/*
* arch/s390x/kernel/linux32.c
*
* S390 version
* Copyright (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
* Gerhard Tonn (ton@de.ibm.com)
*
* Conversion between 31bit and 64bit native syscalls.
*
* Heavily inspired by the 32-bit Sparc compat code which is
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/utime.h>
#include <linux/resource.h>
#include <linux/times.h>
#include <linux/utsname.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/shm.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/nfs_fs.h>
#include <linux/smb_fs.h>
#include <linux/smb_mount.h>
#include <linux/ncp_fs.h>
#include <linux/quota.h>
#include <linux/module.h>
#include <linux/sunrpc/svc.h>
#include <linux/nfsd/nfsd.h>
#include <linux/nfsd/cache.h>
#include <linux/nfsd/xdr.h>
#include <linux/nfsd/syscall.h>
#include <linux/poll.h>
#include <linux/personality.h>
#include <linux/stat.h>
#include <linux/filter.h>
#include <linux/highmem.h>
#include <linux/highuid.h>
#include <linux/mman.h>
#include <linux/ipv6.h>
#include <linux/in.h>
#include <linux/icmpv6.h>
#include <linux/sysctl.h>
#include <asm/types.h>
#include <asm/ipc.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <net/scm.h>
#include "linux32.h"
extern asmlinkage long sys_chown(const char *, uid_t,gid_t);
extern asmlinkage long sys_lchown(const char *, uid_t,gid_t);
extern asmlinkage long sys_fchown(unsigned int, uid_t,gid_t);
extern asmlinkage long sys_setregid(gid_t, gid_t);
extern asmlinkage long sys_setgid(gid_t);
extern asmlinkage long sys_setreuid(uid_t, uid_t);
extern asmlinkage long sys_setuid(uid_t);
extern asmlinkage long sys_setresuid(uid_t, uid_t, uid_t);
extern asmlinkage long sys_setresgid(gid_t, gid_t, gid_t);
extern asmlinkage long sys_setfsuid(uid_t);
extern asmlinkage long sys_setfsgid(gid_t);
/* For this source file, we want overflow handling. */
#undef high2lowuid
#undef high2lowgid
#undef low2highuid
#undef low2highgid
#undef SET_UID16
#undef SET_GID16
#undef NEW_TO_OLD_UID
#undef NEW_TO_OLD_GID
#undef SET_OLDSTAT_UID
#undef SET_OLDSTAT_GID
#undef SET_STAT_UID
#undef SET_STAT_GID
#define high2lowuid(uid) ((uid) > 65535) ? (u16)overflowuid : (u16)(uid)
#define high2lowgid(gid) ((gid) > 65535) ? (u16)overflowgid : (u16)(gid)
#define low2highuid(uid) ((uid) == (u16)-1) ? (uid_t)-1 : (uid_t)(uid)
#define low2highgid(gid) ((gid) == (u16)-1) ? (gid_t)-1 : (gid_t)(gid)
#define SET_UID16(var, uid) var = high2lowuid(uid)
#define SET_GID16(var, gid) var = high2lowgid(gid)
#define NEW_TO_OLD_UID(uid) high2lowuid(uid)
#define NEW_TO_OLD_GID(gid) high2lowgid(gid)
#define SET_OLDSTAT_UID(stat, uid) (stat).st_uid = high2lowuid(uid)
#define SET_OLDSTAT_GID(stat, gid) (stat).st_gid = high2lowgid(gid)
#define SET_STAT_UID(stat, uid) (stat).st_uid = high2lowuid(uid)
#define SET_STAT_GID(stat, gid) (stat).st_gid = high2lowgid(gid)
asmlinkage long sys32_chown16(const char * filename, u16 user, u16 group)
{
return sys_chown(filename, low2highuid(user), low2highgid(group));
}
asmlinkage long sys32_lchown16(const char * filename, u16 user, u16 group)
{
return sys_lchown(filename, low2highuid(user), low2highgid(group));
}
asmlinkage long sys32_fchown16(unsigned int fd, u16 user, u16 group)
{
return sys_fchown(fd, low2highuid(user), low2highgid(group));
}
asmlinkage long sys32_setregid16(u16 rgid, u16 egid)
{
return sys_setregid(low2highgid(rgid), low2highgid(egid));
}
asmlinkage long sys32_setgid16(u16 gid)
{
return sys_setgid((gid_t)gid);
}
asmlinkage long sys32_setreuid16(u16 ruid, u16 euid)
{
return sys_setreuid(low2highuid(ruid), low2highuid(euid));
}
asmlinkage long sys32_setuid16(u16 uid)
{
return sys_setuid((uid_t)uid);
}
asmlinkage long sys32_setresuid16(u16 ruid, u16 euid, u16 suid)
{
return sys_setresuid(low2highuid(ruid), low2highuid(euid),
low2highuid(suid));
}
asmlinkage long sys32_getresuid16(u16 *ruid, u16 *euid, u16 *suid)
{
int retval;
if (!(retval = put_user(high2lowuid(current->uid), ruid)) &&
!(retval = put_user(high2lowuid(current->euid), euid)))
retval = put_user(high2lowuid(current->suid), suid);
return retval;
}
asmlinkage long sys32_setresgid16(u16 rgid, u16 egid, u16 sgid)
{
return sys_setresgid(low2highgid(rgid), low2highgid(egid),
low2highgid(sgid));
}
asmlinkage long sys32_getresgid16(u16 *rgid, u16 *egid, u16 *sgid)
{
int retval;
if (!(retval = put_user(high2lowgid(current->gid), rgid)) &&
!(retval = put_user(high2lowgid(current->egid), egid)))
retval = put_user(high2lowgid(current->sgid), sgid);
return retval;
}
asmlinkage long sys32_setfsuid16(u16 uid)
{
return sys_setfsuid((uid_t)uid);
}
asmlinkage long sys32_setfsgid16(u16 gid)
{
return sys_setfsgid((gid_t)gid);
}
asmlinkage long sys32_getgroups16(int gidsetsize, u16 *grouplist)
{
u16 groups[NGROUPS];
int i,j;
if (gidsetsize < 0)
return -EINVAL;
i = current->ngroups;
if (gidsetsize) {
if (i > gidsetsize)
return -EINVAL;
for(j=0;j<i;j++)
groups[j] = current->groups[j];
if (copy_to_user(grouplist, groups, sizeof(u16)*i))
return -EFAULT;
}
return i;
}
asmlinkage long sys32_setgroups16(int gidsetsize, u16 *grouplist)
{
u16 groups[NGROUPS];
int i;
if (!capable(CAP_SETGID))
return -EPERM;
if ((unsigned) gidsetsize > NGROUPS)
return -EINVAL;
if (copy_from_user(groups, grouplist, gidsetsize * sizeof(u16)))
return -EFAULT;
for (i = 0 ; i < gidsetsize ; i++)
current->groups[i] = (gid_t)groups[i];
current->ngroups = gidsetsize;
return 0;
}
asmlinkage long sys32_getuid16(void)
{
return high2lowuid(current->uid);
}
asmlinkage long sys32_geteuid16(void)
{
return high2lowuid(current->euid);
}
asmlinkage long sys32_getgid16(void)
{
return high2lowgid(current->gid);
}
asmlinkage long sys32_getegid16(void)
{
return high2lowgid(current->egid);
}
/* 32-bit timeval and related flotsam. */
struct timeval32
{
int tv_sec, tv_usec;
};
struct itimerval32
{
struct timeval32 it_interval;
struct timeval32 it_value;
};
static inline long get_tv32(struct timeval *o, struct timeval32 *i)
{
return (!access_ok(VERIFY_READ, tv32, sizeof(*tv32)) ||
(__get_user(o->tv_sec, &i->tv_sec) |
__get_user(o->tv_usec, &i->tv_usec)));
}
static inline long put_tv32(struct timeval32 *o, struct timeval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->tv_sec, &o->tv_sec) |
__put_user(i->tv_usec, &o->tv_usec)));
}
static inline long get_it32(struct itimerval *o, struct itimerval32 *i)
{
return (!access_ok(VERIFY_READ, i32, sizeof(*i32)) ||
(__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) |
__get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) |
__get_user(o->it_value.tv_sec, &i->it_value.tv_sec) |
__get_user(o->it_value.tv_usec, &i->it_value.tv_usec)));
}
static inline long put_it32(struct itimerval32 *o, struct itimerval *i)
{
return (!access_ok(VERIFY_WRITE, i32, sizeof(*i32)) ||
(__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) |
__put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) |
__put_user(i->it_value.tv_sec, &o->it_value.tv_sec) |
__put_user(i->it_value.tv_usec, &o->it_value.tv_usec)));
}
struct msgbuf32 { s32 mtype; char mtext[1]; };
struct ipc_perm32
{
key_t key;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_uid_t32 cuid;
__kernel_gid_t32 cgid;
__kernel_mode_t32 mode;
unsigned short seq;
};
struct semid_ds32 {
struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */
__kernel_time_t32 sem_otime; /* last semop time */
__kernel_time_t32 sem_ctime; /* last change time */
u32 sem_base; /* ptr to first semaphore in array */
u32 sem_pending; /* pending operations to be processed */
u32 sem_pending_last; /* last pending operation */
u32 undo; /* undo requests on this array */
unsigned short sem_nsems; /* no. of semaphores in array */
};
struct semid64_ds32 {
struct ipc64_perm sem_perm; /* this structure is the same on sparc32 and sparc64 */
unsigned int __pad1;
__kernel_time_t32 sem_otime;
unsigned int __pad2;
__kernel_time_t32 sem_ctime;
u32 sem_nsems;
u32 __unused1;
u32 __unused2;
};
struct msqid_ds32
{
struct ipc_perm32 msg_perm;
u32 msg_first;
u32 msg_last;
__kernel_time_t32 msg_stime;
__kernel_time_t32 msg_rtime;
__kernel_time_t32 msg_ctime;
u32 wwait;
u32 rwait;
unsigned short msg_cbytes;
unsigned short msg_qnum;
unsigned short msg_qbytes;
__kernel_ipc_pid_t32 msg_lspid;
__kernel_ipc_pid_t32 msg_lrpid;
};
struct msqid64_ds32 {
struct ipc64_perm msg_perm;
unsigned int __pad1;
__kernel_time_t32 msg_stime;
unsigned int __pad2;
__kernel_time_t32 msg_rtime;
unsigned int __pad3;
__kernel_time_t32 msg_ctime;
unsigned int msg_cbytes;
unsigned int msg_qnum;
unsigned int msg_qbytes;
__kernel_pid_t32 msg_lspid;
__kernel_pid_t32 msg_lrpid;
unsigned int __unused1;
unsigned int __unused2;
};
struct shmid_ds32 {
struct ipc_perm32 shm_perm;
int shm_segsz;
__kernel_time_t32 shm_atime;
__kernel_time_t32 shm_dtime;
__kernel_time_t32 shm_ctime;
__kernel_ipc_pid_t32 shm_cpid;
__kernel_ipc_pid_t32 shm_lpid;
unsigned short shm_nattch;
};
struct shmid64_ds32 {
struct ipc64_perm shm_perm;
unsigned int __pad1;
__kernel_time_t32 shm_atime;
unsigned int __pad2;
__kernel_time_t32 shm_dtime;
unsigned int __pad3;
__kernel_time_t32 shm_ctime;
__kernel_size_t32 shm_segsz;
__kernel_pid_t32 shm_cpid;
__kernel_pid_t32 shm_lpid;
unsigned int shm_nattch;
unsigned int __unused1;
unsigned int __unused2;
};
/*
* sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit emulation..
*
* This is really horribly ugly.
*/
#define IPCOP_MASK(__x) (1UL << (__x))
static int do_sys32_semctl(int first, int second, int third, void *uptr)
{
union semun fourth;
u32 pad;
int err = -EINVAL;
if (!uptr)
goto out;
err = -EFAULT;
if (get_user (pad, (u32 *)uptr))
goto out;
if(third == SETVAL)
fourth.val = (int)pad;
else
fourth.__pad = (void *)A(pad);
if (IPCOP_MASK (third) &
(IPCOP_MASK (IPC_INFO) | IPCOP_MASK (SEM_INFO) | IPCOP_MASK (GETVAL) |
IPCOP_MASK (GETPID) | IPCOP_MASK (GETNCNT) | IPCOP_MASK (GETZCNT) |
IPCOP_MASK (GETALL) | IPCOP_MASK (SETALL) | IPCOP_MASK (IPC_RMID))) {
err = sys_semctl (first, second, third, fourth);
} else if (third & IPC_64) {
struct semid64_ds s;
struct semid64_ds32 *usp = (struct semid64_ds32 *)A(pad);
mm_segment_t old_fs;
int need_back_translation;
if (third == (IPC_SET|IPC_64)) {
err = get_user (s.sem_perm.uid, &usp->sem_perm.uid);
err |= __get_user (s.sem_perm.gid, &usp->sem_perm.gid);
err |= __get_user (s.sem_perm.mode, &usp->sem_perm.mode);
if (err)
goto out;
fourth.__pad = &s;
}
need_back_translation =
(IPCOP_MASK (third) &
(IPCOP_MASK (SEM_STAT) | IPCOP_MASK (IPC_STAT))) != 0;
if (need_back_translation)
fourth.__pad = &s;
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_semctl (first, second, third, fourth);
set_fs (old_fs);
if (need_back_translation) {
int err2 = put_user (s.sem_perm.key, &usp->sem_perm.key);
err2 |= __put_user (high2lowuid(s.sem_perm.uid), &usp->sem_perm.uid);
err2 |= __put_user (high2lowgid(s.sem_perm.gid), &usp->sem_perm.gid);
err2 |= __put_user (high2lowuid(s.sem_perm.cuid), &usp->sem_perm.cuid);
err2 |= __put_user (high2lowgid(s.sem_perm.cgid), &usp->sem_perm.cgid);
err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode);
err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq);
err2 |= __put_user (s.sem_otime, &usp->sem_otime);
err2 |= __put_user (s.sem_ctime, &usp->sem_ctime);
err2 |= __put_user (s.sem_nsems, &usp->sem_nsems);
if (err2) err = -EFAULT;
}
} else {
struct semid_ds s;
struct semid_ds32 *usp = (struct semid_ds32 *)A(pad);
mm_segment_t old_fs;
int need_back_translation;
if (third == IPC_SET) {
err = get_user (s.sem_perm.uid, &usp->sem_perm.uid);
err |= __get_user (s.sem_perm.gid, &usp->sem_perm.gid);
err |= __get_user (s.sem_perm.mode, &usp->sem_perm.mode);
if (err)
goto out;
fourth.__pad = &s;
}
need_back_translation =
(IPCOP_MASK (third) &
(IPCOP_MASK (SEM_STAT) | IPCOP_MASK (IPC_STAT))) != 0;
if (need_back_translation)
fourth.__pad = &s;
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_semctl (first, second, third, fourth);
set_fs (old_fs);
if (need_back_translation) {
int err2 = put_user (s.sem_perm.key, &usp->sem_perm.key);
err2 |= __put_user (high2lowuid(s.sem_perm.uid), &usp->sem_perm.uid);
err2 |= __put_user (high2lowgid(s.sem_perm.gid), &usp->sem_perm.gid);
err2 |= __put_user (high2lowuid(s.sem_perm.cuid), &usp->sem_perm.cuid);
err2 |= __put_user (high2lowgid(s.sem_perm.cgid), &usp->sem_perm.cgid);
err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode);
err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq);
err2 |= __put_user (s.sem_otime, &usp->sem_otime);
err2 |= __put_user (s.sem_ctime, &usp->sem_ctime);
err2 |= __put_user (s.sem_nsems, &usp->sem_nsems);
if (err2) err = -EFAULT;
}
}
out:
return err;
}
static int do_sys32_msgsnd (int first, int second, int third, void *uptr)
{
struct msgbuf *p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER);
struct msgbuf32 *up = (struct msgbuf32 *)uptr;
mm_segment_t old_fs;
int err;
if (!p)
return -ENOMEM;
err = get_user (p->mtype, &up->mtype);
err |= __copy_from_user (p->mtext, &up->mtext, second);
if (err)
goto out;
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_msgsnd (first, p, second, third);
set_fs (old_fs);
out:
kfree (p);
return err;
}
static int do_sys32_msgrcv (int first, int second, int msgtyp, int third,
int version, void *uptr)
{
struct msgbuf32 *up;
struct msgbuf *p;
mm_segment_t old_fs;
int err;
if (!version) {
struct ipc_kludge_32 *uipck = (struct ipc_kludge_32 *)uptr;
struct ipc_kludge_32 ipck;
err = -EINVAL;
if (!uptr)
goto out;
err = -EFAULT;
if (copy_from_user (&ipck, uipck, sizeof (struct ipc_kludge_32)))
goto out;
uptr = (void *)A(ipck.msgp);
msgtyp = ipck.msgtyp;
}
err = -ENOMEM;
p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER);
if (!p)
goto out;
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_msgrcv (first, p, second + 4, msgtyp, third);
set_fs (old_fs);
if (err < 0)
goto free_then_out;
up = (struct msgbuf32 *)uptr;
if (put_user (p->mtype, &up->mtype) ||
__copy_to_user (&up->mtext, p->mtext, err))
err = -EFAULT;
free_then_out:
kfree (p);
out:
return err;
}
static int do_sys32_msgctl (int first, int second, void *uptr)
{
int err;
if (IPCOP_MASK (second) &
(IPCOP_MASK (IPC_INFO) | IPCOP_MASK (MSG_INFO) |
IPCOP_MASK (IPC_RMID))) {
err = sys_msgctl (first, second, (struct msqid_ds *)uptr);
} else if (second & IPC_64) {
struct msqid64_ds m;
struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr;
mm_segment_t old_fs;
if (second == (IPC_SET|IPC_64)) {
err = get_user (m.msg_perm.uid, &up->msg_perm.uid);
err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid);
err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode);
err |= __get_user (m.msg_qbytes, &up->msg_qbytes);
if (err)
goto out;
}
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_msgctl (first, second, (struct msqid_ds *)&m);
set_fs (old_fs);
if (IPCOP_MASK (second) &
(IPCOP_MASK (MSG_STAT) | IPCOP_MASK (IPC_STAT))) {
int err2 = put_user (m.msg_perm.key, &up->msg_perm.key);
err2 |= __put_user (high2lowuid(m.msg_perm.uid), &up->msg_perm.uid);
err2 |= __put_user (high2lowgid(m.msg_perm.gid), &up->msg_perm.gid);
err2 |= __put_user (high2lowuid(m.msg_perm.cuid), &up->msg_perm.cuid);
err2 |= __put_user (high2lowgid(m.msg_perm.cgid), &up->msg_perm.cgid);
err2 |= __put_user (m.msg_perm.mode, &up->msg_perm.mode);
err2 |= __put_user (m.msg_perm.seq, &up->msg_perm.seq);
err2 |= __put_user (m.msg_stime, &up->msg_stime);
err2 |= __put_user (m.msg_rtime, &up->msg_rtime);
err2 |= __put_user (m.msg_ctime, &up->msg_ctime);
err2 |= __put_user (m.msg_cbytes, &up->msg_cbytes);
err2 |= __put_user (m.msg_qnum, &up->msg_qnum);
err2 |= __put_user (m.msg_qbytes, &up->msg_qbytes);
err2 |= __put_user (m.msg_lspid, &up->msg_lspid);
err2 |= __put_user (m.msg_lrpid, &up->msg_lrpid);
if (err2)
err = -EFAULT;
}
} else {
struct msqid_ds m;
struct msqid_ds32 *up = (struct msqid_ds32 *)uptr;
mm_segment_t old_fs;
if (second == IPC_SET) {
err = get_user (m.msg_perm.uid, &up->msg_perm.uid);
err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid);
err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode);
err |= __get_user (m.msg_qbytes, &up->msg_qbytes);
if (err)
goto out;
}
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_msgctl (first, second, &m);
set_fs (old_fs);
if (IPCOP_MASK (second) &
(IPCOP_MASK (MSG_STAT) | IPCOP_MASK (IPC_STAT))) {
int err2 = put_user (m.msg_perm.key, &up->msg_perm.key);
err2 |= __put_user (high2lowuid(m.msg_perm.uid), &up->msg_perm.uid);
err2 |= __put_user (high2lowgid(m.msg_perm.gid), &up->msg_perm.gid);
err2 |= __put_user (high2lowuid(m.msg_perm.cuid), &up->msg_perm.cuid);
err2 |= __put_user (high2lowgid(m.msg_perm.cgid), &up->msg_perm.cgid);
err2 |= __put_user (m.msg_perm.mode, &up->msg_perm.mode);
err2 |= __put_user (m.msg_perm.seq, &up->msg_perm.seq);
err2 |= __put_user (m.msg_stime, &up->msg_stime);
err2 |= __put_user (m.msg_rtime, &up->msg_rtime);
err2 |= __put_user (m.msg_ctime, &up->msg_ctime);
err2 |= __put_user (m.msg_cbytes, &up->msg_cbytes);
err2 |= __put_user (m.msg_qnum, &up->msg_qnum);
err2 |= __put_user (m.msg_qbytes, &up->msg_qbytes);
err2 |= __put_user (m.msg_lspid, &up->msg_lspid);
err2 |= __put_user (m.msg_lrpid, &up->msg_lrpid);
if (err2)
err = -EFAULT;
}
}
out:
return err;
}
static int do_sys32_shmat (int first, int second, int third, int version, void *uptr)
{
unsigned long raddr;
u32 *uaddr = (u32 *)A((u32)third);
int err = -EINVAL;
if (version == 1)
goto out;
err = sys_shmat (first, uptr, second, &raddr);
if (err)
goto out;
err = put_user (raddr, uaddr);
out:
return err;
}
static int do_sys32_shmctl (int first, int second, void *uptr)
{
int err;
if (IPCOP_MASK (second) &
(IPCOP_MASK (IPC_INFO) | IPCOP_MASK (SHM_LOCK) | IPCOP_MASK (SHM_UNLOCK) |
IPCOP_MASK (IPC_RMID))) {
if (second == (IPC_INFO|IPC_64))
second = IPC_INFO; /* So that we don't have to translate it */
err = sys_shmctl (first, second, (struct shmid_ds *)uptr);
} else if ((second & IPC_64) && second != (SHM_INFO|IPC_64)) {
struct shmid64_ds s;
struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr;
mm_segment_t old_fs;
if (second == (IPC_SET|IPC_64)) {
err = get_user (s.shm_perm.uid, &up->shm_perm.uid);
err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid);
err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode);
if (err)
goto out;
}
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_shmctl (first, second, (struct shmid_ds *)&s);
set_fs (old_fs);
if (err < 0)
goto out;
/* Mask it even in this case so it becomes a CSE. */
if (IPCOP_MASK (second) &
(IPCOP_MASK (SHM_STAT) | IPCOP_MASK (IPC_STAT))) {
int err2 = put_user (s.shm_perm.key, &up->shm_perm.key);
err2 |= __put_user (high2lowuid(s.shm_perm.uid), &up->shm_perm.uid);
err2 |= __put_user (high2lowgid(s.shm_perm.gid), &up->shm_perm.gid);
err2 |= __put_user (high2lowuid(s.shm_perm.cuid), &up->shm_perm.cuid);
err2 |= __put_user (high2lowgid(s.shm_perm.cgid), &up->shm_perm.cgid);
err2 |= __put_user (s.shm_perm.mode, &up->shm_perm.mode);
err2 |= __put_user (s.shm_perm.seq, &up->shm_perm.seq);
err2 |= __put_user (s.shm_atime, &up->shm_atime);
err2 |= __put_user (s.shm_dtime, &up->shm_dtime);
err2 |= __put_user (s.shm_ctime, &up->shm_ctime);
err2 |= __put_user (s.shm_segsz, &up->shm_segsz);
err2 |= __put_user (s.shm_nattch, &up->shm_nattch);
err2 |= __put_user (s.shm_cpid, &up->shm_cpid);
err2 |= __put_user (s.shm_lpid, &up->shm_lpid);
if (err2)
err = -EFAULT;
}
} else {
struct shmid_ds s;
struct shmid_ds32 *up = (struct shmid_ds32 *)uptr;
mm_segment_t old_fs;
second &= ~IPC_64;
if (second == IPC_SET) {
err = get_user (s.shm_perm.uid, &up->shm_perm.uid);
err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid);
err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode);
if (err)
goto out;
}
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_shmctl (first, second, &s);
set_fs (old_fs);
if (err < 0)
goto out;
/* Mask it even in this case so it becomes a CSE. */
if (second == SHM_INFO) {
struct shm_info32 {
int used_ids;
u32 shm_tot, shm_rss, shm_swp;
u32 swap_attempts, swap_successes;
} *uip = (struct shm_info32 *)uptr;
struct shm_info *kp = (struct shm_info *)&s;
int err2 = put_user (kp->used_ids, &uip->used_ids);
err2 |= __put_user (kp->shm_tot, &uip->shm_tot);
err2 |= __put_user (kp->shm_rss, &uip->shm_rss);
err2 |= __put_user (kp->shm_swp, &uip->shm_swp);
err2 |= __put_user (kp->swap_attempts, &uip->swap_attempts);
err2 |= __put_user (kp->swap_successes, &uip->swap_successes);
if (err2)
err = -EFAULT;
} else if (IPCOP_MASK (second) &
(IPCOP_MASK (SHM_STAT) | IPCOP_MASK (IPC_STAT))) {
int err2 = put_user (s.shm_perm.key, &up->shm_perm.key);
err2 |= __put_user (high2lowuid(s.shm_perm.uid), &up->shm_perm.uid);
err2 |= __put_user (high2lowgid(s.shm_perm.gid), &up->shm_perm.gid);
err2 |= __put_user (high2lowuid(s.shm_perm.cuid), &up->shm_perm.cuid);
err2 |= __put_user (high2lowgid(s.shm_perm.cgid), &up->shm_perm.cgid);
err2 |= __put_user (s.shm_perm.mode, &up->shm_perm.mode);
err2 |= __put_user (s.shm_perm.seq, &up->shm_perm.seq);
err2 |= __put_user (s.shm_atime, &up->shm_atime);
err2 |= __put_user (s.shm_dtime, &up->shm_dtime);
err2 |= __put_user (s.shm_ctime, &up->shm_ctime);
err2 |= __put_user (s.shm_segsz, &up->shm_segsz);
err2 |= __put_user (s.shm_nattch, &up->shm_nattch);
err2 |= __put_user (s.shm_cpid, &up->shm_cpid);
err2 |= __put_user (s.shm_lpid, &up->shm_lpid);
if (err2)
err = -EFAULT;
}
}
out:
return err;
}
asmlinkage int sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth)
{
int version, err;
version = call >> 16; /* hack for backward compatibility */
call &= 0xffff;
if(version)
return -EINVAL;
if (call <= SEMCTL)
switch (call) {
case SEMOP:
/* struct sembuf is the same on 32 and 64bit :)) */
err = sys_semop (first, (struct sembuf *)AA(ptr), second);
goto out;
case SEMGET:
err = sys_semget (first, second, third);
goto out;
case SEMCTL:
err = do_sys32_semctl (first, second, third, (void *)AA(ptr));
goto out;
default:
err = -EINVAL;
goto out;
};
if (call <= MSGCTL)
switch (call) {
case MSGSND:
err = do_sys32_msgsnd (first, second, third, (void *)AA(ptr));
goto out;
case MSGRCV:
err = do_sys32_msgrcv (first, second, 0, third,
version, (void *)AA(ptr));
goto out;
case MSGGET:
err = sys_msgget ((key_t) first, second);
goto out;
case MSGCTL:
err = do_sys32_msgctl (first, second, (void *)AA(ptr));
goto out;
default:
err = -EINVAL;
goto out;
}
if (call <= SHMCTL)
switch (call) {
case SHMAT:
err = do_sys32_shmat (first, second, third,
version, (void *)AA(ptr));
goto out;
case SHMDT:
err = sys_shmdt ((char *)AA(ptr));
goto out;
case SHMGET:
err = sys_shmget (first, second, third);
goto out;
case SHMCTL:
err = do_sys32_shmctl (first, second, (void *)AA(ptr));
goto out;
default:
err = -EINVAL;
goto out;
}
err = -EINVAL;
out:
return err;
}
static inline int get_flock(struct flock *kfl, struct flock32 *ufl)
{
int err;
err = get_user(kfl->l_type, &ufl->l_type);
err |= __get_user(kfl->l_whence, &ufl->l_whence);
err |= __get_user(kfl->l_start, &ufl->l_start);
err |= __get_user(kfl->l_len, &ufl->l_len);
err |= __get_user(kfl->l_pid, &ufl->l_pid);
return err;
}
static inline int put_flock(struct flock *kfl, struct flock32 *ufl)
{
int err;
err = __put_user(kfl->l_type, &ufl->l_type);
err |= __put_user(kfl->l_whence, &ufl->l_whence);
err |= __put_user(kfl->l_start, &ufl->l_start);
err |= __put_user(kfl->l_len, &ufl->l_len);
err |= __put_user(kfl->l_pid, &ufl->l_pid);
return err;
}
extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg);
asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case F_GETLK:
case F_SETLK:
case F_SETLKW:
{
struct flock f;
mm_segment_t old_fs;
long ret;
if(get_flock(&f, (struct flock32 *)arg))
return -EFAULT;
old_fs = get_fs(); set_fs (KERNEL_DS);
ret = sys_fcntl(fd, cmd, (unsigned long)&f);
set_fs (old_fs);
if (ret) return ret;
if (f.l_start >= 0x7fffffffUL ||
f.l_len >= 0x7fffffffUL ||
f.l_start + f.l_len >= 0x7fffffffUL)
return -EOVERFLOW;
if(put_flock(&f, (struct flock32 *)arg))
return -EFAULT;
return 0;
}
default:
return sys_fcntl(fd, cmd, (unsigned long)arg);
}
}
asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg)
{
if (cmd >= F_GETLK64 && cmd <= F_SETLKW64)
return sys_fcntl(fd, cmd + F_GETLK - F_GETLK64, arg);
return sys32_fcntl(fd, cmd, arg);
}
struct mem_dqblk32 {
__u32 dqb_ihardlimit;
__u32 dqb_isoftlimit;
__u32 dqb_curinodes;
__u32 dqb_bhardlimit;
__u32 dqb_bsoftlimit;
__u64 dqb_curspace;
__kernel_time_t32 dqb_btime;
__kernel_time_t32 dqb_itime;
};
extern asmlinkage long sys_quotactl(int cmd, const char *special, int id, __kernel_caddr_t addr);
asmlinkage int sys32_quotactl(int cmd, const char *special, int id, unsigned long addr)
{
int cmds = cmd >> SUBCMDSHIFT;
int err;
struct mem_dqblk d;
mm_segment_t old_fs;
char *spec;
switch (cmds) {
case Q_GETQUOTA:
break;
case Q_SETQUOTA:
case Q_SETUSE:
case Q_SETQLIM:
if (copy_from_user (&d, (struct mem_dqblk32 *)addr,
sizeof (struct mem_dqblk32)))
return -EFAULT;
d.dqb_itime = ((struct mem_dqblk32 *)&d)->dqb_itime;
d.dqb_btime = ((struct mem_dqblk32 *)&d)->dqb_btime;
break;
default:
return sys_quotactl(cmd, special,
id, (__kernel_caddr_t)addr);
}
spec = getname (special);
err = PTR_ERR(spec);
if (IS_ERR(spec)) return err;
old_fs = get_fs ();
set_fs (KERNEL_DS);
err = sys_quotactl(cmd, (const char *)spec, id, (__kernel_caddr_t)&d);
set_fs (old_fs);
putname (spec);
if (err)
return err;
if (cmds == Q_GETQUOTA) {
__kernel_time_t b = d.dqb_btime, i = d.dqb_itime;
((struct mem_dqblk32 *)&d)->dqb_itime = i;
((struct mem_dqblk32 *)&d)->dqb_btime = b;
if (copy_to_user ((struct mem_dqblk32 *)addr, &d,
sizeof (struct mem_dqblk32)))
return -EFAULT;
}
return 0;
}
static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf)
{
int err;
err = put_user (kbuf->f_type, &ubuf->f_type);
err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize);
err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks);
err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree);
err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail);
err |= __put_user (kbuf->f_files, &ubuf->f_files);
err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree);
err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen);
err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]);
err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]);
return err;
}
extern asmlinkage int sys_statfs(const char * path, struct statfs * buf);
asmlinkage int sys32_statfs(const char * path, struct statfs32 *buf)
{
int ret;
struct statfs s;
mm_segment_t old_fs = get_fs();
char *pth;
pth = getname (path);
ret = PTR_ERR(pth);
if (!IS_ERR(pth)) {
set_fs (KERNEL_DS);
ret = sys_statfs((const char *)pth, &s);
set_fs (old_fs);
putname (pth);
if (put_statfs(buf, &s))
return -EFAULT;
}
return ret;
}
extern asmlinkage int sys_fstatfs(unsigned int fd, struct statfs * buf);
asmlinkage int sys32_fstatfs(unsigned int fd, struct statfs32 *buf)
{
int ret;
struct statfs s;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_fstatfs(fd, &s);
set_fs (old_fs);
if (put_statfs(buf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_truncate(const char * path, unsigned long length);
extern asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length);
asmlinkage int sys32_truncate64(const char * path, unsigned long high, unsigned long low)
{
if ((int)high < 0)
return -EINVAL;
else
return sys_truncate(path, (high << 32) | low);
}
asmlinkage int sys32_ftruncate64(unsigned int fd, unsigned long high, unsigned long low)
{
if ((int)high < 0)
return -EINVAL;
else
return sys_ftruncate(fd, (high << 32) | low);
}
extern asmlinkage int sys_utime(char * filename, struct utimbuf * times);
struct utimbuf32 {
__kernel_time_t32 actime, modtime;
};
asmlinkage int sys32_utime(char * filename, struct utimbuf32 *times)
{
struct utimbuf t;
mm_segment_t old_fs;
int ret;
char *filenam;
if (!times)
return sys_utime(filename, NULL);
if (get_user (t.actime, ×->actime) ||
__get_user (t.modtime, ×->modtime))
return -EFAULT;
filenam = getname (filename);
ret = PTR_ERR(filenam);
if (!IS_ERR(filenam)) {
old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_utime(filenam, &t);
set_fs (old_fs);
putname (filenam);
}
return ret;
}
struct iovec32 { u32 iov_base; __kernel_size_t32 iov_len; };
typedef ssize_t (*io_fn_t)(struct file *, char *, size_t, loff_t *);
typedef ssize_t (*iov_fn_t)(struct file *, const struct iovec *, unsigned long, loff_t *);
static long do_readv_writev32(int type, struct file *file,
const struct iovec32 *vector, u32 count)
{
unsigned long tot_len;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov=iovstack, *ivp;
struct inode *inode;
long retval, i;
io_fn_t fn;
iov_fn_t fnv;
/* First get the "struct iovec" from user memory and
* verify all the pointers
*/
if (!count)
return 0;
if (verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count))
return -EFAULT;
if (count > UIO_MAXIOV)
return -EINVAL;
if (count > UIO_FASTIOV) {
iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL);
if (!iov)
return -ENOMEM;
}
tot_len = 0;
i = count;
ivp = iov;
while(i > 0) {
u32 len;
u32 buf;
__get_user(len, &vector->iov_len);
__get_user(buf, &vector->iov_base);
tot_len += len;
ivp->iov_base = (void *)A(buf);
ivp->iov_len = (__kernel_size_t) len;
vector++;
ivp++;
i--;
}
inode = file->f_dentry->d_inode;
/* VERIFY_WRITE actually means a read, as we write to user space */
retval = locks_verify_area((type == VERIFY_WRITE
? FLOCK_VERIFY_READ : FLOCK_VERIFY_WRITE),
inode, file, file->f_pos, tot_len);
if (retval)
goto out;
/* VERIFY_WRITE actually means a read, as we write to user space */
fnv = (type == VERIFY_WRITE ? file->f_op->readv : file->f_op->writev);
if (fnv) {
retval = fnv(file, iov, count, &file->f_pos);
goto out;
}
fn = (type == VERIFY_WRITE ? file->f_op->read :
(io_fn_t) file->f_op->write);
ivp = iov;
while (count > 0) {
void * base;
int len, nr;
base = ivp->iov_base;
len = ivp->iov_len;
ivp++;
count--;
nr = fn(file, base, len, &file->f_pos);
if (nr < 0) {
if (!retval)
retval = nr;
break;
}
retval += nr;
if (nr != len)
break;
}
out:
if (iov != iovstack)
kfree(iov);
return retval;
}
asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count)
{
struct file *file;
long ret = -EBADF;
file = fget(fd);
if(!file)
goto bad_file;
if (file->f_op && (file->f_mode & FMODE_READ) &&
(file->f_op->readv || file->f_op->read))
ret = do_readv_writev32(VERIFY_WRITE, file, vector, count);
fput(file);
bad_file:
return ret;
}
asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count)
{
struct file *file;
int ret = -EBADF;
file = fget(fd);
if(!file)
goto bad_file;
if (file->f_op && (file->f_mode & FMODE_WRITE) &&
(file->f_op->writev || file->f_op->write))
ret = do_readv_writev32(VERIFY_READ, file, vector, count);
fput(file);
bad_file:
return ret;
}
/* readdir & getdents */
#define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de)))
#define ROUND_UP(x) (((x)+sizeof(u32)-1) & ~(sizeof(u32)-1))
struct old_linux_dirent32 {
u32 d_ino;
u32 d_offset;
unsigned short d_namlen;
char d_name[1];
};
struct readdir_callback32 {
struct old_linux_dirent32 * dirent;
int count;
};
static int fillonedir(void * __buf, const char * name, int namlen,
loff_t offset, ino_t ino, unsigned int d_type)
{
struct readdir_callback32 * buf = (struct readdir_callback32 *) __buf;
struct old_linux_dirent32 * dirent;
if (buf->count)
return -EINVAL;
buf->count++;
dirent = buf->dirent;
put_user(ino, &dirent->d_ino);
put_user(offset, &dirent->d_offset);
put_user(namlen, &dirent->d_namlen);
copy_to_user(dirent->d_name, name, namlen);
put_user(0, dirent->d_name + namlen);
return 0;
}
asmlinkage int old32_readdir(unsigned int fd, struct old_linux_dirent32 *dirent, unsigned int count)
{
int error = -EBADF;
struct file * file;
struct readdir_callback32 buf;
file = fget(fd);
if (!file)
goto out;
buf.count = 0;
buf.dirent = dirent;
error = vfs_readdir(file, fillonedir, &buf);
if (error < 0)
goto out_putf;
error = buf.count;
out_putf:
fput(file);
out:
return error;
}
struct linux_dirent32 {
u32 d_ino;
u32 d_off;
unsigned short d_reclen;
char d_name[1];
};
struct getdents_callback32 {
struct linux_dirent32 * current_dir;
struct linux_dirent32 * previous;
int count;
int error;
};
static int filldir(void * __buf, const char * name, int namlen, loff_t offset, ino_t ino,
unsigned int d_type)
{
struct linux_dirent32 * dirent;
struct getdents_callback32 * buf = (struct getdents_callback32 *) __buf;
int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1);
buf->error = -EINVAL; /* only used if we fail.. */
if (reclen > buf->count)
return -EINVAL;
dirent = buf->previous;
if (dirent)
put_user(offset, &dirent->d_off);
dirent = buf->current_dir;
buf->previous = dirent;
put_user(ino, &dirent->d_ino);
put_user(reclen, &dirent->d_reclen);
copy_to_user(dirent->d_name, name, namlen);
put_user(0, dirent->d_name + namlen);
((char *) dirent) += reclen;
buf->current_dir = dirent;
buf->count -= reclen;
return 0;
}
asmlinkage int sys32_getdents(unsigned int fd, struct linux_dirent32 *dirent, unsigned int count)
{
struct file * file;
struct linux_dirent32 * lastdirent;
struct getdents_callback32 buf;
int error = -EBADF;
file = fget(fd);
if (!file)
goto out;
buf.current_dir = dirent;
buf.previous = NULL;
buf.count = count;
buf.error = 0;
error = vfs_readdir(file, filldir, &buf);
if (error < 0)
goto out_putf;
lastdirent = buf.previous;
error = buf.error;
if(lastdirent) {
put_user(file->f_pos, &lastdirent->d_off);
error = count - buf.count;
}
out_putf:
fput(file);
out:
return error;
}
/* end of readdir & getdents */
/*
* Ooo, nasty. We need here to frob 32-bit unsigned longs to
* 64-bit unsigned longs.
*/
static inline int
get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset)
{
if (ufdset) {
unsigned long odd;
if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32)))
return -EFAULT;
odd = n & 1UL;
n &= ~1UL;
while (n) {
unsigned long h, l;
__get_user(l, ufdset);
__get_user(h, ufdset+1);
ufdset += 2;
*fdset++ = h << 32 | l;
n -= 2;
}
if (odd)
__get_user(*fdset, ufdset);
} else {
/* Tricky, must clear full unsigned long in the
* kernel fdset at the end, this makes sure that
* actually happens.
*/
memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32));
}
return 0;
}
static inline void
set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset)
{
unsigned long odd;
if (!ufdset)
return;
odd = n & 1UL;
n &= ~1UL;
while (n) {
unsigned long h, l;
l = *fdset++;
h = l >> 32;
__put_user(l, ufdset);
__put_user(h, ufdset+1);
ufdset += 2;
n -= 2;
}
if (odd)
__put_user(*fdset, ufdset);
}
#define MAX_SELECT_SECONDS \
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
asmlinkage int sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, u32 tvp_x)
{
fd_set_bits fds;
struct timeval32 *tvp = (struct timeval32 *)AA(tvp_x);
char *bits;
unsigned long nn;
long timeout;
int ret, size;
timeout = MAX_SCHEDULE_TIMEOUT;
if (tvp) {
time_t sec, usec;
if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp)))
|| (ret = __get_user(sec, &tvp->tv_sec))
|| (ret = __get_user(usec, &tvp->tv_usec)))
goto out_nofds;
ret = -EINVAL;
if(sec < 0 || usec < 0)
goto out_nofds;
if ((unsigned long) sec < MAX_SELECT_SECONDS) {
timeout = (usec + 1000000/HZ - 1) / (1000000/HZ);
timeout += sec * (unsigned long) HZ;
}
}
ret = -EINVAL;
if (n < 0)
goto out_nofds;
if (n > current->files->max_fdset)
n = current->files->max_fdset;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
ret = -ENOMEM;
size = FDS_BYTES(n);
bits = kmalloc(6 * size, GFP_KERNEL);
if (!bits)
goto out_nofds;
fds.in = (unsigned long *) bits;
fds.out = (unsigned long *) (bits + size);
fds.ex = (unsigned long *) (bits + 2*size);
fds.res_in = (unsigned long *) (bits + 3*size);
fds.res_out = (unsigned long *) (bits + 4*size);
fds.res_ex = (unsigned long *) (bits + 5*size);
nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32));
if ((ret = get_fd_set32(nn, fds.in, inp)) ||
(ret = get_fd_set32(nn, fds.out, outp)) ||
(ret = get_fd_set32(nn, fds.ex, exp)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, &timeout);
if (tvp && !(current->personality & STICKY_TIMEOUTS)) {
time_t sec = 0, usec = 0;
if (timeout) {
sec = timeout / HZ;
usec = timeout % HZ;
usec *= (1000000/HZ);
}
put_user(sec, &tvp->tv_sec);
put_user(usec, &tvp->tv_usec);
}
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
set_fd_set32(nn, inp, fds.res_in);
set_fd_set32(nn, outp, fds.res_out);
set_fd_set32(nn, exp, fds.res_ex);
out:
kfree(bits);
out_nofds:
return ret;
}
static int cp_new_stat32(struct kstat *stat, struct stat32 *statbuf)
{
int err;
err = put_user(stat->dev, &statbuf->st_dev);
err |= put_user(stat->ino, &statbuf->st_ino);
err |= put_user(stat->mode, &statbuf->st_mode);
err |= put_user(stat->nlink, &statbuf->st_nlink);
err |= put_user(high2lowuid(stat->uid), &statbuf->st_uid);
err |= put_user(high2lowgid(stat->gid), &statbuf->st_gid);
err |= put_user(stat->rdev, &statbuf->st_rdev);
err |= put_user(stat->size, &statbuf->st_size);
err |= put_user(stat->atime, &statbuf->st_atime);
err |= put_user(0, &statbuf->__unused1);
err |= put_user(stat->mtime, &statbuf->st_mtime);
err |= put_user(0, &statbuf->__unused2);
err |= put_user(stat->ctime, &statbuf->st_ctime);
err |= put_user(0, &statbuf->__unused3);
err |= put_user(stat->blksize, &statbuf->st_blksize);
err |= put_user(stat->blocks, &statbuf->st_blocks);
/* fixme
err |= put_user(0, &statbuf->__unused4[0]);
err |= put_user(0, &statbuf->__unused4[1]);
*/
return err;
}
asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf)
{
struct kstat stat;
int error = vfs_stat(filename, &stat);
if (!error)
error = cp_new_stat32(&stat, statbuf);
return error;
}
asmlinkage int sys32_newlstat(char * filename, struct stat32 *statbuf)
{
struct kstat stat;
int error = vfs_lstat(filename, &stat);
if (!error)
error = cp_new_stat32(&stat, statbuf);
return error;
}
asmlinkage int sys32_newfstat(unsigned int fd, struct stat32 *statbuf)
{
struct kstat stat;
int error = vfs_fstat(fd, &stat);
if (!error)
error = cp_new_stat32(&stat, statbuf);
return error;
}
extern asmlinkage int sys_sysfs(int option, unsigned long arg1, unsigned long arg2);
asmlinkage int sys32_sysfs(int option, u32 arg1, u32 arg2)
{
return sys_sysfs(option, arg1, arg2);
}
struct ncp_mount_data32 {
int version;
unsigned int ncp_fd;
__kernel_uid_t32 mounted_uid;
__kernel_pid_t32 wdog_pid;
unsigned char mounted_vol[NCP_VOLNAME_LEN + 1];
unsigned int time_out;
unsigned int retry_count;
unsigned int flags;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_mode_t32 file_mode;
__kernel_mode_t32 dir_mode;
};
static void *do_ncp_super_data_conv(void *raw_data)
{
struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data;
struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data;
n->dir_mode = n32->dir_mode;
n->file_mode = n32->file_mode;
n->gid = low2highgid(n32->gid);
n->uid = low2highuid(n32->uid);
memmove (n->mounted_vol, n32->mounted_vol, (sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int)));
n->wdog_pid = n32->wdog_pid;
n->mounted_uid = low2highuid(n32->mounted_uid);
return raw_data;
}
struct smb_mount_data32 {
int version;
__kernel_uid_t32 mounted_uid;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_mode_t32 file_mode;
__kernel_mode_t32 dir_mode;
};
static void *do_smb_super_data_conv(void *raw_data)
{
struct smb_mount_data *s = (struct smb_mount_data *)raw_data;
struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data;
s->version = s32->version;
s->mounted_uid = low2highuid(s32->mounted_uid);
s->uid = low2highuid(s32->uid);
s->gid = low2highgid(s32->gid);
s->file_mode = s32->file_mode;
s->dir_mode = s32->dir_mode;
return raw_data;
}
static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel)
{
int i;
unsigned long page;
struct vm_area_struct *vma;
*kernel = 0;
if(!user)
return 0;
vma = find_vma(current->mm, (unsigned long)user);
if(!vma || (unsigned long)user < vma->vm_start)
return -EFAULT;
if(!(vma->vm_flags & VM_READ))
return -EFAULT;
i = vma->vm_end - (unsigned long) user;
if(PAGE_SIZE <= (unsigned long) i)
i = PAGE_SIZE - 1;
if(!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
if(copy_from_user((void *) page, user, i)) {
free_page(page);
return -EFAULT;
}
*kernel = page;
return 0;
}
#define SMBFS_NAME "smbfs"
#define NCPFS_NAME "ncpfs"
asmlinkage int sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data)
{
unsigned long type_page = 0;
unsigned long data_page = 0;
unsigned long dev_page = 0;
unsigned long dir_page = 0;
int err, is_smb, is_ncp;
is_smb = is_ncp = 0;
err = copy_mount_stuff_to_kernel((const void *)type, &type_page);
if (err)
goto out;
if (!type_page) {
err = -EINVAL;
goto out;
}
is_smb = !strcmp((char *)type_page, SMBFS_NAME);
is_ncp = !strcmp((char *)type_page, NCPFS_NAME);
err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page);
if (err)
goto type_out;
err = copy_mount_stuff_to_kernel(dev_name, &dev_page);
if (err)
goto data_out;
err = copy_mount_stuff_to_kernel(dir_name, &dir_page);
if (err)
goto dev_out;
if (!is_smb && !is_ncp) {
lock_kernel();
err = do_mount((char*)dev_page, (char*)dir_page,
(char*)type_page, new_flags, (char*)data_page);
unlock_kernel();
} else {
if (is_ncp)
do_ncp_super_data_conv((void *)data_page);
else
do_smb_super_data_conv((void *)data_page);
lock_kernel();
err = do_mount((char*)dev_page, (char*)dir_page,
(char*)type_page, new_flags, (char*)data_page);
unlock_kernel();
}
free_page(dir_page);
dev_out:
free_page(dev_page);
data_out:
free_page(data_page);
type_out:
free_page(type_page);
out:
return err;
}
struct rusage32 {
struct timeval32 ru_utime;
struct timeval32 ru_stime;
s32 ru_maxrss;
s32 ru_ixrss;
s32 ru_idrss;
s32 ru_isrss;
s32 ru_minflt;
s32 ru_majflt;
s32 ru_nswap;
s32 ru_inblock;
s32 ru_oublock;
s32 ru_msgsnd;
s32 ru_msgrcv;
s32 ru_nsignals;
s32 ru_nvcsw;
s32 ru_nivcsw;
};
static int put_rusage (struct rusage32 *ru, struct rusage *r)
{
int err;
err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec);
err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec);
err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec);
err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec);
err |= __put_user (r->ru_maxrss, &ru->ru_maxrss);
err |= __put_user (r->ru_ixrss, &ru->ru_ixrss);
err |= __put_user (r->ru_idrss, &ru->ru_idrss);
err |= __put_user (r->ru_isrss, &ru->ru_isrss);
err |= __put_user (r->ru_minflt, &ru->ru_minflt);
err |= __put_user (r->ru_majflt, &ru->ru_majflt);
err |= __put_user (r->ru_nswap, &ru->ru_nswap);
err |= __put_user (r->ru_inblock, &ru->ru_inblock);
err |= __put_user (r->ru_oublock, &ru->ru_oublock);
err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd);
err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv);
err |= __put_user (r->ru_nsignals, &ru->ru_nsignals);
err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw);
err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw);
return err;
}
asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int *stat_addr, int options, struct rusage32 *ru)
{
if (!ru)
return sys_wait4(pid, stat_addr, options, NULL);
else {
struct rusage r;
int ret;
unsigned int status;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r);
set_fs (old_fs);
if (put_rusage (ru, &r)) return -EFAULT;
if (stat_addr && put_user (status, stat_addr))
return -EFAULT;
return ret;
}
}
struct sysinfo32 {
s32 uptime;
u32 loads[3];
u32 totalram;
u32 freeram;
u32 sharedram;
u32 bufferram;
u32 totalswap;
u32 freeswap;
unsigned short procs;
char _f[22];
};
extern asmlinkage int sys_sysinfo(struct sysinfo *info);
asmlinkage int sys32_sysinfo(struct sysinfo32 *info)
{
struct sysinfo s;
int ret, err;
mm_segment_t old_fs = get_fs ();
set_fs (KERNEL_DS);
ret = sys_sysinfo(&s);
set_fs (old_fs);
err = put_user (s.uptime, &info->uptime);
err |= __put_user (s.loads[0], &info->loads[0]);
err |= __put_user (s.loads[1], &info->loads[1]);
err |= __put_user (s.loads[2], &info->loads[2]);
err |= __put_user (s.totalram, &info->totalram);
err |= __put_user (s.freeram, &info->freeram);
err |= __put_user (s.sharedram, &info->sharedram);
err |= __put_user (s.bufferram, &info->bufferram);
err |= __put_user (s.totalswap, &info->totalswap);
err |= __put_user (s.freeswap, &info->freeswap);
err |= __put_user (s.procs, &info->procs);
if (err)
return -EFAULT;
return ret;
}
struct timespec32 {
s32 tv_sec;
s32 tv_nsec;
};
extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval);
asmlinkage int sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval)
{
struct timespec t;
int ret;
mm_segment_t old_fs = get_fs ();
set_fs (KERNEL_DS);
ret = sys_sched_rr_get_interval(pid, &t);
set_fs (old_fs);
if (put_user (t.tv_sec, &interval->tv_sec) ||
__put_user (t.tv_nsec, &interval->tv_nsec))
return -EFAULT;
return ret;
}
extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp);
asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp)
{
struct timespec t;
int ret;
mm_segment_t old_fs = get_fs ();
if (get_user (t.tv_sec, &rqtp->tv_sec) ||
__get_user (t.tv_nsec, &rqtp->tv_nsec))
return -EFAULT;
set_fs (KERNEL_DS);
ret = sys_nanosleep(&t, rmtp ? &t : NULL);
set_fs (old_fs);
if (rmtp && ret == -EINTR) {
if (__put_user (t.tv_sec, &rmtp->tv_sec) ||
__put_user (t.tv_nsec, &rmtp->tv_nsec))
return -EFAULT;
}
return ret;
}
extern asmlinkage int sys_sigprocmask(int how, old_sigset_t *set, old_sigset_t *oset);
asmlinkage int sys32_sigprocmask(int how, old_sigset_t32 *set, old_sigset_t32 *oset)
{
old_sigset_t s;
int ret;
mm_segment_t old_fs = get_fs();
if (set && get_user (s, set)) return -EFAULT;
set_fs (KERNEL_DS);
ret = sys_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL);
set_fs (old_fs);
if (ret) return ret;
if (oset && put_user (s, oset)) return -EFAULT;
return 0;
}
extern asmlinkage int sys_rt_sigprocmask(int how, sigset_t *set, sigset_t *oset, size_t sigsetsize);
asmlinkage int sys32_rt_sigprocmask(int how, sigset_t32 *set, sigset_t32 *oset, __kernel_size_t32 sigsetsize)
{
sigset_t s;
sigset_t32 s32;
int ret;
mm_segment_t old_fs = get_fs();
if (set) {
if (copy_from_user (&s32, set, sizeof(sigset_t32)))
return -EFAULT;
switch (_NSIG_WORDS) {
case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
}
}
set_fs (KERNEL_DS);
ret = sys_rt_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL, sigsetsize);
set_fs (old_fs);
if (ret) return ret;
if (oset) {
switch (_NSIG_WORDS) {
case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3];
case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2];
case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1];
case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0];
}
if (copy_to_user (oset, &s32, sizeof(sigset_t32)))
return -EFAULT;
}
return 0;
}
extern asmlinkage int sys_sigpending(old_sigset_t *set);
asmlinkage int sys32_sigpending(old_sigset_t32 *set)
{
old_sigset_t s;
int ret;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_sigpending(&s);
set_fs (old_fs);
if (put_user (s, set)) return -EFAULT;
return ret;
}
extern asmlinkage int sys_rt_sigpending(sigset_t *set, size_t sigsetsize);
asmlinkage int sys32_rt_sigpending(sigset_t32 *set, __kernel_size_t32 sigsetsize)
{
sigset_t s;
sigset_t32 s32;
int ret;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_rt_sigpending(&s, sigsetsize);
set_fs (old_fs);
if (!ret) {
switch (_NSIG_WORDS) {
case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3];
case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2];
case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1];
case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0];
}
if (copy_to_user (set, &s32, sizeof(sigset_t32)))
return -EFAULT;
}
return ret;
}
extern int
copy_siginfo_to_user32(siginfo_t32 *to, siginfo_t *from);
asmlinkage int
sys32_rt_sigtimedwait(sigset_t32 *uthese, siginfo_t32 *uinfo,
struct timespec32 *uts, __kernel_size_t32 sigsetsize)
{
int ret, sig;
sigset_t these;
sigset_t32 these32;
struct timespec ts;
siginfo_t info;
long timeout = 0;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user (&these32, uthese, sizeof(sigset_t32)))
return -EFAULT;
switch (_NSIG_WORDS) {
case 4: these.sig[3] = these32.sig[6] | (((long)these32.sig[7]) << 32);
case 3: these.sig[2] = these32.sig[4] | (((long)these32.sig[5]) << 32);
case 2: these.sig[1] = these32.sig[2] | (((long)these32.sig[3]) << 32);
case 1: these.sig[0] = these32.sig[0] | (((long)these32.sig[1]) << 32);
}
/*
* Invert the set of allowed signals to get those we
* want to block.
*/
sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
signotset(&these);
if (uts) {
if (get_user (ts.tv_sec, &uts->tv_sec) ||
get_user (ts.tv_nsec, &uts->tv_nsec))
return -EINVAL;
if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
|| ts.tv_sec < 0)
return -EINVAL;
}
spin_lock_irq(¤t->sigmask_lock);
sig = dequeue_signal(&these, &info);
if (!sig) {
/* None ready -- temporarily unblock those we're interested
in so that we'll be awakened when they arrive. */
sigset_t oldblocked = current->blocked;
sigandsets(¤t->blocked, ¤t->blocked, &these);
recalc_sigpending();
spin_unlock_irq(¤t->sigmask_lock);
timeout = MAX_SCHEDULE_TIMEOUT;
if (uts)
timeout = (timespec_to_jiffies(&ts)
+ (ts.tv_sec || ts.tv_nsec));
current->state = TASK_INTERRUPTIBLE;
timeout = schedule_timeout(timeout);
spin_lock_irq(¤t->sigmask_lock);
sig = dequeue_signal(&these, &info);
current->blocked = oldblocked;
recalc_sigpending();
}
spin_unlock_irq(¤t->sigmask_lock);
if (sig) {
ret = sig;
if (uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
} else {
ret = -EAGAIN;
if (timeout)
ret = -EINTR;
}
return ret;
}
extern asmlinkage int
sys_rt_sigqueueinfo(int pid, int sig, siginfo_t *uinfo);
asmlinkage int
sys32_rt_sigqueueinfo(int pid, int sig, siginfo_t32 *uinfo)
{
siginfo_t info;
int ret;
mm_segment_t old_fs = get_fs();
if (copy_from_user (&info, uinfo, 3*sizeof(int)) ||
copy_from_user (info._sifields._pad, uinfo->_sifields._pad, SI_PAD_SIZE))
return -EFAULT;
set_fs (KERNEL_DS);
ret = sys_rt_sigqueueinfo(pid, sig, &info);
set_fs (old_fs);
return ret;
}
struct tms32 {
__kernel_clock_t32 tms_utime;
__kernel_clock_t32 tms_stime;
__kernel_clock_t32 tms_cutime;
__kernel_clock_t32 tms_cstime;
};
extern asmlinkage long sys_times(struct tms * tbuf);
asmlinkage long sys32_times(struct tms32 *tbuf)
{
struct tms t;
long ret;
mm_segment_t old_fs = get_fs ();
int err;
set_fs (KERNEL_DS);
ret = sys_times(tbuf ? &t : NULL);
set_fs (old_fs);
if (tbuf) {
err = put_user (t.tms_utime, &tbuf->tms_utime);
err |= __put_user (t.tms_stime, &tbuf->tms_stime);
err |= __put_user (t.tms_cutime, &tbuf->tms_cutime);
err |= __put_user (t.tms_cstime, &tbuf->tms_cstime);
if (err)
ret = -EFAULT;
}
return ret;
}
#define RLIM_INFINITY32 0x7fffffff
#define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x)
struct rlimit32 {
u32 rlim_cur;
u32 rlim_max;
};
extern asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit *rlim);
asmlinkage int sys32_old_getrlimit(unsigned int resource, struct rlimit32 *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs ();
set_fs (KERNEL_DS);
ret = sys_old_getrlimit(resource, &r);
set_fs (old_fs);
if (!ret) {
ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur);
ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max);
}
return ret;
}
extern asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim);
asmlinkage int sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs ();
if (resource >= RLIM_NLIMITS) return -EINVAL;
if (get_user (r.rlim_cur, &rlim->rlim_cur) ||
__get_user (r.rlim_max, &rlim->rlim_max))
return -EFAULT;
if (r.rlim_cur == RLIM_INFINITY32)
r.rlim_cur = RLIM_INFINITY;
if (r.rlim_max == RLIM_INFINITY32)
r.rlim_max = RLIM_INFINITY;
set_fs (KERNEL_DS);
ret = sys_setrlimit(resource, &r);
set_fs (old_fs);
return ret;
}
extern asmlinkage int sys_getrusage(int who, struct rusage *ru);
asmlinkage int sys32_getrusage(int who, struct rusage32 *ru)
{
struct rusage r;
int ret;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_getrusage(who, &r);
set_fs (old_fs);
if (put_rusage (ru, &r)) return -EFAULT;
return ret;
}
/* XXX This really belongs in some header file... -DaveM */
#define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
16 for IP, 16 for IPX,
24 for IPv6,
about 80 for AX.25 */
extern struct socket *sockfd_lookup(int fd, int *err);
/* XXX This as well... */
extern __inline__ void sockfd_put(struct socket *sock)
{
fput(sock->file);
}
struct msghdr32 {
u32 msg_name;
int msg_namelen;
u32 msg_iov;
__kernel_size_t32 msg_iovlen;
u32 msg_control;
__kernel_size_t32 msg_controllen;
unsigned msg_flags;
};
struct cmsghdr32 {
__kernel_size_t32 cmsg_len;
int cmsg_level;
int cmsg_type;
};
/* Bleech... */
#define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen))
#define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen))
#define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) )
#define CMSG32_DATA(cmsg) ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32))))
#define CMSG32_SPACE(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len))
#define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len))
#define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \
(struct cmsghdr32 *)(ctl) : \
(struct cmsghdr32 *)NULL)
#define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen)
__inline__ struct cmsghdr32 *__cmsg32_nxthdr(void *__ctl, __kernel_size_t __size,
struct cmsghdr32 *__cmsg, int __cmsg_len)
{
struct cmsghdr32 * __ptr;
__ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) +
CMSG32_ALIGN(__cmsg_len));
if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size)
return NULL;
return __ptr;
}
__inline__ struct cmsghdr32 *cmsg32_nxthdr (struct msghdr *__msg,
struct cmsghdr32 *__cmsg,
int __cmsg_len)
{
return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen,
__cmsg, __cmsg_len);
}
static inline int iov_from_user32_to_kern(struct iovec *kiov,
struct iovec32 *uiov32,
int niov)
{
int tot_len = 0;
while(niov > 0) {
u32 len, buf;
if(get_user(len, &uiov32->iov_len) ||
get_user(buf, &uiov32->iov_base)) {
tot_len = -EFAULT;
break;
}
tot_len += len;
kiov->iov_base = (void *)A(buf);
kiov->iov_len = (__kernel_size_t) len;
uiov32++;
kiov++;
niov--;
}
return tot_len;
}
static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg,
struct msghdr32 *umsg)
{
u32 tmp1, tmp2, tmp3;
int err;
err = get_user(tmp1, &umsg->msg_name);
err |= __get_user(tmp2, &umsg->msg_iov);
err |= __get_user(tmp3, &umsg->msg_control);
if (err)
return -EFAULT;
kmsg->msg_name = (void *)A(tmp1);
kmsg->msg_iov = (struct iovec *)A(tmp2);
kmsg->msg_control = (void *)A(tmp3);
err = get_user(kmsg->msg_namelen, &umsg->msg_namelen);
err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen);
err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen);
err |= get_user(kmsg->msg_flags, &umsg->msg_flags);
return err;
}
/* I've named the args so it is easy to tell whose space the pointers are in. */
static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov,
char *kern_address, int mode)
{
int tot_len;
if(kern_msg->msg_namelen) {
if(mode==VERIFY_READ) {
int err = move_addr_to_kernel(kern_msg->msg_name,
kern_msg->msg_namelen,
kern_address);
if(err < 0)
return err;
}
kern_msg->msg_name = kern_address;
} else
kern_msg->msg_name = NULL;
if(kern_msg->msg_iovlen > UIO_FASTIOV) {
kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec),
GFP_KERNEL);
if(!kern_iov)
return -ENOMEM;
}
tot_len = iov_from_user32_to_kern(kern_iov,
(struct iovec32 *)kern_msg->msg_iov,
kern_msg->msg_iovlen);
if(tot_len >= 0)
kern_msg->msg_iov = kern_iov;
else if(kern_msg->msg_iovlen > UIO_FASTIOV)
kfree(kern_iov);
return tot_len;
}
/* There is a lot of hair here because the alignment rules (and
* thus placement) of cmsg headers and length are different for
* 32-bit apps. -DaveM
*/
static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg,
unsigned char *stackbuf, int stackbuf_size)
{
struct cmsghdr32 *ucmsg;
struct cmsghdr *kcmsg, *kcmsg_base;
__kernel_size_t32 ucmlen;
__kernel_size_t kcmlen, tmp;
kcmlen = 0;
kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
ucmsg = CMSG32_FIRSTHDR(kmsg);
while(ucmsg != NULL) {
if(get_user(ucmlen, &ucmsg->cmsg_len))
return -EFAULT;
/* Catch bogons. */
if(CMSG32_ALIGN(ucmlen) <
CMSG32_ALIGN(sizeof(struct cmsghdr32)))
return -EINVAL;
if((unsigned long)(((char *)ucmsg - (char *)kmsg->msg_control)
+ ucmlen) > kmsg->msg_controllen)
return -EINVAL;
tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
kcmlen += tmp;
ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen);
}
if(kcmlen == 0)
return -EINVAL;
/* The kcmlen holds the 64-bit version of the control length.
* It may not be modified as we do not stick it into the kmsg
* until we have successfully copied over all of the data
* from the user.
*/
if(kcmlen > stackbuf_size)
kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL);
if(kcmsg == NULL)
return -ENOBUFS;
/* Now copy them over neatly. */
memset(kcmsg, 0, kcmlen);
ucmsg = CMSG32_FIRSTHDR(kmsg);
while(ucmsg != NULL) {
__get_user(ucmlen, &ucmsg->cmsg_len);
tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
kcmsg->cmsg_len = tmp;
__get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level);
__get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type);
/* Copy over the data. */
if(copy_from_user(CMSG_DATA(kcmsg),
CMSG32_DATA(ucmsg),
(ucmlen - CMSG32_ALIGN(sizeof(*ucmsg)))))
goto out_free_efault;
/* Advance. */
kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp));
ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen);
}
/* Ok, looks like we made it. Hook it up and return success. */
kmsg->msg_control = kcmsg_base;
kmsg->msg_controllen = kcmlen;
return 0;
out_free_efault:
if(kcmsg_base != (struct cmsghdr *)stackbuf)
kfree(kcmsg_base);
return -EFAULT;
}
static void put_cmsg32(struct msghdr *kmsg, int level, int type,
int len, void *data)
{
struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control;
struct cmsghdr32 cmhdr;
int cmlen = CMSG32_LEN(len);
if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) {
kmsg->msg_flags |= MSG_CTRUNC;
return;
}
if(kmsg->msg_controllen < cmlen) {
kmsg->msg_flags |= MSG_CTRUNC;
cmlen = kmsg->msg_controllen;
}
cmhdr.cmsg_level = level;
cmhdr.cmsg_type = type;
cmhdr.cmsg_len = cmlen;
if(copy_to_user(cm, &cmhdr, sizeof cmhdr))
return;
if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32)))
return;
cmlen = CMSG32_SPACE(len);
kmsg->msg_control += cmlen;
kmsg->msg_controllen -= cmlen;
}
static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm)
{
struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control;
int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int);
int fdnum = scm->fp->count;
struct file **fp = scm->fp->fp;
int *cmfptr;
int err = 0, i;
if (fdnum < fdmax)
fdmax = fdnum;
for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) {
int new_fd;
err = get_unused_fd();
if (err < 0)
break;
new_fd = err;
err = put_user(new_fd, cmfptr);
if (err) {
put_unused_fd(new_fd);
break;
}
/* Bump the usage count and install the file. */
get_file(fp[i]);
fd_install(new_fd, fp[i]);
}
if (i > 0) {
int cmlen = CMSG32_LEN(i * sizeof(int));
if (!err)
err = put_user(SOL_SOCKET, &cm->cmsg_level);
if (!err)
err = put_user(SCM_RIGHTS, &cm->cmsg_type);
if (!err)
err = put_user(cmlen, &cm->cmsg_len);
if (!err) {
cmlen = CMSG32_SPACE(i * sizeof(int));
kmsg->msg_control += cmlen;
kmsg->msg_controllen -= cmlen;
}
}
if (i < fdnum)
kmsg->msg_flags |= MSG_CTRUNC;
/*
* All of the files that fit in the message have had their
* usage counts incremented, so we just free the list.
*/
__scm_destroy(scm);
}
/* In these cases we (currently) can just copy to data over verbatim
* because all CMSGs created by the kernel have well defined types which
* have the same layout in both the 32-bit and 64-bit API. One must add
* some special cased conversions here if we start sending control messages
* with incompatible types.
*
* SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after
* we do our work. The remaining cases are:
*
* SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean
* IP_TTL int 32-bit clean
* IP_TOS __u8 32-bit clean
* IP_RECVOPTS variable length 32-bit clean
* IP_RETOPTS variable length 32-bit clean
* (these last two are clean because the types are defined
* by the IPv4 protocol)
* IP_RECVERR struct sock_extended_err +
* struct sockaddr_in 32-bit clean
* SOL_IPV6 IPV6_RECVERR struct sock_extended_err +
* struct sockaddr_in6 32-bit clean
* IPV6_PKTINFO struct in6_pktinfo 32-bit clean
* IPV6_HOPLIMIT int 32-bit clean
* IPV6_FLOWINFO u32 32-bit clean
* IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean
* IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean
* IPV6_RTHDR ipv6 routing exthdr 32-bit clean
* IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean
*/
static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr)
{
unsigned char *workbuf, *wp;
unsigned long bufsz, space_avail;
struct cmsghdr *ucmsg;
bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr;
space_avail = kmsg->msg_controllen + bufsz;
wp = workbuf = kmalloc(bufsz, GFP_KERNEL);
if(workbuf == NULL)
goto fail;
/* To make this more sane we assume the kernel sends back properly
* formatted control messages. Because of how the kernel will truncate
* the cmsg_len for MSG_TRUNC cases, we need not check that case either.
*/
ucmsg = (struct cmsghdr *) orig_cmsg_uptr;
while(((unsigned long)ucmsg) <=
(((unsigned long)kmsg->msg_control) - sizeof(struct cmsghdr))) {
struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp;
int clen64, clen32;
/* UCMSG is the 64-bit format CMSG entry in user-space.
* KCMSG32 is within the kernel space temporary buffer
* we use to convert into a 32-bit style CMSG.
*/
__get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len);
__get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level);
__get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type);
clen64 = kcmsg32->cmsg_len;
copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg),
clen64 - CMSG_ALIGN(sizeof(*ucmsg)));
clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) +
CMSG32_ALIGN(sizeof(struct cmsghdr32)));
kcmsg32->cmsg_len = clen32;
ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64));
wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32));
}
/* Copy back fixed up data, and adjust pointers. */
bufsz = (wp - workbuf);
copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz);
kmsg->msg_control = (struct cmsghdr *)
(((char *)orig_cmsg_uptr) + bufsz);
kmsg->msg_controllen = space_avail - bufsz;
kfree(workbuf);
return;
fail:
/* If we leave the 64-bit format CMSG chunks in there,
* the application could get confused and crash. So to
* ensure greater recovery, we report no CMSGs.
*/
kmsg->msg_controllen += bufsz;
kmsg->msg_control = (void *) orig_cmsg_uptr;
}
asmlinkage int sys32_sendmsg(int fd, struct msghdr32 *user_msg, unsigned user_flags)
{
struct socket *sock;
char address[MAX_SOCK_ADDR];
struct iovec iov[UIO_FASTIOV];
unsigned char ctl[sizeof(struct cmsghdr) + 20];
unsigned char *ctl_buf = ctl;
struct msghdr kern_msg;
int err, total_len;
if(msghdr_from_user32_to_kern(&kern_msg, user_msg))
return -EFAULT;
if(kern_msg.msg_iovlen > UIO_MAXIOV)
return -EINVAL;
err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ);
if (err < 0)
goto out;
total_len = err;
if(kern_msg.msg_controllen) {
err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl));
if(err)
goto out_freeiov;
ctl_buf = kern_msg.msg_control;
}
kern_msg.msg_flags = user_flags;
sock = sockfd_lookup(fd, &err);
if (sock != NULL) {
if (sock->file->f_flags & O_NONBLOCK)
kern_msg.msg_flags |= MSG_DONTWAIT;
err = sock_sendmsg(sock, &kern_msg, total_len);
sockfd_put(sock);
}
/* N.B. Use kfree here, as kern_msg.msg_controllen might change? */
if(ctl_buf != ctl)
kfree(ctl_buf);
out_freeiov:
if(kern_msg.msg_iov != iov)
kfree(kern_msg.msg_iov);
out:
return err;
}
asmlinkage int sys32_recvmsg(int fd, struct msghdr32 *user_msg, unsigned int user_flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct msghdr kern_msg;
char addr[MAX_SOCK_ADDR];
struct socket *sock;
struct iovec *iov = iovstack;
struct sockaddr *uaddr;
int *uaddr_len;
unsigned long cmsg_ptr;
int err, total_len, len = 0;
if(msghdr_from_user32_to_kern(&kern_msg, user_msg))
return -EFAULT;
if(kern_msg.msg_iovlen > UIO_MAXIOV)
return -EINVAL;
uaddr = kern_msg.msg_name;
uaddr_len = &user_msg->msg_namelen;
err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE);
if (err < 0)
goto out;
total_len = err;
cmsg_ptr = (unsigned long) kern_msg.msg_control;
kern_msg.msg_flags = 0;
sock = sockfd_lookup(fd, &err);
if (sock != NULL) {
struct scm_cookie scm;
if (sock->file->f_flags & O_NONBLOCK)
user_flags |= MSG_DONTWAIT;
memset(&scm, 0, sizeof(scm));
err = sock->ops->recvmsg(sock, &kern_msg, total_len,
user_flags, &scm);
if(err >= 0) {
len = err;
if(!kern_msg.msg_control) {
if(sock->passcred || scm.fp)
kern_msg.msg_flags |= MSG_CTRUNC;
if(scm.fp)
__scm_destroy(&scm);
} else {
/* If recvmsg processing itself placed some
* control messages into user space, it's is
* using 64-bit CMSG processing, so we need
* to fix it up before we tack on more stuff.
*/
if((unsigned long) kern_msg.msg_control != cmsg_ptr)
cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr);
/* Wheee... */
if(sock->passcred)
put_cmsg32(&kern_msg,
SOL_SOCKET, SCM_CREDENTIALS,
sizeof(scm.creds), &scm.creds);
if(scm.fp != NULL)
scm_detach_fds32(&kern_msg, &scm);
}
}
sockfd_put(sock);
}
if(uaddr != NULL && err >= 0)
err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len);
if(cmsg_ptr != 0 && err >= 0) {
unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control);
__kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr);
err |= __put_user(uclen, &user_msg->msg_controllen);
}
if(err >= 0)
err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags);
if(kern_msg.msg_iov != iov)
kfree(kern_msg.msg_iov);
out:
if(err < 0)
return err;
return len;
}
extern asmlinkage int sys_setsockopt(int fd, int level, int optname,
char *optval, int optlen);
static int do_set_attach_filter(int fd, int level, int optname,
char *optval, int optlen)
{
struct sock_fprog32 {
__u16 len;
__u32 filter;
} *fprog32 = (struct sock_fprog32 *)optval;
struct sock_fprog kfprog;
struct sock_filter *kfilter;
unsigned int fsize;
mm_segment_t old_fs;
__u32 uptr;
int ret;
if (get_user(kfprog.len, &fprog32->len) ||
__get_user(uptr, &fprog32->filter))
return -EFAULT;
kfprog.filter = (struct sock_filter *)A(uptr);
fsize = kfprog.len * sizeof(struct sock_filter);
kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL);
if (kfilter == NULL)
return -ENOMEM;
if (copy_from_user(kfilter, kfprog.filter, fsize)) {
kfree(kfilter);
return -EFAULT;
}
kfprog.filter = kfilter;
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_setsockopt(fd, level, optname,
(char *)&kfprog, sizeof(kfprog));
set_fs(old_fs);
kfree(kfilter);
return ret;
}
static int do_set_icmpv6_filter(int fd, int level, int optname,
char *optval, int optlen)
{
struct icmp6_filter kfilter;
mm_segment_t old_fs;
int ret, i;
if (copy_from_user(&kfilter, optval, sizeof(kfilter)))
return -EFAULT;
for (i = 0; i < 8; i += 2) {
u32 tmp = kfilter.data[i];
kfilter.data[i] = kfilter.data[i + 1];
kfilter.data[i + 1] = tmp;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_setsockopt(fd, level, optname,
(char *) &kfilter, sizeof(kfilter));
set_fs(old_fs);
return ret;
}
asmlinkage int sys32_setsockopt(int fd, int level, int optname,
char *optval, int optlen)
{
if (optname == SO_ATTACH_FILTER)
return do_set_attach_filter(fd, level, optname,
optval, optlen);
if (level == SOL_ICMPV6 && optname == ICMPV6_FILTER)
return do_set_icmpv6_filter(fd, level, optname,
optval, optlen);
return sys_setsockopt(fd, level, optname, optval, optlen);
}
extern void check_pending(int signum);
/*
* count32() counts the number of arguments/envelopes
*/
static int count32(u32 * argv)
{
int i = 0;
if (argv != NULL) {
for (;;) {
u32 p; int error;
error = get_user(p,argv);
if (error) return error;
if (!p) break;
argv++; i++;
}
}
return i;
}
/*
* 'copy_string32()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*/
static int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm)
{
while (argc-- > 0) {
u32 str;
int len;
unsigned long pos;
if (get_user(str, argv + argc) ||
!str ||
!(len = strnlen_user((char *)A(str), bprm->p)))
return -EFAULT;
if (bprm->p < len)
return -E2BIG;
bprm->p -= len;
pos = bprm->p;
while (len) {
char *kaddr;
struct page *page;
int offset, bytes_to_copy, new, err;
offset = pos % PAGE_SIZE;
page = bprm->page[pos / PAGE_SIZE];
new = 0;
if (!page) {
page = alloc_page(GFP_USER);
bprm->page[pos / PAGE_SIZE] = page;
if (!page)
return -ENOMEM;
new = 1;
}
kaddr = (char *)kmap(page);
if (new && offset)
memset(kaddr, 0, offset);
bytes_to_copy = PAGE_SIZE - offset;
if (bytes_to_copy > len) {
bytes_to_copy = len;
if (new)
memset(kaddr+offset+len, 0,
PAGE_SIZE-offset-len);
}
err = copy_from_user(kaddr + offset, (char *)A(str),
bytes_to_copy);
flush_page_to_ram(page);
kunmap(page);
if (err)
return -EFAULT;
pos += bytes_to_copy;
str += bytes_to_copy;
len -= bytes_to_copy;
}
}
return 0;
}
/*
* sys32_execve() executes a new program.
*/
static inline int
do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs)
{
struct linux_binprm bprm;
struct file * file;
int retval;
int i;
bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
memset(bprm.page, 0, MAX_ARG_PAGES * sizeof(bprm.page[0]));
file = open_exec(filename);
retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;
bprm.file = file;
bprm.filename = filename;
bprm.sh_bang = 0;
bprm.loader = 0;
bprm.exec = 0;
if ((bprm.argc = count32(argv)) < 0) {
allow_write_access(file);
fput(file);
return bprm.argc;
}
if ((bprm.envc = count32(envp)) < 0) {
allow_write_access(file);
fput(file);
return bprm.envc;
}
retval = prepare_binprm(&bprm);
if (retval < 0)
goto out;
retval = copy_strings_kernel(1, &bprm.filename, &bprm);
if (retval < 0)
goto out;
bprm.exec = bprm.p;
retval = copy_strings32(bprm.envc, envp, &bprm);
if (retval < 0)
goto out;
retval = copy_strings32(bprm.argc, argv, &bprm);
if (retval < 0)
goto out;
retval = search_binary_handler(&bprm, regs);
if (retval >= 0)
/* execve success */
return retval;
out:
/* Something went wrong, return the inode and free the argument pages*/
allow_write_access(bprm.file);
if (bprm.file)
fput(bprm.file);
for (i=0 ; i<MAX_ARG_PAGES ; i++)
if (bprm.page[i])
__free_page(bprm.page[i]);
return retval;
}
/*
* sys32_execve() executes a new program after the asm stub has set
* things up for us. This should basically do what I want it to.
*/
asmlinkage int
sys32_execve(struct pt_regs regs)
{
int error;
char * filename;
filename = getname((char *)A(regs.orig_gpr2));
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve32(filename, (u32 *)A(regs.gprs[3]), (u32 *)A(regs.gprs[4]), ®s);
if (error == 0)
{
current->ptrace &= ~PT_DTRACE;
current->thread.fp_regs.fpc=0;
__asm__ __volatile__
("sr 0,0\n\t"
"sfpc 0,0\n\t"
: : :"0");
}
putname(filename);
out:
return error;
}
#ifdef CONFIG_MODULES
extern asmlinkage unsigned long sys_create_module(const char *name_user, size_t size);
asmlinkage unsigned long sys32_create_module(const char *name_user, __kernel_size_t32 size)
{
return sys_create_module(name_user, (size_t)size);
}
extern asmlinkage int sys_init_module(const char *name_user, struct module *mod_user);
/* Hey, when you're trying to init module, take time and prepare us a nice 64bit
* module structure, even if from 32bit modutils... Why to pollute kernel... :))
*/
asmlinkage int sys32_init_module(const char *name_user, struct module *mod_user)
{
return sys_init_module(name_user, mod_user);
}
extern asmlinkage int sys_delete_module(const char *name_user);
asmlinkage int sys32_delete_module(const char *name_user)
{
return sys_delete_module(name_user);
}
struct module_info32 {
u32 addr;
u32 size;
u32 flags;
s32 usecount;
};
/* Query various bits about modules. */
static inline long
get_mod_name(const char *user_name, char **buf)
{
unsigned long page;
long retval;
if ((unsigned long)user_name >= TASK_SIZE
&& !segment_eq(get_fs (), KERNEL_DS))
return -EFAULT;
page = __get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE);
if (retval > 0) {
if (retval < PAGE_SIZE) {
*buf = (char *)page;
return retval;
}
retval = -ENAMETOOLONG;
} else if (!retval)
retval = -EINVAL;
free_page(page);
return retval;
}
static inline void
put_mod_name(char *buf)
{
free_page((unsigned long)buf);
}
static __inline__ struct module *find_module(const char *name)
{
struct module *mod;
for (mod = module_list; mod ; mod = mod->next) {
if (mod->flags & MOD_DELETED)
continue;
if (!strcmp(mod->name, name))
break;
}
return mod;
}
static int
qm_modules(char *buf, size_t bufsize, __kernel_size_t32 *ret)
{
struct module *mod;
size_t nmod, space, len;
nmod = space = 0;
for (mod = module_list; mod->next != NULL; mod = mod->next, ++nmod) {
len = strlen(mod->name)+1;
if (len > bufsize)
goto calc_space_needed;
if (copy_to_user(buf, mod->name, len))
return -EFAULT;
buf += len;
bufsize -= len;
space += len;
}
if (put_user(nmod, ret))
return -EFAULT;
else
return 0;
calc_space_needed:
space += len;
while ((mod = mod->next)->next != NULL)
space += strlen(mod->name)+1;
if (put_user(space, ret))
return -EFAULT;
else
return -ENOSPC;
}
static int
qm_deps(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret)
{
size_t i, space, len;
if (mod->next == NULL)
return -EINVAL;
if (!MOD_CAN_QUERY(mod))
return put_user(0, ret);
space = 0;
for (i = 0; i < mod->ndeps; ++i) {
const char *dep_name = mod->deps[i].dep->name;
len = strlen(dep_name)+1;
if (len > bufsize)
goto calc_space_needed;
if (copy_to_user(buf, dep_name, len))
return -EFAULT;
buf += len;
bufsize -= len;
space += len;
}
return put_user(i, ret);
calc_space_needed:
space += len;
while (++i < mod->ndeps)
space += strlen(mod->deps[i].dep->name)+1;
if (put_user(space, ret))
return -EFAULT;
else
return -ENOSPC;
}
static int
qm_refs(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret)
{
size_t nrefs, space, len;
struct module_ref *ref;
if (mod->next == NULL)
return -EINVAL;
if (!MOD_CAN_QUERY(mod))
if (put_user(0, ret))
return -EFAULT;
else
return 0;
space = 0;
for (nrefs = 0, ref = mod->refs; ref ; ++nrefs, ref = ref->next_ref) {
const char *ref_name = ref->ref->name;
len = strlen(ref_name)+1;
if (len > bufsize)
goto calc_space_needed;
if (copy_to_user(buf, ref_name, len))
return -EFAULT;
buf += len;
bufsize -= len;
space += len;
}
if (put_user(nrefs, ret))
return -EFAULT;
else
return 0;
calc_space_needed:
space += len;
while ((ref = ref->next_ref) != NULL)
space += strlen(ref->ref->name)+1;
if (put_user(space, ret))
return -EFAULT;
else
return -ENOSPC;
}
static inline int
qm_symbols(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret)
{
size_t i, space, len;
struct module_symbol *s;
char *strings;
unsigned *vals;
if (!MOD_CAN_QUERY(mod))
if (put_user(0, ret))
return -EFAULT;
else
return 0;
space = mod->nsyms * 2*sizeof(u32);
i = len = 0;
s = mod->syms;
if (space > bufsize)
goto calc_space_needed;
if (!access_ok(VERIFY_WRITE, buf, space))
return -EFAULT;
bufsize -= space;
vals = (unsigned *)buf;
strings = buf+space;
for (; i < mod->nsyms ; ++i, ++s, vals += 2) {
len = strlen(s->name)+1;
if (len > bufsize)
goto calc_space_needed;
if (copy_to_user(strings, s->name, len)
|| __put_user(s->value, vals+0)
|| __put_user(space, vals+1))
return -EFAULT;
strings += len;
bufsize -= len;
space += len;
}
if (put_user(i, ret))
return -EFAULT;
else
return 0;
calc_space_needed:
for (; i < mod->nsyms; ++i, ++s)
space += strlen(s->name)+1;
if (put_user(space, ret))
return -EFAULT;
else
return -ENOSPC;
}
static inline int
qm_info(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret)
{
int error = 0;
if (mod->next == NULL)
return -EINVAL;
if (sizeof(struct module_info32) <= bufsize) {
struct module_info32 info;
info.addr = (unsigned long)mod;
info.size = mod->size;
info.flags = mod->flags;
info.usecount =
((mod_member_present(mod, can_unload)
&& mod->can_unload)
? -1 : atomic_read(&mod->uc.usecount));
if (copy_to_user(buf, &info, sizeof(struct module_info32)))
return -EFAULT;
} else
error = -ENOSPC;
if (put_user(sizeof(struct module_info32), ret))
return -EFAULT;
return error;
}
asmlinkage int sys32_query_module(char *name_user, int which, char *buf, __kernel_size_t32 bufsize, u32 ret)
{
struct module *mod;
int err;
lock_kernel();
if (name_user == 0) {
/* This finds "kernel_module" which is not exported. */
for(mod = module_list; mod->next != NULL; mod = mod->next)
;
} else {
long namelen;
char *name;
if ((namelen = get_mod_name(name_user, &name)) < 0) {
err = namelen;
goto out;
}
err = -ENOENT;
if (namelen == 0) {
/* This finds "kernel_module" which is not exported. */
for(mod = module_list; mod->next != NULL; mod = mod->next)
;
} else if ((mod = find_module(name)) == NULL) {
put_mod_name(name);
goto out;
}
put_mod_name(name);
}
switch (which)
{
case 0:
err = 0;
break;
case QM_MODULES:
err = qm_modules(buf, bufsize, (__kernel_size_t32 *)AA(ret));
break;
case QM_DEPS:
err = qm_deps(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret));
break;
case QM_REFS:
err = qm_refs(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret));
break;
case QM_SYMBOLS:
err = qm_symbols(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret));
break;
case QM_INFO:
err = qm_info(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret));
break;
default:
err = -EINVAL;
break;
}
out:
unlock_kernel();
return err;
}
struct kernel_sym32 {
u32 value;
char name[60];
};
extern asmlinkage int sys_get_kernel_syms(struct kernel_sym *table);
asmlinkage int sys32_get_kernel_syms(struct kernel_sym32 *table)
{
int len, i;
struct kernel_sym *tbl;
mm_segment_t old_fs;
len = sys_get_kernel_syms(NULL);
if (!table) return len;
tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL);
if (!tbl) return -ENOMEM;
old_fs = get_fs();
set_fs (KERNEL_DS);
sys_get_kernel_syms(tbl);
set_fs (old_fs);
for (i = 0; i < len; i++, table += sizeof (struct kernel_sym32)) {
if (put_user (tbl[i].value, &table->value) ||
copy_to_user (table->name, tbl[i].name, 60))
break;
}
kfree (tbl);
return i;
}
#else /* CONFIG_MODULES */
asmlinkage unsigned long
sys32_create_module(const char *name_user, size_t size)
{
return -ENOSYS;
}
asmlinkage int
sys32_init_module(const char *name_user, struct module *mod_user)
{
return -ENOSYS;
}
asmlinkage int
sys32_delete_module(const char *name_user)
{
return -ENOSYS;
}
asmlinkage int
sys32_query_module(const char *name_user, int which, char *buf, size_t bufsize,
size_t *ret)
{
/* Let the program know about the new interface. Not that
it'll do them much good. */
if (which == 0)
return 0;
return -ENOSYS;
}
asmlinkage int
sys32_get_kernel_syms(struct kernel_sym *table)
{
return -ENOSYS;
}
#endif /* CONFIG_MODULES */
/* Stuff for NFS server syscalls... */
struct nfsctl_svc32 {
u16 svc32_port;
s32 svc32_nthreads;
};
struct nfsctl_client32 {
s8 cl32_ident[NFSCLNT_IDMAX+1];
s32 cl32_naddr;
struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX];
s32 cl32_fhkeytype;
s32 cl32_fhkeylen;
u8 cl32_fhkey[NFSCLNT_KEYMAX];
};
struct nfsctl_export32 {
s8 ex32_client[NFSCLNT_IDMAX+1];
s8 ex32_path[NFS_MAXPATHLEN+1];
__kernel_dev_t32 ex32_dev;
__kernel_ino_t32 ex32_ino;
s32 ex32_flags;
__kernel_uid_t32 ex32_anon_uid;
__kernel_gid_t32 ex32_anon_gid;
};
struct nfsctl_uidmap32 {
u32 ug32_ident; /* char * */
__kernel_uid_t32 ug32_uidbase;
s32 ug32_uidlen;
u32 ug32_udimap; /* uid_t * */
__kernel_uid_t32 ug32_gidbase;
s32 ug32_gidlen;
u32 ug32_gdimap; /* gid_t * */
};
struct nfsctl_fhparm32 {
struct sockaddr gf32_addr;
__kernel_dev_t32 gf32_dev;
__kernel_ino_t32 gf32_ino;
s32 gf32_version;
};
struct nfsctl_fdparm32 {
struct sockaddr gd32_addr;
s8 gd32_path[NFS_MAXPATHLEN+1];
s32 gd32_version;
};
struct nfsctl_fsparm32 {
struct sockaddr gd32_addr;
s8 gd32_path[NFS_MAXPATHLEN+1];
s32 gd32_maxlen;
};
struct nfsctl_arg32 {
s32 ca32_version; /* safeguard */
union {
struct nfsctl_svc32 u32_svc;
struct nfsctl_client32 u32_client;
struct nfsctl_export32 u32_export;
struct nfsctl_uidmap32 u32_umap;
struct nfsctl_fhparm32 u32_getfh;
struct nfsctl_fdparm32 u32_getfd;
struct nfsctl_fsparm32 u32_getfs;
} u;
#define ca32_svc u.u32_svc
#define ca32_client u.u32_client
#define ca32_export u.u32_export
#define ca32_umap u.u32_umap
#define ca32_getfh u.u32_getfh
#define ca32_getfd u.u32_getfd
#define ca32_getfs u.u32_getfs
#define ca32_authd u.u32_authd
};
union nfsctl_res32 {
__u8 cr32_getfh[NFS_FHSIZE];
struct knfsd_fh cr32_getfs;
};
static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port);
err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads);
return err;
}
static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_client.cl_ident[0],
&arg32->ca32_client.cl32_ident[0],
NFSCLNT_IDMAX);
err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr);
err |= copy_from_user(&karg->ca_client.cl_addrlist[0],
&arg32->ca32_client.cl32_addrlist[0],
(sizeof(struct in_addr) * NFSCLNT_ADDRMAX));
err |= __get_user(karg->ca_client.cl_fhkeytype,
&arg32->ca32_client.cl32_fhkeytype);
err |= __get_user(karg->ca_client.cl_fhkeylen,
&arg32->ca32_client.cl32_fhkeylen);
err |= copy_from_user(&karg->ca_client.cl_fhkey[0],
&arg32->ca32_client.cl32_fhkey[0],
NFSCLNT_KEYMAX);
return err;
}
static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_export.ex_client[0],
&arg32->ca32_export.ex32_client[0],
NFSCLNT_IDMAX);
err |= copy_from_user(&karg->ca_export.ex_path[0],
&arg32->ca32_export.ex32_path[0],
NFS_MAXPATHLEN);
err |= __get_user(karg->ca_export.ex_dev,
&arg32->ca32_export.ex32_dev);
err |= __get_user(karg->ca_export.ex_ino,
&arg32->ca32_export.ex32_ino);
err |= __get_user(karg->ca_export.ex_flags,
&arg32->ca32_export.ex32_flags);
err |= __get_user(karg->ca_export.ex_anon_uid,
&arg32->ca32_export.ex32_anon_uid);
err |= __get_user(karg->ca_export.ex_anon_gid,
&arg32->ca32_export.ex32_anon_gid);
karg->ca_export.ex_anon_uid = high2lowuid(karg->ca_export.ex_anon_uid);
karg->ca_export.ex_anon_gid = high2lowgid(karg->ca_export.ex_anon_gid);
return err;
}
static int nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
u32 uaddr;
int i;
int err;
memset(karg, 0, sizeof(*karg));
if(__get_user(karg->ca_version, &arg32->ca32_version))
return -EFAULT;
karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER);
if(!karg->ca_umap.ug_ident)
return -ENOMEM;
err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident);
if(strncpy_from_user(karg->ca_umap.ug_ident,
(char *)A(uaddr), PAGE_SIZE) <= 0)
return -EFAULT;
err |= __get_user(karg->ca_umap.ug_uidbase,
&arg32->ca32_umap.ug32_uidbase);
err |= __get_user(karg->ca_umap.ug_uidlen,
&arg32->ca32_umap.ug32_uidlen);
err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap);
if (err)
return -EFAULT;
karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) * karg->ca_umap.ug_uidlen),
GFP_USER);
if(!karg->ca_umap.ug_udimap)
return -ENOMEM;
for(i = 0; i < karg->ca_umap.ug_uidlen; i++)
err |= __get_user(karg->ca_umap.ug_udimap[i],
&(((__kernel_uid_t32 *)A(uaddr))[i]));
err |= __get_user(karg->ca_umap.ug_gidbase,
&arg32->ca32_umap.ug32_gidbase);
err |= __get_user(karg->ca_umap.ug_uidlen,
&arg32->ca32_umap.ug32_gidlen);
err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap);
if (err)
return -EFAULT;
karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) * karg->ca_umap.ug_uidlen),
GFP_USER);
if(!karg->ca_umap.ug_gdimap)
return -ENOMEM;
for(i = 0; i < karg->ca_umap.ug_gidlen; i++)
err |= __get_user(karg->ca_umap.ug_gdimap[i],
&(((__kernel_gid_t32 *)A(uaddr))[i]));
return err;
}
static int nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfh.gf_addr,
&arg32->ca32_getfh.gf32_addr,
(sizeof(struct sockaddr)));
err |= __get_user(karg->ca_getfh.gf_dev,
&arg32->ca32_getfh.gf32_dev);
err |= __get_user(karg->ca_getfh.gf_ino,
&arg32->ca32_getfh.gf32_ino);
err |= __get_user(karg->ca_getfh.gf_version,
&arg32->ca32_getfh.gf32_version);
return err;
}
static int nfs_getfd32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfd.gd_addr,
&arg32->ca32_getfd.gd32_addr,
(sizeof(struct sockaddr)));
err |= copy_from_user(&karg->ca_getfd.gd_path,
&arg32->ca32_getfd.gd32_path,
(NFS_MAXPATHLEN+1));
err |= __get_user(karg->ca_getfd.gd_version,
&arg32->ca32_getfd.gd32_version);
return err;
}
static int nfs_getfs32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfs.gd_addr,
&arg32->ca32_getfs.gd32_addr,
(sizeof(struct sockaddr)));
err |= copy_from_user(&karg->ca_getfs.gd_path,
&arg32->ca32_getfs.gd32_path,
(NFS_MAXPATHLEN+1));
err |= __get_user(karg->ca_getfs.gd_maxlen,
&arg32->ca32_getfs.gd32_maxlen);
return err;
}
/* This really doesn't need translations, we are only passing
* back a union which contains opaque nfs file handle data.
*/
static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32)
{
return copy_to_user(res32, kres, sizeof(*res32));
}
/*
asmlinkage long sys_ni_syscall(void);
*/
int asmlinkage sys32_nfsservctl(int cmd, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32)
{
struct nfsctl_arg *karg = NULL;
union nfsctl_res *kres = NULL;
mm_segment_t oldfs;
int err;
karg = kmalloc(sizeof(*karg), GFP_USER);
if(!karg)
return -ENOMEM;
if(res32) {
kres = kmalloc(sizeof(*kres), GFP_USER);
if(!kres) {
kfree(karg);
return -ENOMEM;
}
}
switch(cmd) {
case NFSCTL_SVC:
err = nfs_svc32_trans(karg, arg32);
break;
case NFSCTL_ADDCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_DELCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_EXPORT:
case NFSCTL_UNEXPORT:
err = nfs_exp32_trans(karg, arg32);
break;
/* This one is unimplemented, be we're ready for it. */
case NFSCTL_UGIDUPDATE:
err = nfs_uud32_trans(karg, arg32);
break;
case NFSCTL_GETFH:
err = nfs_getfh32_trans(karg, arg32);
break;
case NFSCTL_GETFD:
err = nfs_getfd32_trans(karg, arg32);
break;
case NFSCTL_GETFS:
err = nfs_getfs32_trans(karg, arg32);
break;
default:
err = -EINVAL;
break;
}
if(err)
goto done;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_nfsservctl(cmd, karg, kres);
set_fs(oldfs);
if (err)
goto done;
if((cmd == NFSCTL_GETFH) ||
(cmd == NFSCTL_GETFD) ||
(cmd == NFSCTL_GETFS))
err = nfs_getfh32_res_trans(kres, res32);
done:
if(karg) {
if(cmd == NFSCTL_UGIDUPDATE) {
if(karg->ca_umap.ug_ident)
kfree(karg->ca_umap.ug_ident);
if(karg->ca_umap.ug_udimap)
kfree(karg->ca_umap.ug_udimap);
if(karg->ca_umap.ug_gdimap)
kfree(karg->ca_umap.ug_gdimap);
}
kfree(karg);
}
if(kres)
kfree(kres);
return err;
}
/* Translations due to time_t size differences. Which affects all
sorts of things, like timeval and itimerval. */
extern struct timezone sys_tz;
extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz);
asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz)
{
struct timeval ktv;
struct timezone ktz;
if (tv) {
if (get_tv32(&ktv, tv))
return -EFAULT;
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(ktz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL);
}
extern int do_getitimer(int which, struct itimerval *value);
asmlinkage int sys32_getitimer(int which, struct itimerval32 *it)
{
struct itimerval kit;
int error;
error = do_getitimer(which, &kit);
if (!error && put_it32(it, &kit))
error = -EFAULT;
return error;
}
extern int do_setitimer(int which, struct itimerval *, struct itimerval *);
asmlinkage int sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out)
{
struct itimerval kin, kout;
int error;
if (in) {
if (get_it32(&kin, in))
return -EFAULT;
} else
memset(&kin, 0, sizeof(kin));
error = do_setitimer(which, &kin, out ? &kout : NULL);
if (error || !out)
return error;
if (put_it32(out, &kout))
return -EFAULT;
return 0;
}
asmlinkage int sys_utimes(char *, struct timeval *);
asmlinkage int sys32_utimes(char *filename, struct timeval32 *tvs)
{
char *kfilename;
struct timeval ktvs[2];
mm_segment_t old_fs;
int ret;
kfilename = getname(filename);
ret = PTR_ERR(kfilename);
if (!IS_ERR(kfilename)) {
if (tvs) {
if (get_tv32(&ktvs[0], tvs) ||
get_tv32(&ktvs[1], 1+tvs))
return -EFAULT;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_utimes(kfilename, &ktvs[0]);
set_fs(old_fs);
putname(kfilename);
}
return ret;
}
/* These are here just in case some old sparc32 binary calls it. */
asmlinkage int sys32_pause(void)
{
current->state = TASK_INTERRUPTIBLE;
schedule();
return -ERESTARTNOHAND;
}
extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5);
asmlinkage int sys32_prctl(int option, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
return sys_prctl(option,
(unsigned long) arg2,
(unsigned long) arg3,
(unsigned long) arg4,
(unsigned long) arg5);
}
extern asmlinkage ssize_t sys_pread(unsigned int fd, char * buf,
size_t count, loff_t pos);
extern asmlinkage ssize_t sys_pwrite(unsigned int fd, const char * buf,
size_t count, loff_t pos);
typedef __kernel_ssize_t32 ssize_t32;
asmlinkage ssize_t32 sys32_pread(unsigned int fd, char *ubuf,
__kernel_size_t32 count, u32 poshi, u32 poslo)
{
return sys_pread(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo));
}
asmlinkage ssize_t32 sys32_pwrite(unsigned int fd, char *ubuf,
__kernel_size_t32 count, u32 poshi, u32 poslo)
{
return sys_pwrite(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo));
}
extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count);
asmlinkage int sys32_sendfile(int out_fd, int in_fd, __kernel_off_t32 *offset, s32 count)
{
mm_segment_t old_fs = get_fs();
int ret;
off_t of;
if (offset && get_user(of, offset))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count);
set_fs(old_fs);
if (!ret && offset && put_user(of, offset))
return -EFAULT;
return ret;
}
/* Handle adjtimex compatability. */
struct timex32 {
u32 modes;
s32 offset, freq, maxerror, esterror;
s32 status, constant, precision, tolerance;
struct timeval32 time;
s32 tick;
s32 ppsfreq, jitter, shift, stabil;
s32 jitcnt, calcnt, errcnt, stbcnt;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
};
extern int do_adjtimex(struct timex *);
asmlinkage int sys32_adjtimex(struct timex32 *utp)
{
struct timex txc;
int ret;
memset(&txc, 0, sizeof(struct timex));
if(get_user(txc.modes, &utp->modes) ||
__get_user(txc.offset, &utp->offset) ||
__get_user(txc.freq, &utp->freq) ||
__get_user(txc.maxerror, &utp->maxerror) ||
__get_user(txc.esterror, &utp->esterror) ||
__get_user(txc.status, &utp->status) ||
__get_user(txc.constant, &utp->constant) ||
__get_user(txc.precision, &utp->precision) ||
__get_user(txc.tolerance, &utp->tolerance) ||
__get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__get_user(txc.tick, &utp->tick) ||
__get_user(txc.ppsfreq, &utp->ppsfreq) ||
__get_user(txc.jitter, &utp->jitter) ||
__get_user(txc.shift, &utp->shift) ||
__get_user(txc.stabil, &utp->stabil) ||
__get_user(txc.jitcnt, &utp->jitcnt) ||
__get_user(txc.calcnt, &utp->calcnt) ||
__get_user(txc.errcnt, &utp->errcnt) ||
__get_user(txc.stbcnt, &utp->stbcnt))
return -EFAULT;
ret = do_adjtimex(&txc);
if(put_user(txc.modes, &utp->modes) ||
__put_user(txc.offset, &utp->offset) ||
__put_user(txc.freq, &utp->freq) ||
__put_user(txc.maxerror, &utp->maxerror) ||
__put_user(txc.esterror, &utp->esterror) ||
__put_user(txc.status, &utp->status) ||
__put_user(txc.constant, &utp->constant) ||
__put_user(txc.precision, &utp->precision) ||
__put_user(txc.tolerance, &utp->tolerance) ||
__put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__put_user(txc.tick, &utp->tick) ||
__put_user(txc.ppsfreq, &utp->ppsfreq) ||
__put_user(txc.jitter, &utp->jitter) ||
__put_user(txc.shift, &utp->shift) ||
__put_user(txc.stabil, &utp->stabil) ||
__put_user(txc.jitcnt, &utp->jitcnt) ||
__put_user(txc.calcnt, &utp->calcnt) ||
__put_user(txc.errcnt, &utp->errcnt) ||
__put_user(txc.stbcnt, &utp->stbcnt))
ret = -EFAULT;
return ret;
}
extern asmlinkage long sys_setpriority(int which, int who, int niceval);
asmlinkage int sys_setpriority32(u32 which, u32 who, u32 niceval)
{
return sys_setpriority((int) which,
(int) who,
(int) niceval);
}
struct __sysctl_args32 {
u32 name;
int nlen;
u32 oldval;
u32 oldlenp;
u32 newval;
u32 newlen;
u32 __unused[4];
};
extern asmlinkage long sys32_sysctl(struct __sysctl_args32 *args)
{
struct __sysctl_args32 tmp;
int error;
size_t oldlen, *oldlenp = NULL;
unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7;
if (copy_from_user(&tmp, args, sizeof(tmp)))
return -EFAULT;
if (tmp.oldval && tmp.oldlenp) {
/* Duh, this is ugly and might not work if sysctl_args
is in read-only memory, but do_sysctl does indirectly
a lot of uaccess in both directions and we'd have to
basically copy the whole sysctl.c here, and
glibc's __sysctl uses rw memory for the structure
anyway. */
if (get_user(oldlen, (u32 *)A(tmp.oldlenp)) ||
put_user(oldlen, (size_t *)addr))
return -EFAULT;
oldlenp = (size_t *)addr;
}
lock_kernel();
error = do_sysctl((int *)A(tmp.name), tmp.nlen, (void *)A(tmp.oldval),
oldlenp, (void *)A(tmp.newval), tmp.newlen);
unlock_kernel();
if (oldlenp) {
if (!error) {
if (get_user(oldlen, (size_t *)addr) ||
put_user(oldlen, (u32 *)A(tmp.oldlenp)))
error = -EFAULT;
}
copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused));
}
return error;
}
struct stat64_emu31 {
unsigned char __pad0[6];
unsigned short st_dev;
unsigned int __pad1;
#define STAT64_HAS_BROKEN_ST_INO 1
u32 __st_ino;
unsigned int st_mode;
unsigned int st_nlink;
u32 st_uid;
u32 st_gid;
unsigned char __pad2[6];
unsigned short st_rdev;
unsigned int __pad3;
long st_size;
u32 st_blksize;
unsigned char __pad4[4];
u32 __pad5; /* future possible st_blocks high bits */
u32 st_blocks; /* Number 512-byte blocks allocated. */
u32 st_atime;
u32 __pad6;
u32 st_mtime;
u32 __pad7;
u32 st_ctime;
u32 __pad8; /* will be high 32 bits of ctime someday */
unsigned long st_ino;
};
static inline int
putstat64 (struct stat64_emu31 *ubuf, struct stat *kbuf)
{
struct stat64_emu31 tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.st_dev = (unsigned short)kbuf->st_dev;
tmp.st_ino = kbuf->st_ino;
tmp.__st_ino = (u32)kbuf->st_ino;
tmp.st_mode = kbuf->st_mode;
tmp.st_nlink = (unsigned int)kbuf->st_nlink;
tmp.st_uid = kbuf->st_uid;
tmp.st_gid = kbuf->st_gid;
tmp.st_rdev = (unsigned short)kbuf->st_rdev;
tmp.st_size = kbuf->st_size;
tmp.st_blksize = (u32)kbuf->st_blksize;
tmp.st_blocks = (u32)kbuf->st_blocks;
tmp.st_atime = (u32)kbuf->st_atime;
tmp.st_mtime = (u32)kbuf->st_mtime;
tmp.st_ctime = (u32)kbuf->st_ctime;
return copy_to_user(ubuf,&tmp,sizeof(tmp)) ? -EFAULT : 0;
}
extern asmlinkage long sys_newstat(char * filename, struct stat * statbuf);
asmlinkage long sys32_stat64(char * filename, struct stat64_emu31 * statbuf, long flags)
{
int ret;
struct stat s;
char * tmp;
int err;
mm_segment_t old_fs = get_fs();
tmp = getname(filename);
err = PTR_ERR(tmp);
if (IS_ERR(tmp))
return err;
set_fs (KERNEL_DS);
ret = sys_newstat(tmp, &s);
set_fs (old_fs);
putname(tmp);
if (putstat64 (statbuf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf);
asmlinkage long sys32_lstat64(char * filename, struct stat64_emu31 * statbuf, long flags)
{
int ret;
struct stat s;
char * tmp;
int err;
mm_segment_t old_fs = get_fs();
tmp = getname(filename);
err = PTR_ERR(tmp);
if (IS_ERR(tmp))
return err;
set_fs (KERNEL_DS);
ret = sys_newlstat(tmp, &s);
set_fs (old_fs);
putname(tmp);
if (putstat64 (statbuf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf);
asmlinkage long sys32_fstat64(unsigned long fd, struct stat64_emu31 * statbuf, long flags)
{
int ret;
struct stat s;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_newfstat(fd, &s);
set_fs (old_fs);
if (putstat64 (statbuf, &s))
return -EFAULT;
return ret;
}
/*
* Linux/i386 didn't use to be able to handle more than
* 4 system call parameters, so these system calls used a memory
* block for parameter passing..
*/
struct mmap_arg_struct_emu31 {
u32 addr;
u32 len;
u32 prot;
u32 flags;
u32 fd;
u32 offset;
};
/* common code for old and new mmaps */
static inline long do_mmap2(
unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags,
unsigned long fd, unsigned long pgoff)
{
struct file * file = NULL;
unsigned long error = -EBADF;
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(fd);
if (!file)
goto out;
}
down_write(¤t->mm->mmap_sem);
error = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
if (!IS_ERR((void *) error) && error + len >= 0x80000000ULL) {
/* Result is out of bounds. */
do_munmap(current->mm, addr, len);
error = -ENOMEM;
}
up_write(¤t->mm->mmap_sem);
if (file)
fput(file);
out:
return error;
}
asmlinkage unsigned long
old32_mmap(struct mmap_arg_struct_emu31 *arg)
{
struct mmap_arg_struct_emu31 a;
int error = -EFAULT;
if (copy_from_user(&a, arg, sizeof(a)))
goto out;
error = -EINVAL;
if (a.offset & ~PAGE_MASK)
goto out;
error = do_mmap2(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT);
out:
return error;
}
asmlinkage long
sys32_mmap2(struct mmap_arg_struct_emu31 *arg)
{
struct mmap_arg_struct_emu31 a;
int error = -EFAULT;
if (copy_from_user(&a, arg, sizeof(a)))
goto out;
error = do_mmap2(a.addr, a.len, a.prot, a.flags, a.fd, a.offset);
out:
return error;
}
extern asmlinkage long sys_socket(int family, int type, int protocol);
extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen);
extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen);
extern asmlinkage long sys_listen(int fd, int backlog);
extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen);
extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len);
extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len);
extern asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2]);
extern asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags);
extern asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,
struct sockaddr *addr, int addr_len);
extern asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags);
extern asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
struct sockaddr *addr, int *addr_len);
extern asmlinkage long sys_shutdown(int fd, int how);
extern asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int * optlen);
/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(u32))
static unsigned char nas[18] = {AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
#undef AL
asmlinkage long sys32_socketcall(int call, u32 *args)
{
int ret;
u32 a[6];
if (call < SYS_SOCKET || call > SYS_RECVMSG)
return -EINVAL;
if (copy_from_user(a, args, nas[call]))
return -EFAULT;
switch(call) {
case SYS_SOCKET:
ret = sys_socket(a[0], a[1], a[2]);
break;
case SYS_BIND:
ret = sys_bind(a[0], (struct sockaddr *) A(a[1]), a[2]);
break;
case SYS_CONNECT:
ret = sys_connect(a[0], (struct sockaddr *) A(a[1]), a[2]);
break;
case SYS_LISTEN:
ret = sys_listen(a[0], a[1]);
break;
case SYS_ACCEPT:
ret = sys_accept(a[0], (struct sockaddr *) A(a[1]),
(int *) A(a[2]));
break;
case SYS_GETSOCKNAME:
ret = sys_getsockname(a[0], (struct sockaddr *) A(a[1]),
(int *) A(a[2]));
break;
case SYS_GETPEERNAME:
ret = sys_getpeername(a[0], (struct sockaddr *) A(a[1]),
(int *) A(a[2]));
break;
case SYS_SOCKETPAIR:
ret = sys_socketpair(a[0], a[1], a[2], (int *) A(a[3]));
break;
case SYS_SEND:
ret = sys_send(a[0], (void *) A(a[1]), a[2], a[3]);
break;
case SYS_SENDTO:
ret = sys_sendto(a[0], (void*) A(a[1]), a[2], a[3], (struct sockaddr *) A(a[4]), a[5]);
break;
case SYS_RECV:
ret = sys_recv(a[0], (void *) A(a[1]), a[2], a[3]);
break;
case SYS_RECVFROM:
ret = sys_recvfrom(a[0], (void *) A(a[1]), a[2], a[3], (struct sockaddr *) A(a[4]), (int *) A(a[5]) );
break;
case SYS_SHUTDOWN:
ret = sys_shutdown(a[0], a[1]);
break;
case SYS_SETSOCKOPT:
ret = sys32_setsockopt(a[0], a[1], a[2], (char *) A(a[3]),
a[4]);
break;
case SYS_GETSOCKOPT:
ret = sys_getsockopt(a[0], a[1], a[2], (char *) A(a[3]), (int *) A(a[4]) );
break;
case SYS_SENDMSG:
ret = sys32_sendmsg(a[0], (struct msghdr32 *) A(a[1]),
a[2]);
break;
case SYS_RECVMSG:
ret = sys32_recvmsg(a[0], (struct msghdr32 *) A(a[1]),
a[2]);
break;
default:
ret = EINVAL;
break;
}
return ret;
}