_cstime;
				read_unlock(&tasklist_lock);
				retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
				if (!retval && stat_addr)
					retval = put_user(p->exit_code, stat_addr);
				if (retval)
					goto end_wait4; 
				retval = p->pid;
				if (p->real_parent != p->parent) {
					write_lock_irq(&tasklist_lock);
					remove_parent(p);
					p->parent = p->real_parent;
					add_parent(p, p->parent);
					do_notify_parent(p, SIGCHLD);
					write_unlock_irq(&tasklist_lock);
				} else
					release_task(p);
				goto end_wait4;
			default:
				continue;
			}
		}
		if (options & __WNOTHREAD)
			break;
		tsk = next_thread(tsk);
	} while (tsk != current);
	read_unlock(&tasklist_lock);
	if (flag) {
		retval = 0;
		if (options & WNOHANG)
			goto end_wait4;
		retval = -ERESTARTSYS;
		if (signal_pending(current))
			goto end_wait4;
		schedule();
		goto repeat;
	}
	retval = -ECHILD;
end_wait4:
	current->state = TASK_RUNNING;
	remove_wait_queue(&current->wait_chldexit,&wait);
	return retval;
}

#if !defined(__alpha__) && !defined(__ia64__) && !defined(__arm__)

/*
 * sys_waitpid() remains for compatibility. waitpid() should be
 * implemented by calling sys_wait4() from libc.a.
 */
asmlinkage long sys_waitpid(pid_t pid,unsigned int * stat_addr, int options)
{
	return sys_wait4(pid, stat_addr, options, NULL);
}

#endif