Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | /* asm/bitops.h for Linux/CRIS * * TODO: asm versions if speed is needed * set_bit, clear_bit and change_bit wastes cycles being only * macros into test_and_set_bit etc. * kernel-doc things (**) for macros are disabled * * All bit operations return 0 if the bit was cleared before the * operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #ifndef _CRIS_BITOPS_H #define _CRIS_BITOPS_H /* Currently this is unsuitable for consumption outside the kernel. */ #ifdef __KERNEL__ #include <asm/system.h> /* We use generic_ffs so get it; include guards resolve the possible mutually inclusion. */ #include <linux/bitops.h> #include <linux/compiler.h> /* * Some hacks to defeat gcc over-optimizations.. */ struct __dummy { unsigned long a[100]; }; #define ADDR (*(struct __dummy *) addr) #define CONST_ADDR (*(const struct __dummy *) addr) /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ #define set_bit(nr, addr) (void)test_and_set_bit(nr, addr) #define __set_bit(nr, addr) (void)__test_and_set_bit(nr, addr) /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ #define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr) #define __clear_bit(nr, addr) (void)__test_and_clear_bit(nr, addr) /* * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) /* * __change_bit - Toggle a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ #define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr) /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_set_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr |= mask; restore_flags(flags); return retval; } static inline int __test_and_set_bit(int nr, void *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr |= mask; return retval; } /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_clear_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr &= ~mask; restore_flags(flags); return retval; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_clear_bit(int nr, void *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr &= ~mask; return retval; } /** * test_and_change_bit - Change a bit and return its new value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr ^= mask; restore_flags(flags); return retval; } /* WARNING: non atomic and it can be reordered! */ static inline int __test_and_change_bit(int nr, void *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr ^= mask; return retval; } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from * * This routine doesn't need to be atomic. */ static inline int test_bit(int nr, const void *addr) { unsigned int mask; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *adr) != 0); } /* * Find-bit routines.. */ /* * Helper functions for the core of the ff[sz] functions, wrapping the * syntactically awkward asms. The asms compute the number of leading * zeroes of a bits-in-byte and byte-in-word and word-in-dword-swapped * number. They differ in that the first function also inverts all bits * in the input. */ static inline unsigned long cris_swapnwbrlz(unsigned long w) { /* Let's just say we return the result in the same register as the input. Saying we clobber the input but can return the result in another register: ! __asm__ ("swapnwbr %2\n\tlz %2,%0" ! : "=r,r" (res), "=r,X" (dummy) : "1,0" (w)); confuses gcc (sched.c, gcc from cris-dist-1.14). */ unsigned long res; __asm__ ("swapnwbr %0 \n\t" "lz %0,%0" : "=r" (res) : "0" (w)); return res; } static inline unsigned long cris_swapwbrlz(unsigned long w) { unsigned res; __asm__ ("swapwbr %0 \n\t" "lz %0,%0" : "=r" (res) : "0" (w)); return res; } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ static inline unsigned long ffz(unsigned long w) { /* The generic_ffs function is used to avoid the asm when the argument is a constant. */ return __builtin_constant_p (w) ? (~w ? (unsigned long) generic_ffs ((int) ~w) - 1 : 32) : cris_swapnwbrlz (w); } /* * Somewhat like ffz but the equivalent of generic_ffs: in contrast to * ffz we return the first one-bit *plus one*. */ static inline unsigned long ffs(unsigned long w) { /* The generic_ffs function is used to avoid the asm when the argument is a constant. */ return __builtin_constant_p (w) ? (unsigned long) generic_ffs ((int) w) : w ? cris_swapwbrlz (w) + 1 : 0; } /** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static inline int find_next_zero_bit (void * addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL >> size; found_middle: return result + ffz(tmp); } /** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) /* * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #define ext2_set_bit test_and_set_bit #define ext2_clear_bit test_and_clear_bit #define ext2_test_bit test_bit #define ext2_find_first_zero_bit find_first_zero_bit #define ext2_find_next_zero_bit find_next_zero_bit /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #if 0 /* TODO: see below */ #define sched_find_first_zero_bit(addr) find_first_zero_bit(addr, 168) #else /* TODO: left out pending where to put it.. (there are .h dependencies) */ /* * Every architecture must define this function. It's the fastest * way of searching a 168-bit bitmap where the first 128 bits are * unlikely to be set. It's guaranteed that at least one of the 168 * bits is cleared. */ #if 0 #if MAX_RT_PRIO != 128 || MAX_PRIO != 168 # error update this function. #endif #else #define MAX_RT_PRIO 128 #define MAX_PRIO 168 #endif static inline int sched_find_first_zero_bit(char *bitmap) { unsigned int *b = (unsigned int *)bitmap; unsigned int rt; rt = b[0] & b[1] & b[2] & b[3]; if (unlikely(rt != 0xffffffff)) return find_first_zero_bit(bitmap, MAX_RT_PRIO); if (b[4] != ~0) return ffz(b[4]) + MAX_RT_PRIO; return ffz(b[5]) + 32 + MAX_RT_PRIO; } #undef MAX_PRIO #undef MAX_RT_PRIO #endif #endif /* __KERNEL__ */ #endif /* _CRIS_BITOPS_H */ |