Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright (C) 2001, 2002 Red Hat, Inc.
 *
 * Created by David Woodhouse <dwmw2@cambridge.redhat.com>
 *
 * The original JFFS, from which the design for JFFS2 was derived,
 * was designed and implemented by Axis Communications AB.
 *
 * The contents of this file are subject to the Red Hat eCos Public
 * License Version 1.1 (the "Licence"); you may not use this file
 * except in compliance with the Licence.  You may obtain a copy of
 * the Licence at http://www.redhat.com/
 *
 * Software distributed under the Licence is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
 * See the Licence for the specific language governing rights and
 * limitations under the Licence.
 *
 * The Original Code is JFFS2 - Journalling Flash File System, version 2
 *
 * Alternatively, the contents of this file may be used under the
 * terms of the GNU General Public License version 2 (the "GPL"), in
 * which case the provisions of the GPL are applicable instead of the
 * above.  If you wish to allow the use of your version of this file
 * only under the terms of the GPL and not to allow others to use your
 * version of this file under the RHEPL, indicate your decision by
 * deleting the provisions above and replace them with the notice and
 * other provisions required by the GPL.  If you do not delete the
 * provisions above, a recipient may use your version of this file
 * under either the RHEPL or the GPL.
 *
 * $Id: write.c,v 1.52 2002/03/08 11:01:43 dwmw2 Exp $
 *
 */

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include "nodelist.h"


int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri)
{
	struct jffs2_inode_cache *ic;

	ic = jffs2_alloc_inode_cache();
	if (!ic) {
		return -ENOMEM;
	}

	memset(ic, 0, sizeof(*ic));

	init_MUTEX_LOCKED(&f->sem);
	f->inocache = ic;
	f->inocache->nlink = 1;
	f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
	f->inocache->ino = ri->ino =  ++c->highest_ino;
	D1(printk(KERN_DEBUG "jffs2_do_new_inode(): Assigned ino# %d\n", ri->ino));
	jffs2_add_ino_cache(c, f->inocache);

	ri->magic = JFFS2_MAGIC_BITMASK;
	ri->nodetype = JFFS2_NODETYPE_INODE;
	ri->totlen = PAD(sizeof(*ri));
	ri->hdr_crc = crc32(0, ri, sizeof(struct jffs2_unknown_node)-4);
	ri->mode = mode;
	f->highest_version = ri->version = 1;

	return 0;
}

static void writecheck(struct jffs2_sb_info *c, uint32_t ofs)
{
	unsigned char buf[16];
	size_t retlen;
	int ret, i;

	ret = jffs2_flash_read(c, ofs, 16, &retlen, buf);
	if (ret || (retlen != 16)) {
		D1(printk(KERN_DEBUG "read failed or short in writecheck(). ret %d, retlen %d\n", ret, retlen));
		return;
	}
	ret = 0;
	for (i=0; i<16; i++) {
		if (buf[i] != 0xff)
			ret = 1;
	}
	if (ret) {
		printk(KERN_WARNING "ARGH. About to write node to 0x%08x on flash, but there's data already there:\n", ofs);
		printk(KERN_WARNING "0x%08x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", 
		       ofs,
		       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7],
		       buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]);
	}
}



/* jffs2_write_dnode - given a raw_inode, allocate a full_dnode for it, 
   write it to the flash, link it into the existing inode/fragment list */

struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs,  uint32_t *writelen)

{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dnode *fn;
	size_t retlen;
	struct iovec vecs[2];
	int ret;
	unsigned long cnt = 2;

	D1(if(ri->hdr_crc != crc32(0, ri, sizeof(struct jffs2_unknown_node)-4)) {
		printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dnode()\n");
		BUG();
	}
	   );
	vecs[0].iov_base = ri;
	vecs[0].iov_len = sizeof(*ri);
	vecs[1].iov_base = (unsigned char *)data;
	vecs[1].iov_len = datalen;

	writecheck(c, flash_ofs);

	if (ri->totlen != sizeof(*ri) + datalen) {
		printk(KERN_WARNING "jffs2_write_dnode: ri->totlen (0x%08x) != sizeof(*ri) (0x%08x) + datalen (0x%08x)\n", ri->totlen, sizeof(*ri), datalen);
	}
	raw = jffs2_alloc_raw_node_ref();
	if (!raw)
		return ERR_PTR(-ENOMEM);
	
	fn = jffs2_alloc_full_dnode();
	if (!fn) {
		jffs2_free_raw_node_ref(raw);
		return ERR_PTR(-ENOMEM);
	}
	raw->flash_offset = flash_ofs;
	raw->totlen = PAD(ri->totlen);
	raw->next_phys = NULL;

	fn->ofs = ri->offset;
	fn->size = ri->dsize;
	fn->frags = 0;
	fn->raw = raw;

	/* check number of valid vecs */
	if (!datalen || !data)
		cnt = 1;

	ret = jffs2_flash_writev(c, vecs, cnt, flash_ofs, &retlen);
		
	if (ret || (retlen != sizeof(*ri) + datalen)) {
		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %d\n", 
		       sizeof(*ri)+datalen, flash_ofs, ret, retlen);
		/* Mark the space as dirtied */
		if (retlen) {
			/* Doesn't belong to any inode */
			raw->next_in_ino = NULL;

			/* Don't change raw->size to match retlen. We may have 
			   written the node header already, and only the data will
			   seem corrupted, in which case the scan would skip over
			   any node we write before the original intended end of 
			   this node */
			jffs2_add_physical_node_ref(c, raw, sizeof(*ri)+datalen, 1);
			jffs2_mark_node_obsolete(c, raw);
		} else {
			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", raw->flash_offset);
			jffs2_free_raw_node_ref(raw);
		}

		/* Release the full_dnode which is now useless, and return */
		jffs2_free_full_dnode(fn);
		if (writelen)
			*writelen = retlen;
		return ERR_PTR(ret?ret:-EIO);
	}
	/* Mark the space used */
	jffs2_add_physical_node_ref(c, raw, retlen, 0);

	/* Link into per-inode list */
	raw->next_in_ino = f->inocache->nodes;
	f->inocache->nodes = raw;

	D1(printk(KERN_DEBUG "jffs2_write_dnode wrote node at 0x%08x with dsize 0x%x, csize 0x%x, node_crc 0x%08x, data_crc 0x%08x, totlen 0x%08x\n", flash_ofs, ri->dsize, ri->csize, ri->node_crc, ri->data_crc, ri->totlen));
	if (writelen)
		*writelen = retlen;

	f->inocache->nodes = raw;
	return fn;
}

struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs,  uint32_t *writelen)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dirent *fd;
	size_t retlen;
	struct iovec vecs[2];
	int ret;

	D1(printk(KERN_DEBUG "jffs2_write_dirent(ino #%u, name at *0x%p \"%s\"->ino #%u, name_crc 0x%08x)\n", rd->pino, name, name, rd->ino, rd->name_crc));
	writecheck(c, flash_ofs);

	D1(if(rd->hdr_crc != crc32(0, rd, sizeof(struct jffs2_unknown_node)-4)) {
		printk(KERN_CRIT "Eep. CRC not correct in jffs2_write_dirent()\n");
		BUG();
	}
	   );

	vecs[0].iov_base = rd;
	vecs[0].iov_len = sizeof(*rd);
	vecs[1].iov_base = (unsigned char *)name;
	vecs[1].iov_len = namelen;
	
	raw = jffs2_alloc_raw_node_ref();

	if (!raw)
		return ERR_PTR(-ENOMEM);

	fd = jffs2_alloc_full_dirent(namelen+1);
	if (!fd) {
		jffs2_free_raw_node_ref(raw);
		return ERR_PTR(-ENOMEM);
	}
	raw->flash_offset = flash_ofs;
	raw->totlen = PAD(rd->totlen);
	raw->next_in_ino = f->inocache->nodes;
	f->inocache->nodes = raw;
	raw->next_phys = NULL;

	fd->version = rd->version;
	fd->ino = rd->ino;
	fd->nhash = full_name_hash(name, strlen(name));
	fd->type = rd->type;
	memcpy(fd->name, name, namelen);
	fd->name[namelen]=0;
	fd->raw = raw;

	ret = jffs2_flash_writev(c, vecs, 2, flash_ofs, &retlen);
	if (ret || (retlen != sizeof(*rd) + namelen)) {
		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %d\n", 
			       sizeof(*rd)+namelen, flash_ofs, ret, retlen);
		/* Mark the space as dirtied */
		if (retlen) {
			jffs2_add_physical_node_ref(c, raw, sizeof(*rd)+namelen, 1);
			jffs2_mark_node_obsolete(c, raw);
		} else {
			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", raw->flash_offset);
			jffs2_free_raw_node_ref(raw);
		}

		/* Release the full_dnode which is now useless, and return */
		jffs2_free_full_dirent(fd);
		if (writelen)
			*writelen = retlen;
		return ERR_PTR(ret?ret:-EIO);
	}
	/* Mark the space used */
	jffs2_add_physical_node_ref(c, raw, retlen, 0);
	if (writelen)
		*writelen = retlen;

	f->inocache->nodes = raw;
	return fd;
}

/* The OS-specific code fills in the metadata in the jffs2_raw_inode for us, so that
   we don't have to go digging in struct inode or its equivalent. It should set:
   mode, uid, gid, (starting)isize, atime, ctime, mtime */
int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
			    struct jffs2_raw_inode *ri, unsigned char *buf, 
			    uint32_t offset, uint32_t writelen, uint32_t *retlen)
{
	int ret = 0;
	uint32_t writtenlen = 0;

       	D1(printk(KERN_DEBUG "jffs2_write_inode_range(): Ino #%u, ofs 0x%x, len 0x%x\n",
		  f->inocache->ino, offset, writelen));
		
	while(writelen) {
		struct jffs2_full_dnode *fn;
		unsigned char *comprbuf = NULL;
		unsigned char comprtype = JFFS2_COMPR_NONE;
		uint32_t phys_ofs, alloclen;
		uint32_t datalen, cdatalen;

		D2(printk(KERN_DEBUG "jffs2_commit_write() loop: 0x%x to write to 0x%x\n", writelen, offset));

		ret = jffs2_reserve_space(c, sizeof(*ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen, ALLOC_NORMAL);
		if (ret) {
			D1(printk(KERN_DEBUG "jffs2_reserve_space returned %d\n", ret));
			break;
		}
		down(&f->sem);
		datalen = writelen;
		cdatalen = min(alloclen - sizeof(*ri), writelen);

		comprbuf = kmalloc(cdatalen, GFP_KERNEL);
		if (comprbuf) {
			comprtype = jffs2_compress(buf, comprbuf, &datalen, &cdatalen);
		}
		if (comprtype == JFFS2_COMPR_NONE) {
			/* Either compression failed, or the allocation of comprbuf failed */
			if (comprbuf)
				kfree(comprbuf);
			comprbuf = buf;
			datalen = cdatalen;
		}
		/* Now comprbuf points to the data to be written, be it compressed or not.
		   comprtype holds the compression type, and comprtype == JFFS2_COMPR_NONE means
		   that the comprbuf doesn't need to be kfree()d. 
		*/

		ri->magic = JFFS2_MAGIC_BITMASK;
		ri->nodetype = JFFS2_NODETYPE_INODE;
		ri->totlen = sizeof(*ri) + cdatalen;
		ri->hdr_crc = crc32(0, ri, sizeof(struct jffs2_unknown_node)-4);

		ri->ino = f->inocache->ino;
		ri->version = ++f->highest_version;
		ri->isize = max(ri->isize, offset + datalen);
		ri->offset = offset;
		ri->csize = cdatalen;
		ri->dsize = datalen;
		ri->compr = comprtype;
		ri->node_crc = crc32(0, ri, sizeof(*ri)-8);
		ri->data_crc = crc32(0, comprbuf, cdatalen);

		fn = jffs2_write_dnode(c, f, ri, comprbuf, cdatalen, phys_ofs, NULL);

		if (comprtype != JFFS2_COMPR_NONE)
			kfree(comprbuf);

		if (IS_ERR(fn)) {
			ret = PTR_ERR(fn);
			up(&f->sem);
			jffs2_complete_reservation(c);
			break;
		}
		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
		if (f->metadata) {
			jffs2_mark_node_obsolete(c, f->metadata->raw);
			jffs2_free_full_dnode(f->metadata);
			f->metadata = NULL;
		}
		if (ret) {
			/* Eep */
			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in commit_write, returned %d\n", ret));
			jffs2_mark_node_obsolete(c, fn->raw);
			jffs2_free_full_dnode(fn);

			up(&f->sem);
			jffs2_complete_reservation(c);
			break;
		}
		up(&f->sem);
		jffs2_complete_reservation(c);
		if (!datalen) {
			printk(KERN_WARNING "Eep. We didn't actually write any data in jffs2_write_inode_range()\n");
			ret = -EIO;
			break;
		}
		D1(printk(KERN_DEBUG "increasing writtenlen by %d\n", datalen));
		writtenlen += datalen;
		offset += datalen;
		writelen -= datalen;
		buf += datalen;
	}
	*retlen = writtenlen;
	return ret;
}

int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen)
{
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dnode *fn;
	struct jffs2_full_dirent *fd;
	uint32_t alloclen, phys_ofs;
	uint32_t writtenlen;
	int ret;

	/* Try to reserve enough space for both node and dirent. 
	 * Just the node will do for now, though 
	 */
	ret = jffs2_reserve_space(c, sizeof(*ri), &phys_ofs, &alloclen, ALLOC_NORMAL);
	D1(printk(KERN_DEBUG "jffs2_do_create(): reserved 0x%x bytes\n", alloclen));
	if (ret)
		return ret;

	ri->data_crc = 0;
	ri->node_crc = crc32(0, ri, sizeof(*ri)-8);

	fn = jffs2_write_dnode(c, f, ri, NULL, 0, phys_ofs, &writtenlen);

	D1(printk(KERN_DEBUG "jffs2_do_create created file with mode 0x%x\n", ri->mode));

	if (IS_ERR(fn)) {
		D1(printk(KERN_DEBUG "jffs2_write_dnode() failed\n"));
		/* Eeek. Wave bye bye */
		up(&f->sem);
		jffs2_complete_reservation(c);
		return PTR_ERR(fn);
	}
	/* No data here. Only a metadata node, which will be 
	   obsoleted by the first data write
	*/
	f->metadata = fn;

	/* Work out where to put the dirent node now. */
	writtenlen = PAD(writtenlen);
	phys_ofs += writtenlen;
	alloclen -= writtenlen;
	up(&f->sem);

	if (alloclen < sizeof(*rd)+namelen) {
		/* Not enough space left in this chunk. Get some more */
		jffs2_complete_reservation(c);
		ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &phys_ofs, &alloclen, ALLOC_NORMAL);
		
		if (ret) {
			/* Eep. */
			D1(printk(KERN_DEBUG "jffs2_reserve_space() for dirent failed\n"));
			return ret;
		}
	}

	rd = jffs2_alloc_raw_dirent();
	if (!rd) {
		/* Argh. Now we treat it like a normal delete */
		jffs2_complete_reservation(c);
		return -ENOMEM;
	}

	down(&dir_f->sem);

	rd->magic = JFFS2_MAGIC_BITMASK;
	rd->nodetype = JFFS2_NODETYPE_DIRENT;
	rd->totlen = sizeof(*rd) + namelen;
	rd->hdr_crc = crc32(0, rd, sizeof(struct jffs2_unknown_node)-4);

	rd->pino = dir_f->inocache->ino;
	rd->version = ++dir_f->highest_version;
	rd->ino = ri->ino;
	rd->mctime = ri->ctime;
	rd->nsize = namelen;
	rd->type = DT_REG;
	rd->node_crc = crc32(0, rd, sizeof(*rd)-8);
	rd->name_crc = crc32(0, name, namelen);

	fd = jffs2_write_dirent(c, dir_f, rd, name, namelen, phys_ofs, &writtenlen);

	jffs2_free_raw_dirent(rd);
	
	if (IS_ERR(fd)) {
		/* dirent failed to write. Delete the inode normally 
		   as if it were the final unlink() */
		jffs2_complete_reservation(c);
		up(&dir_f->sem);
		return PTR_ERR(fd);
	}

	/* Link the fd into the inode's list, obsoleting an old
	   one if necessary. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	jffs2_complete_reservation(c);
	up(&dir_f->sem);

	return 0;
}


int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f)
{
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dirent *fd;
	uint32_t alloclen, phys_ofs;
	int ret;

	rd = jffs2_alloc_raw_dirent();
	if (!rd)
		return -ENOMEM;

	ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &phys_ofs, &alloclen, ALLOC_DELETION);
	if (ret) {
		jffs2_free_raw_dirent(rd);
		return ret;
	}

	down(&dir_f->sem);

	/* Build a deletion node */
	rd->magic = JFFS2_MAGIC_BITMASK;
	rd->nodetype = JFFS2_NODETYPE_DIRENT;
	rd->totlen = sizeof(*rd) + namelen;
	rd->hdr_crc = crc32(0, rd, sizeof(struct jffs2_unknown_node)-4);

	rd->pino = dir_f->inocache->ino;
	rd->version = ++dir_f->highest_version;
	rd->ino = 0;
	rd->mctime = CURRENT_TIME;
	rd->nsize = namelen;
	rd->type = DT_UNKNOWN;
	rd->node_crc = crc32(0, rd, sizeof(*rd)-8);
	rd->name_crc = crc32(0, name, namelen);

	fd = jffs2_write_dirent(c, dir_f, rd, name, namelen, phys_ofs, NULL);
	
	jffs2_free_raw_dirent(rd);

	if (IS_ERR(fd)) {
		jffs2_complete_reservation(c);
		up(&dir_f->sem);
		return PTR_ERR(fd);
	}

	/* File it. This will mark the old one obsolete. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	jffs2_complete_reservation(c);
	up(&dir_f->sem);
	
	if (dead_f) { /* Null if this was a rename not a real unlink */

		down(&dead_f->sem);

		while (dead_f->dents) {
			/* There can be only deleted ones */
			fd = dead_f->dents;
			
			dead_f->dents = fd->next;
			
			if (fd->ino) {
				printk(KERN_WARNING "Deleting inode #%u with active dentry \"%s\"->ino #%u\n",
				       dead_f->inocache->ino, fd->name, fd->ino);
			} else {
				D1(printk(KERN_DEBUG "Removing deletion dirent for \"%s\" from dir ino #%u\n", fd->name, dead_f->inocache->ino));
			}
			jffs2_mark_node_obsolete(c, fd->raw);
			jffs2_free_full_dirent(fd);
		}

		dead_f->inocache->nlink--;
		/* NB: Caller must set inode nlink if appropriate */
		up(&dead_f->sem);
	}

	return 0;
}


int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen)
{
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dirent *fd;
	uint32_t alloclen, phys_ofs;
	int ret;

	rd = jffs2_alloc_raw_dirent();
	if (!rd)
		return -ENOMEM;

	ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &phys_ofs, &alloclen, ALLOC_NORMAL);
	if (ret) {
		jffs2_free_raw_dirent(rd);
		return ret;
	}
	
	down(&dir_f->sem);

	/* Build a deletion node */
	rd->magic = JFFS2_MAGIC_BITMASK;
	rd->nodetype = JFFS2_NODETYPE_DIRENT;
	rd->totlen = sizeof(*rd) + namelen;
	rd->hdr_crc = crc32(0, rd, sizeof(struct jffs2_unknown_node)-4);

	rd->pino = dir_f->inocache->ino;
	rd->version = ++dir_f->highest_version;
	rd->ino = ino;
	rd->mctime = CURRENT_TIME;
	rd->nsize = namelen;

	rd->type = type;

	rd->node_crc = crc32(0, rd, sizeof(*rd)-8);
	rd->name_crc = crc32(0, name, namelen);

	fd = jffs2_write_dirent(c, dir_f, rd, name, namelen, phys_ofs, NULL);
	
	jffs2_free_raw_dirent(rd);

	if (IS_ERR(fd)) {
		jffs2_complete_reservation(c);
		up(&dir_f->sem);
		return PTR_ERR(fd);
	}

	/* File it. This will mark the old one obsolete. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	jffs2_complete_reservation(c);
	up(&dir_f->sem);

	return 0;
}