Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 | #undef DEBUG #undef EVENTS ; NCR 53c810 driver, main script ; Sponsored by ; iX Multiuser Multitasking Magazine ; hm@ix.de ; ; Copyright 1993, 1994, 1995 Drew Eckhardt ; Visionary Computing ; (Unix and Linux consulting and custom programming) ; drew@PoohSticks.ORG ; +1 (303) 786-7975 ; ; TolerANT and SCSI SCRIPTS are registered trademarks of NCR Corporation. ; ; PRE-ALPHA ; ; For more information, please consult ; ; NCR 53C810 ; PCI-SCSI I/O Processor ; Data Manual ; ; NCR 53C710 ; SCSI I/O Processor ; Programmers Guide ; ; NCR Microelectronics ; 1635 Aeroplaza Drive ; Colorado Springs, CO 80916 ; 1+ (719) 578-3400 ; ; Toll free literature number ; +1 (800) 334-5454 ; ; IMPORTANT : This code is self modifying due to the limitations of ; the NCR53c7,8xx series chips. Persons debugging this code with ; the remote debugger should take this into account, and NOT set ; breakpoints in modified instructions. ; ; Design: ; The NCR53c7,8xx family of SCSI chips are busmasters with an onboard ; microcontroller using a simple instruction set. ; ; So, to minimize the effects of interrupt latency, and to maximize ; throughput, this driver offloads the practical maximum amount ; of processing to the SCSI chip while still maintaining a common ; structure. ; ; Where tradeoffs were needed between efficiency on the older ; chips and the newer NCR53c800 series, the NCR53c800 series ; was chosen. ; ; While the NCR53c700 and NCR53c700-66 lacked the facilities to fully ; automate SCSI transfers without host processor intervention, this ; isn't the case with the NCR53c710 and newer chips which allow ; ; - reads and writes to the internal registers from within the SCSI ; scripts, allowing the SCSI SCRIPTS(tm) code to save processor ; state so that multiple threads of execution are possible, and also ; provide an ALU for loop control, etc. ; ; - table indirect addressing for some instructions. This allows ; pointers to be located relative to the DSA ((Data Structure ; Address) register. ; ; These features make it possible to implement a mailbox style interface, ; where the same piece of code is run to handle I/O for multiple threads ; at once minimizing our need to relocate code. Since the NCR53c700/ ; NCR53c800 series have a unique combination of features, making a ; a standard ingoing/outgoing mailbox system, costly, I've modified it. ; ; - Mailboxes are a mixture of code and data. This lets us greatly ; simplify the NCR53c810 code and do things that would otherwise ; not be possible. ; ; The saved data pointer is now implemented as follows : ; ; Control flow has been architected such that if control reaches ; munge_save_data_pointer, on a restore pointers message or ; reconnection, a jump to the address formerly in the TEMP register ; will allow the SCSI command to resume execution. ; ; ; Note : the DSA structures must be aligned on 32 bit boundaries, ; since the source and destination of MOVE MEMORY instructions ; must share the same alignment and this is the alignment of the ; NCR registers. ; ABSOLUTE dsa_temp_lun = 0 ; Patch to lun for current dsa ABSOLUTE dsa_temp_next = 0 ; Patch to dsa next for current dsa ABSOLUTE dsa_temp_addr_next = 0 ; Patch to address of dsa next address ; for current dsa ABSOLUTE dsa_temp_sync = 0 ; Patch to address of per-target ; sync routine ABSOLUTE dsa_temp_target = 0 ; Patch to id for current dsa ABSOLUTE dsa_temp_addr_saved_pointer = 0; Patch to address of per-command ; saved data pointer ABSOLUTE dsa_temp_addr_residual = 0 ; Patch to address of per-command ; current residual code ABSOLUTE dsa_temp_addr_saved_residual = 0; Patch to address of per-command ; saved residual code ABSOLUTE dsa_temp_addr_new_value = 0 ; Address of value for JUMP operand ABSOLUTE dsa_temp_addr_array_value = 0 ; Address to copy to ABSOLUTE dsa_temp_addr_dsa_value = 0 ; Address of this DSA value ; ; Once a device has initiated reselection, we need to compare it ; against the singly linked list of commands which have disconnected ; and are pending reselection. These commands are maintained in ; an unordered singly linked list of DSA structures, through the ; DSA pointers at their 'centers' headed by the reconnect_dsa_head ; pointer. ; ; To avoid complications in removing commands from the list, ; I minimize the amount of expensive (at eight operations per ; addition @ 500-600ns each) pointer operations which must ; be done in the NCR driver by precomputing them on the ; host processor during dsa structure generation. ; ; The fixed-up per DSA code knows how to recognize the nexus ; associated with the corresponding SCSI command, and modifies ; the source and destination pointers for the MOVE MEMORY ; instruction which is executed when reselected_ok is called ; to remove the command from the list. Similarly, DSA is ; loaded with the address of the next DSA structure and ; reselected_check_next is called if a failure occurs. ; ; Perhaps more concisely, the net effect of the mess is ; ; for (dsa = reconnect_dsa_head, dest = &reconnect_dsa_head, ; src = NULL; dsa; dest = &dsa->next, dsa = dsa->next) { ; src = &dsa->next; ; if (target_id == dsa->id && target_lun == dsa->lun) { ; *dest = *src; ; break; ; } ; } ; ; if (!dsa) ; error (int_err_unexpected_reselect); ; else ; longjmp (dsa->jump_resume, 0); ; ; #if (CHIP != 700) && (CHIP != 70066) ; Define DSA structure used for mailboxes ENTRY dsa_code_template dsa_code_template: ENTRY dsa_code_begin dsa_code_begin: MOVE dmode_memory_to_ncr TO DMODE MOVE MEMORY 4, dsa_temp_addr_dsa_value, addr_scratch MOVE dmode_memory_to_memory TO DMODE CALL scratch_to_dsa CALL select ; Handle the phase mismatch which may have resulted from the ; MOVE FROM dsa_msgout if we returned here. The CLEAR ATN ; may or may not be necessary, and we should update script_asm.pl ; to handle multiple pieces. CLEAR ATN CLEAR ACK ; Replace second operand with address of JUMP instruction dest operand ; in schedule table for this DSA. Becomes dsa_jump_dest in 53c7,8xx.c. ENTRY dsa_code_fix_jump dsa_code_fix_jump: MOVE MEMORY 4, NOP_insn, 0 JUMP select_done ; wrong_dsa loads the DSA register with the value of the dsa_next ; field. ; wrong_dsa: ; Patch the MOVE MEMORY INSTRUCTION such that ; the destination address is the address of the OLD ; next pointer. ; MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok + 8 MOVE dmode_memory_to_ncr TO DMODE ; ; Move the _contents_ of the next pointer into the DSA register as ; the next I_T_L or I_T_L_Q tupple to check against the established ; nexus. ; MOVE MEMORY 4, dsa_temp_next, addr_scratch MOVE dmode_memory_to_memory TO DMODE CALL scratch_to_dsa JUMP reselected_check_next ABSOLUTE dsa_save_data_pointer = 0 ENTRY dsa_code_save_data_pointer dsa_code_save_data_pointer: MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_temp, dsa_temp_addr_saved_pointer MOVE dmode_memory_to_memory TO DMODE ; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h MOVE MEMORY 24, dsa_temp_addr_residual, dsa_temp_addr_saved_residual CLEAR ACK #ifdef DEBUG INT int_debug_saved #endif RETURN ABSOLUTE dsa_restore_pointers = 0 ENTRY dsa_code_restore_pointers dsa_code_restore_pointers: MOVE dmode_memory_to_ncr TO DMODE MOVE MEMORY 4, dsa_temp_addr_saved_pointer, addr_temp MOVE dmode_memory_to_memory TO DMODE ; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h MOVE MEMORY 24, dsa_temp_addr_saved_residual, dsa_temp_addr_residual CLEAR ACK #ifdef DEBUG INT int_debug_restored #endif RETURN ABSOLUTE dsa_check_reselect = 0 ; dsa_check_reselect determines whether or not the current target and ; lun match the current DSA ENTRY dsa_code_check_reselect dsa_code_check_reselect: MOVE SSID TO SFBR ; SSID contains 3 bit target ID ; FIXME : we need to accommodate bit fielded and binary here for '7xx/'8xx chips JUMP REL (wrong_dsa), IF NOT dsa_temp_target, AND MASK 0xf8 ; ; Hack - move to scratch first, since SFBR is not writeable ; via the CPU and hence a MOVE MEMORY instruction. ; MOVE dmode_memory_to_ncr TO DMODE MOVE MEMORY 1, reselected_identify, addr_scratch MOVE dmode_memory_to_memory TO DMODE MOVE SCRATCH0 TO SFBR ; FIXME : we need to accommodate bit fielded and binary here for '7xx/'8xx chips JUMP REL (wrong_dsa), IF NOT dsa_temp_lun, AND MASK 0xf8 ; Patch the MOVE MEMORY INSTRUCTION such that ; the source address is the address of this dsa's ; next pointer. MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok + 4 CALL reselected_ok CALL dsa_temp_sync ; Release ACK on the IDENTIFY message _after_ we've set the synchronous ; transfer parameters! CLEAR ACK ; Implicitly restore pointers on reselection, so a RETURN ; will transfer control back to the right spot. CALL REL (dsa_code_restore_pointers) RETURN ENTRY dsa_zero dsa_zero: ENTRY dsa_code_template_end dsa_code_template_end: ; Perform sanity check for dsa_fields_start == dsa_code_template_end - ; dsa_zero, puke. ABSOLUTE dsa_fields_start = 0 ; Sanity marker ; pad 48 bytes (fix this RSN) ABSOLUTE dsa_next = 48 ; len 4 Next DSA ; del 4 Previous DSA address ABSOLUTE dsa_cmnd = 56 ; len 4 Scsi_Cmnd * for this thread. ABSOLUTE dsa_select = 60 ; len 4 Device ID, Period, Offset for ; table indirect select ABSOLUTE dsa_msgout = 64 ; len 8 table indirect move parameter for ; select message ABSOLUTE dsa_cmdout = 72 ; len 8 table indirect move parameter for ; command ABSOLUTE dsa_dataout = 80 ; len 4 code pointer for dataout ABSOLUTE dsa_datain = 84 ; len 4 code pointer for datain ABSOLUTE dsa_msgin = 88 ; len 8 table indirect move for msgin ABSOLUTE dsa_status = 96 ; len 8 table indirect move for status byte ABSOLUTE dsa_msgout_other = 104 ; len 8 table indirect for normal message out ; (Synchronous transfer negotiation, etc). ABSOLUTE dsa_end = 112 ABSOLUTE schedule = 0 ; Array of JUMP dsa_begin or JUMP (next), ; terminated by a call to JUMP wait_reselect ; Linked lists of DSA structures ABSOLUTE reconnect_dsa_head = 0 ; Link list of DSAs which can reconnect ABSOLUTE addr_reconnect_dsa_head = 0 ; Address of variable containing ; address of reconnect_dsa_head ; These select the source and destination of a MOVE MEMORY instruction ABSOLUTE dmode_memory_to_memory = 0x0 ABSOLUTE dmode_memory_to_ncr = 0x0 ABSOLUTE dmode_ncr_to_memory = 0x0 ABSOLUTE addr_scratch = 0x0 ABSOLUTE addr_temp = 0x0 #endif /* CHIP != 700 && CHIP != 70066 */ ; Interrupts - ; MSB indicates type ; 0 handle error condition ; 1 handle message ; 2 handle normal condition ; 3 debugging interrupt ; 4 testing interrupt ; Next byte indicates specific error ; XXX not yet implemented, I'm not sure if I want to - ; Next byte indicates the routine the error occurred in ; The LSB indicates the specific place the error occurred ABSOLUTE int_err_unexpected_phase = 0x00000000 ; Unexpected phase encountered ABSOLUTE int_err_selected = 0x00010000 ; SELECTED (nee RESELECTED) ABSOLUTE int_err_unexpected_reselect = 0x00020000 ABSOLUTE int_err_check_condition = 0x00030000 ABSOLUTE int_err_no_phase = 0x00040000 ABSOLUTE int_msg_wdtr = 0x01000000 ; WDTR message received ABSOLUTE int_msg_sdtr = 0x01010000 ; SDTR received ABSOLUTE int_msg_1 = 0x01020000 ; single byte special message ; received ABSOLUTE int_norm_select_complete = 0x02000000 ; Select complete, reprogram ; registers. ABSOLUTE int_norm_reselect_complete = 0x02010000 ; Nexus established ABSOLUTE int_norm_command_complete = 0x02020000 ; Command complete ABSOLUTE int_norm_disconnected = 0x02030000 ; Disconnected ABSOLUTE int_norm_aborted =0x02040000 ; Aborted *dsa ABSOLUTE int_norm_reset = 0x02050000 ; Generated BUS reset. ABSOLUTE int_debug_break = 0x03000000 ; Break point #ifdef DEBUG ABSOLUTE int_debug_scheduled = 0x03010000 ; new I/O scheduled ABSOLUTE int_debug_idle = 0x03020000 ; scheduler is idle ABSOLUTE int_debug_dsa_loaded = 0x03030000 ; dsa reloaded ABSOLUTE int_debug_reselected = 0x03040000 ; NCR reselected ABSOLUTE int_debug_head = 0x03050000 ; issue head overwritten ABSOLUTE int_debug_disconnected = 0x03060000 ; disconnected ABSOLUTE int_debug_disconnect_msg = 0x03070000 ; got message to disconnect ABSOLUTE int_debug_dsa_schedule = 0x03080000 ; in dsa_schedule ABSOLUTE int_debug_reselect_check = 0x03090000 ; Check for reselection of DSA ABSOLUTE int_debug_reselected_ok = 0x030a0000 ; Reselection accepted #endif ABSOLUTE int_debug_panic = 0x030b0000 ; Panic driver #ifdef DEBUG ABSOLUTE int_debug_saved = 0x030c0000 ; save/restore pointers ABSOLUTE int_debug_restored = 0x030d0000 ABSOLUTE int_debug_sync = 0x030e0000 ; Sanity check synchronous ; parameters. ABSOLUTE int_debug_datain = 0x030f0000 ; going into data in phase ; now. ABSOLUTE int_debug_check_dsa = 0x03100000 ; Sanity check DSA against ; SDID. #endif ABSOLUTE int_test_1 = 0x04000000 ; Test 1 complete ABSOLUTE int_test_2 = 0x04010000 ; Test 2 complete ABSOLUTE int_test_3 = 0x04020000 ; Test 3 complete ; These should start with 0x05000000, with low bits incrementing for ; each one. #ifdef EVENTS ABSOLUTE int_EVENT_SELECT = 0 ABSOLUTE int_EVENT_DISCONNECT = 0 ABSOLUTE int_EVENT_RESELECT = 0 ABSOLUTE int_EVENT_COMPLETE = 0 ABSOLUTE int_EVENT_IDLE = 0 ABSOLUTE int_EVENT_SELECT_FAILED = 0 ABSOLUTE int_EVENT_BEFORE_SELECT = 0 ABSOLUTE int_EVENT_RESELECT_FAILED = 0 #endif ABSOLUTE NCR53c7xx_msg_abort = 0 ; Pointer to abort message ABSOLUTE NCR53c7xx_msg_reject = 0 ; Pointer to reject message ABSOLUTE NCR53c7xx_zero = 0 ; long with zero in it, use for source ABSOLUTE NCR53c7xx_sink = 0 ; long to dump worthless data in ABSOLUTE NOP_insn = 0 ; NOP instruction ; Pointer to message, potentially multi-byte ABSOLUTE msg_buf = 0 ; Pointer to holding area for reselection information ABSOLUTE reselected_identify = 0 ABSOLUTE reselected_tag = 0 ; Request sense command pointer, it's a 6 byte command, should ; be constant for all commands since we always want 16 bytes of ; sense and we don't need to change any fields as we did under ; SCSI-I when we actually cared about the LUN field. ;EXTERNAL NCR53c7xx_sense ; Request sense command #if (CHIP != 700) && (CHIP != 70066) ; dsa_schedule ; PURPOSE : after a DISCONNECT message has been received, and pointers ; saved, insert the current DSA structure at the head of the ; disconnected queue and fall through to the scheduler. ; ; CALLS : OK ; ; INPUTS : dsa - current DSA structure, reconnect_dsa_head - list ; of disconnected commands ; ; MODIFIES : SCRATCH, reconnect_dsa_head ; ; EXITS : always passes control to schedule ENTRY dsa_schedule dsa_schedule: #if 0 INT int_debug_dsa_schedule #endif ; ; Calculate the address of the next pointer within the DSA ; structure of the command that is currently disconnecting ; CALL dsa_to_scratch MOVE SCRATCH0 + dsa_next TO SCRATCH0 MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY ; Point the next field of this DSA structure at the current disconnected ; list MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, dsa_schedule_insert + 8 MOVE dmode_memory_to_memory TO DMODE dsa_schedule_insert: MOVE MEMORY 4, reconnect_dsa_head, 0 ; And update the head pointer. CALL dsa_to_scratch MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, reconnect_dsa_head MOVE dmode_memory_to_memory TO DMODE /* Temporarily, see what happens. */ #ifndef ORIGINAL MOVE SCNTL2 & 0x7f TO SCNTL2 CLEAR ACK #endif WAIT DISCONNECT #ifdef EVENTS INT int_EVENT_DISCONNECT; #endif #if 0 INT int_debug_disconnected #endif JUMP schedule #endif ; ; select ; ; PURPOSE : establish a nexus for the SCSI command referenced by DSA. ; On success, the current DSA structure is removed from the issue ; queue. Usually, this is entered as a fall-through from schedule, ; although the contingent allegiance handling code will write ; the select entry address to the DSP to restart a command as a ; REQUEST SENSE. A message is sent (usually IDENTIFY, although ; additional SDTR or WDTR messages may be sent). COMMAND OUT ; is handled. ; ; INPUTS : DSA - SCSI command, issue_dsa_head ; ; CALLS : NOT OK ; ; MODIFIES : SCRATCH, issue_dsa_head ; ; EXITS : on reselection or selection, go to select_failed ; otherwise, RETURN so control is passed back to ; dsa_begin. ; ENTRY select select: #if 0 #ifdef EVENTS INT int_EVENT_BEFORE_SELECT #endif #endif #if 0 #ifdef DEBUG INT int_debug_scheduled #endif #endif CLEAR TARGET ; XXX ; ; In effect, SELECTION operations are backgrounded, with execution ; continuing until code which waits for REQ or a fatal interrupt is ; encountered. ; ; So, for more performance, we could overlap the code which removes ; the command from the NCRs issue queue with the selection, but ; at this point I don't want to deal with the error recovery. ; #if (CHIP != 700) && (CHIP != 70066) SELECT ATN FROM dsa_select, select_failed JUMP select_msgout, WHEN MSG_OUT ENTRY select_msgout select_msgout: MOVE FROM dsa_msgout, WHEN MSG_OUT #else ENTRY select_msgout SELECT ATN 0, select_failed select_msgout: MOVE 0, 0, WHEN MSGOUT #endif #ifdef EVENTS INT int_EVENT_SELECT #endif RETURN ; ; select_done ; ; PURPOSE: continue on to normal data transfer; called as the exit ; point from dsa_begin. ; ; INPUTS: dsa ; ; CALLS: OK ; ; select_done: #ifdef DEBUG ENTRY select_check_dsa select_check_dsa: INT int_debug_check_dsa #endif ; After a successful selection, we should get either a CMD phase or ; some transfer request negotiation message. JUMP cmdout, WHEN CMD INT int_err_unexpected_phase, WHEN NOT MSG_IN select_msg_in: CALL msg_in, WHEN MSG_IN JUMP select_msg_in, WHEN MSG_IN cmdout: INT int_err_unexpected_phase, WHEN NOT CMD #if (CHIP == 700) INT int_norm_selected #endif ENTRY cmdout_cmdout cmdout_cmdout: #if (CHIP != 700) && (CHIP != 70066) MOVE FROM dsa_cmdout, WHEN CMD #else MOVE 0, 0, WHEN CMD #endif /* (CHIP != 700) && (CHIP != 70066) */ ; ; data_transfer ; other_out ; other_in ; other_transfer ; ; PURPOSE : handle the main data transfer for a SCSI command in ; several parts. In the first part, data_transfer, DATA_IN ; and DATA_OUT phases are allowed, with the user provided ; code (usually dynamically generated based on the scatter/gather ; list associated with a SCSI command) called to handle these ; phases. ; ; After control has passed to one of the user provided ; DATA_IN or DATA_OUT routines, back calls are made to ; other_transfer_in or other_transfer_out to handle non-DATA IN ; and DATA OUT phases respectively, with the state of the active ; data pointer being preserved in TEMP. ; ; On completion, the user code passes control to other_transfer ; which causes DATA_IN and DATA_OUT to result in unexpected_phase ; interrupts so that data overruns may be trapped. ; ; INPUTS : DSA - SCSI command ; ; CALLS : OK in data_transfer_start, not ok in other_out and other_in, ok in ; other_transfer ; ; MODIFIES : SCRATCH ; ; EXITS : if STATUS IN is detected, signifying command completion, ; the NCR jumps to command_complete. If MSG IN occurs, a ; CALL is made to msg_in. Otherwise, other_transfer runs in ; an infinite loop. ; ENTRY data_transfer data_transfer: JUMP cmdout_cmdout, WHEN CMD CALL msg_in, WHEN MSG_IN INT int_err_unexpected_phase, WHEN MSG_OUT JUMP do_dataout, WHEN DATA_OUT JUMP do_datain, WHEN DATA_IN JUMP command_complete, WHEN STATUS JUMP data_transfer ENTRY end_data_transfer end_data_transfer: ; ; FIXME: On NCR53c700 and NCR53c700-66 chips, do_dataout/do_datain ; should be fixed up whenever the nexus changes so it can point to the ; correct routine for that command. ; #if (CHIP != 700) && (CHIP != 70066) ; Nasty jump to dsa->dataout do_dataout: CALL dsa_to_scratch MOVE SCRATCH0 + dsa_dataout TO SCRATCH0 MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, dataout_to_jump + 4 MOVE dmode_memory_to_memory TO DMODE dataout_to_jump: MOVE MEMORY 4, 0, dataout_jump + 4 dataout_jump: JUMP 0 ; Nasty jump to dsa->dsain do_datain: CALL dsa_to_scratch MOVE SCRATCH0 + dsa_datain TO SCRATCH0 MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, datain_to_jump + 4 MOVE dmode_memory_to_memory TO DMODE ENTRY datain_to_jump datain_to_jump: MOVE MEMORY 4, 0, datain_jump + 4 #if 0 INT int_debug_datain #endif datain_jump: JUMP 0 #endif /* (CHIP != 700) && (CHIP != 70066) */ ; Note that other_out and other_in loop until a non-data phase ; is discovered, so we only execute return statements when we ; can go on to the next data phase block move statement. ENTRY other_out other_out: #if 0 INT 0x03ffdead #endif INT int_err_unexpected_phase, WHEN CMD JUMP msg_in_restart, WHEN MSG_IN INT int_err_unexpected_phase, WHEN MSG_OUT INT int_err_unexpected_phase, WHEN DATA_IN JUMP command_complete, WHEN STATUS JUMP other_out, WHEN NOT DATA_OUT RETURN ENTRY other_in other_in: #if 0 INT 0x03ffdead #endif INT int_err_unexpected_phase, WHEN CMD JUMP msg_in_restart, WHEN MSG_IN INT int_err_unexpected_phase, WHEN MSG_OUT INT int_err_unexpected_phase, WHEN DATA_OUT JUMP command_complete, WHEN STATUS JUMP other_in, WHEN NOT DATA_IN RETURN ENTRY other_transfer other_transfer: INT int_err_unexpected_phase, WHEN CMD CALL msg_in, WHEN MSG_IN INT int_err_unexpected_phase, WHEN MSG_OUT INT int_err_unexpected_phase, WHEN DATA_OUT INT int_err_unexpected_phase, WHEN DATA_IN JUMP command_complete, WHEN STATUS JUMP other_transfer ; ; msg_in_restart ; msg_in ; munge_msg ; ; PURPOSE : process messages from a target. msg_in is called when the ; caller hasn't read the first byte of the message. munge_message ; is called when the caller has read the first byte of the message, ; and left it in SFBR. msg_in_restart is called when the caller ; hasn't read the first byte of the message, and wishes RETURN ; to transfer control back to the address of the conditional ; CALL instruction rather than to the instruction after it. ; ; Various int_* interrupts are generated when the host system ; needs to intervene, as is the case with SDTR, WDTR, and ; INITIATE RECOVERY messages. ; ; When the host system handles one of these interrupts, ; it can respond by reentering at reject_message, ; which rejects the message and returns control to ; the caller of msg_in or munge_msg, accept_message ; which clears ACK and returns control, or reply_message ; which sends the message pointed to by the DSA ; msgout_other table indirect field. ; ; DISCONNECT messages are handled by moving the command ; to the reconnect_dsa_queue. ; ; INPUTS : DSA - SCSI COMMAND, SFBR - first byte of message (munge_msg ; only) ; ; CALLS : NO. The TEMP register isn't backed up to allow nested calls. ; ; MODIFIES : SCRATCH, DSA on DISCONNECT ; ; EXITS : On receipt of SAVE DATA POINTER, RESTORE POINTERS, ; and normal return from message handlers running under ; Linux, control is returned to the caller. Receipt ; of DISCONNECT messages pass control to dsa_schedule. ; ENTRY msg_in_restart msg_in_restart: ; XXX - hackish ; ; Since it's easier to debug changes to the statically ; compiled code, rather than the dynamically generated ; stuff, such as ; ; MOVE x, y, WHEN data_phase ; CALL other_z, WHEN NOT data_phase ; MOVE x, y, WHEN data_phase ; ; I'd like to have certain routines (notably the message handler) ; restart on the conditional call rather than the next instruction. ; ; So, subtract 8 from the return address MOVE TEMP0 + 0xf8 TO TEMP0 MOVE TEMP1 + 0xff TO TEMP1 WITH CARRY MOVE TEMP2 + 0xff TO TEMP2 WITH CARRY MOVE TEMP3 + 0xff TO TEMP3 WITH CARRY ENTRY msg_in msg_in: MOVE 1, msg_buf, WHEN MSG_IN munge_msg: JUMP munge_extended, IF 0x01 ; EXTENDED MESSAGE JUMP munge_2, IF 0x20, AND MASK 0xdf ; two byte message ; ; XXX - I've seen a handful of broken SCSI devices which fail to issue ; a SAVE POINTERS message before disconnecting in the middle of ; a transfer, assuming that the DATA POINTER will be implicitly ; restored. ; ; Historically, I've often done an implicit save when the DISCONNECT ; message is processed. We may want to consider having the option of ; doing that here. ; JUMP munge_save_data_pointer, IF 0x02 ; SAVE DATA POINTER JUMP munge_restore_pointers, IF 0x03 ; RESTORE POINTERS JUMP munge_disconnect, IF 0x04 ; DISCONNECT INT int_msg_1, IF 0x07 ; MESSAGE REJECT INT int_msg_1, IF 0x0f ; INITIATE RECOVERY #ifdef EVENTS INT int_EVENT_SELECT_FAILED #endif JUMP reject_message munge_2: JUMP reject_message ; ; The SCSI standard allows targets to recover from transient ; error conditions by backing up the data pointer with a ; RESTORE POINTERS message. ; ; So, we must save and restore the _residual_ code as well as ; the current instruction pointer. Because of this messiness, ; it is simpler to put dynamic code in the dsa for this and to ; just do a simple jump down there. ; munge_save_data_pointer: MOVE DSA0 + dsa_save_data_pointer TO SFBR MOVE SFBR TO SCRATCH0 MOVE DSA1 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH1 MOVE DSA2 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH2 MOVE DSA3 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH3 MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, jump_dsa_save + 4 MOVE dmode_memory_to_memory TO DMODE jump_dsa_save: JUMP 0 munge_restore_pointers: MOVE DSA0 + dsa_restore_pointers TO SFBR MOVE SFBR TO SCRATCH0 MOVE DSA1 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH1 MOVE DSA2 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH2 MOVE DSA3 + 0xff TO SFBR WITH CARRY MOVE SFBR TO SCRATCH3 MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, jump_dsa_restore + 4 MOVE dmode_memory_to_memory TO DMODE jump_dsa_restore: JUMP 0 munge_disconnect: #if 0 INT int_debug_disconnect_msg #endif /* * Before, we overlapped processing with waiting for disconnect, but * debugging was beginning to appear messy. Temporarily move things * to just before the WAIT DISCONNECT. */ #ifdef ORIGINAL MOVE SCNTL2 & 0x7f TO SCNTL2 CLEAR ACK #endif #if (CHIP != 700) && (CHIP != 70066) JUMP dsa_schedule #else WAIT DISCONNECT INT int_norm_disconnected #endif munge_extended: CLEAR ACK INT int_err_unexpected_phase, WHEN NOT MSG_IN MOVE 1, msg_buf + 1, WHEN MSG_IN JUMP munge_extended_2, IF 0x02 JUMP munge_extended_3, IF 0x03 JUMP reject_message munge_extended_2: CLEAR ACK MOVE 1, msg_buf + 2, WHEN MSG_IN JUMP reject_message, IF NOT 0x02 ; Must be WDTR CLEAR ACK MOVE 1, msg_buf + 3, WHEN MSG_IN INT int_msg_wdtr munge_extended_3: CLEAR ACK MOVE 1, msg_buf + 2, WHEN MSG_IN JUMP reject_message, IF NOT 0x01 ; Must be SDTR CLEAR ACK MOVE 2, msg_buf + 3, WHEN MSG_IN INT int_msg_sdtr ENTRY reject_message reject_message: SET ATN CLEAR ACK MOVE 1, NCR53c7xx_msg_reject, WHEN MSG_OUT RETURN ENTRY accept_message accept_message: CLEAR ATN CLEAR ACK RETURN ENTRY respond_message respond_message: SET ATN CLEAR ACK MOVE FROM dsa_msgout_other, WHEN MSG_OUT RETURN ; ; command_complete ; ; PURPOSE : handle command termination when STATUS IN is detected by reading ; a status byte followed by a command termination message. ; ; Normal termination results in an INTFLY instruction, and ; the host system can pick out which command terminated by ; examining the MESSAGE and STATUS buffers of all currently ; executing commands; ; ; Abnormal (CHECK_CONDITION) termination results in an ; int_err_check_condition interrupt so that a REQUEST SENSE ; command can be issued out-of-order so that no other command ; clears the contingent allegiance condition. ; ; ; INPUTS : DSA - command ; ; CALLS : OK ; ; EXITS : On successful termination, control is passed to schedule. ; On abnormal termination, the user will usually modify the ; DSA fields and corresponding buffers and return control ; to select. ; ENTRY command_complete command_complete: MOVE FROM dsa_status, WHEN STATUS #if (CHIP != 700) && (CHIP != 70066) MOVE SFBR TO SCRATCH0 ; Save status #endif /* (CHIP != 700) && (CHIP != 70066) */ ENTRY command_complete_msgin command_complete_msgin: MOVE FROM dsa_msgin, WHEN MSG_IN ; Indicate that we should be expecting a disconnect MOVE SCNTL2 & 0x7f TO SCNTL2 CLEAR ACK #if (CHIP != 700) && (CHIP != 70066) WAIT DISCONNECT ; ; The SCSI specification states that when a UNIT ATTENTION condition ; is pending, as indicated by a CHECK CONDITION status message, ; the target shall revert to asynchronous transfers. Since ; synchronous transfers parameters are maintained on a per INITIATOR/TARGET ; basis, and returning control to our scheduler could work on a command ; running on another lun on that target using the old parameters, we must ; interrupt the host processor to get them changed, or change them ourselves. ; ; Once SCSI-II tagged queueing is implemented, things will be even more ; hairy, since contingent allegiance conditions exist on a per-target/lun ; basis, and issuing a new command with a different tag would clear it. ; In these cases, we must interrupt the host processor to get a request ; added to the HEAD of the queue with the request sense command, or we ; must automatically issue the request sense command. #if 0 MOVE SCRATCH0 TO SFBR JUMP command_failed, IF 0x02 #endif INTFLY #endif /* (CHIP != 700) && (CHIP != 70066) */ #ifdef EVENTS INT int_EVENT_COMPLETE #endif #if (CHIP != 700) && (CHIP != 70066) JUMP schedule command_failed: INT int_err_check_condition #else INT int_norm_command_complete #endif ; ; wait_reselect ; ; PURPOSE : This is essentially the idle routine, where control lands ; when there are no new processes to schedule. wait_reselect ; waits for reselection, selection, and new commands. ; ; When a successful reselection occurs, with the aid ; of fixed up code in each DSA, wait_reselect walks the ; reconnect_dsa_queue, asking each dsa if the target ID ; and LUN match its. ; ; If a match is found, a call is made back to reselected_ok, ; which through the miracles of self modifying code, extracts ; the found DSA from the reconnect_dsa_queue and then ; returns control to the DSAs thread of execution. ; ; INPUTS : NONE ; ; CALLS : OK ; ; MODIFIES : DSA, ; ; EXITS : On successful reselection, control is returned to the ; DSA which called reselected_ok. If the WAIT RESELECT ; was interrupted by a new commands arrival signaled by ; SIG_P, control is passed to schedule. If the NCR is ; selected, the host system is interrupted with an ; int_err_selected which is usually responded to by ; setting DSP to the target_abort address. ENTRY wait_reselect wait_reselect: #ifdef EVENTS int int_EVENT_IDLE #endif #if 0 int int_debug_idle #endif WAIT RESELECT wait_reselect_failed reselected: #ifdef EVENTS int int_EVENT_RESELECT #endif CLEAR TARGET MOVE dmode_memory_to_memory TO DMODE ; Read all data needed to reestablish the nexus - MOVE 1, reselected_identify, WHEN MSG_IN ; We used to CLEAR ACK here. #if (CHIP != 700) && (CHIP != 70066) #if 0 int int_debug_reselected #endif ; Point DSA at the current head of the disconnected queue. MOVE dmode_memory_to_ncr TO DMODE MOVE MEMORY 4, reconnect_dsa_head, addr_scratch MOVE dmode_memory_to_memory TO DMODE CALL scratch_to_dsa ; Fix the update-next pointer so that the reconnect_dsa_head ; pointer is the one that will be updated if this DSA is a hit ; and we remove it from the queue. MOVE MEMORY 4, addr_reconnect_dsa_head, reselected_ok + 8 ENTRY reselected_check_next reselected_check_next: #if 0 INT int_debug_reselect_check #endif ; Check for a NULL pointer. MOVE DSA0 TO SFBR JUMP reselected_not_end, IF NOT 0 MOVE DSA1 TO SFBR JUMP reselected_not_end, IF NOT 0 MOVE DSA2 TO SFBR JUMP reselected_not_end, IF NOT 0 MOVE DSA3 TO SFBR JUMP reselected_not_end, IF NOT 0 INT int_err_unexpected_reselect reselected_not_end: ; ; XXX the ALU is only eight bits wide, and the assembler ; wont do the dirt work for us. As long as dsa_check_reselect ; is negative, we need to sign extend with 1 bits to the full ; 32 bit width of the address. ; ; A potential work around would be to have a known alignment ; of the DSA structure such that the base address plus ; dsa_check_reselect doesn't require carrying from bytes ; higher than the LSB. ; MOVE DSA0 TO SFBR MOVE SFBR + dsa_check_reselect TO SCRATCH0 MOVE DSA1 TO SFBR MOVE SFBR + 0xff TO SCRATCH1 WITH CARRY MOVE DSA2 TO SFBR MOVE SFBR + 0xff TO SCRATCH2 WITH CARRY MOVE DSA3 TO SFBR MOVE SFBR + 0xff TO SCRATCH3 WITH CARRY MOVE dmode_ncr_to_memory TO DMODE MOVE MEMORY 4, addr_scratch, reselected_check + 4 MOVE dmode_memory_to_memory TO DMODE reselected_check: JUMP 0 ; ; ENTRY reselected_ok reselected_ok: MOVE MEMORY 4, 0, 0 ; Patched : first word ; is address of ; successful dsa_next ; Second word is last ; unsuccessful dsa_next, ; starting with ; dsa_reconnect_head ; We used to CLEAR ACK here. #if 0 INT int_debug_reselected_ok #endif #ifdef DEBUG INT int_debug_check_dsa #endif RETURN ; Return control to where #else INT int_norm_reselected #endif /* (CHIP != 700) && (CHIP != 70066) */ selected: INT int_err_selected; ; ; A select or reselect failure can be caused by one of two conditions : ; 1. SIG_P was set. This will be the case if the user has written ; a new value to a previously NULL head of the issue queue. ; ; 2. The NCR53c810 was selected or reselected by another device. ; ; 3. The bus was already busy since we were selected or reselected ; before starting the command. wait_reselect_failed: #ifdef EVENTS INT int_EVENT_RESELECT_FAILED #endif ; Check selected bit. MOVE SIST0 & 0x20 TO SFBR JUMP selected, IF 0x20 ; Reading CTEST2 clears the SIG_P bit in the ISTAT register. MOVE CTEST2 & 0x40 TO SFBR JUMP schedule, IF 0x40 ; Check connected bit. ; FIXME: this needs to change if we support target mode MOVE ISTAT & 0x08 TO SFBR JUMP reselected, IF 0x08 ; FIXME : Something bogus happened, and we shouldn't fail silently. #if 0 JUMP schedule #else INT int_debug_panic #endif select_failed: #ifdef EVENTS int int_EVENT_SELECT_FAILED #endif ; Otherwise, mask the selected and reselected bits off SIST0 MOVE SIST0 & 0x30 TO SFBR JUMP selected, IF 0x20 JUMP reselected, IF 0x10 ; If SIGP is set, the user just gave us another command, and ; we should restart or return to the scheduler. ; Reading CTEST2 clears the SIG_P bit in the ISTAT register. MOVE CTEST2 & 0x40 TO SFBR JUMP select, IF 0x40 ; Check connected bit. ; FIXME: this needs to change if we support target mode ; FIXME: is this really necessary? MOVE ISTAT & 0x08 TO SFBR JUMP reselected, IF 0x08 ; FIXME : Something bogus happened, and we shouldn't fail silently. #if 0 JUMP schedule #else INT int_debug_panic #endif ; ; test_1 ; test_2 ; ; PURPOSE : run some verification tests on the NCR. test_1 ; copies test_src to test_dest and interrupts the host ; processor, testing for cache coherency and interrupt ; problems in the processes. ; ; test_2 runs a command with offsets relative to the ; DSA on entry, and is useful for miscellaneous experimentation. ; ; Verify that interrupts are working correctly and that we don't ; have a cache invalidation problem. ABSOLUTE test_src = 0, test_dest = 0 ENTRY test_1 test_1: MOVE MEMORY 4, test_src, test_dest INT int_test_1 ; ; Run arbitrary commands, with test code establishing a DSA ; ENTRY test_2 test_2: CLEAR TARGET SELECT ATN FROM 0, test_2_fail JUMP test_2_msgout, WHEN MSG_OUT ENTRY test_2_msgout test_2_msgout: MOVE FROM 8, WHEN MSG_OUT MOVE FROM 16, WHEN CMD MOVE FROM 24, WHEN DATA_IN MOVE FROM 32, WHEN STATUS MOVE FROM 40, WHEN MSG_IN MOVE SCNTL2 & 0x7f TO SCNTL2 CLEAR ACK WAIT DISCONNECT test_2_fail: INT int_test_2 ENTRY debug_break debug_break: INT int_debug_break ; ; initiator_abort ; target_abort ; ; PURPOSE : Abort the currently established nexus from with initiator ; or target mode. ; ; ENTRY target_abort target_abort: SET TARGET DISCONNECT CLEAR TARGET JUMP schedule ENTRY initiator_abort initiator_abort: SET ATN ; ; The SCSI-I specification says that targets may go into MSG out at ; their leisure upon receipt of the ATN single. On all versions of the ; specification, we can't change phases until REQ transitions true->false, ; so we need to sink/source one byte of data to allow the transition. ; ; For the sake of safety, we'll only source one byte of data in all ; cases, but to accommodate the SCSI-I dain bramage, we'll sink an ; arbitrary number of bytes. JUMP spew_cmd, WHEN CMD JUMP eat_msgin, WHEN MSG_IN JUMP eat_datain, WHEN DATA_IN JUMP eat_status, WHEN STATUS JUMP spew_dataout, WHEN DATA_OUT JUMP sated spew_cmd: MOVE 1, NCR53c7xx_zero, WHEN CMD JUMP sated eat_msgin: MOVE 1, NCR53c7xx_sink, WHEN MSG_IN JUMP eat_msgin, WHEN MSG_IN JUMP sated eat_status: MOVE 1, NCR53c7xx_sink, WHEN STATUS JUMP eat_status, WHEN STATUS JUMP sated eat_datain: MOVE 1, NCR53c7xx_sink, WHEN DATA_IN JUMP eat_datain, WHEN DATA_IN JUMP sated spew_dataout: MOVE 1, NCR53c7xx_zero, WHEN DATA_OUT sated: MOVE SCNTL2 & 0x7f TO SCNTL2 MOVE 1, NCR53c7xx_msg_abort, WHEN MSG_OUT WAIT DISCONNECT INT int_norm_aborted ; ; dsa_to_scratch ; scratch_to_dsa ; ; PURPOSE : ; The NCR chips cannot do a move memory instruction with the DSA register ; as the source or destination. So, we provide a couple of subroutines ; that let us switch between the DSA register and scratch register. ; ; Memory moves to/from the DSPS register also don't work, but we ; don't use them. ; ; dsa_to_scratch: MOVE DSA0 TO SFBR MOVE SFBR TO SCRATCH0 MOVE DSA1 TO SFBR MOVE SFBR TO SCRATCH1 MOVE DSA2 TO SFBR MOVE SFBR TO SCRATCH2 MOVE DSA3 TO SFBR MOVE SFBR TO SCRATCH3 RETURN scratch_to_dsa: MOVE SCRATCH0 TO SFBR MOVE SFBR TO DSA0 MOVE SCRATCH1 TO SFBR MOVE SFBR TO DSA1 MOVE SCRATCH2 TO SFBR MOVE SFBR TO DSA2 MOVE SCRATCH3 TO SFBR MOVE SFBR TO DSA3 RETURN |