Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1994 - 2001 by Ralf Baechle at alii
 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
 */
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H

#include <asm/addrspace.h>
#include <asm/page.h>

#ifndef _LANGUAGE_ASSEMBLY

#include <linux/linkage.h>
#include <linux/config.h>
#include <linux/mmzone.h>
#include <asm/cachectl.h>

/* Cache flushing:
 *
 *  - flush_cache_all() flushes entire cache
 *  - flush_cache_mm(mm) flushes the specified mm context's cache lines
 *  - flush_cache_page(mm, vmaddr) flushes a single page
 *  - flush_cache_range(vma, start, end) flushes a range of pages
 *  - flush_page_to_ram(page) write back kernel page to ram
 */
extern void (*_flush_cache_mm)(struct mm_struct *mm);
extern void (*_flush_cache_range)(struct vm_area_struct *vma, unsigned long start,
                                 unsigned long end);
extern void (*_flush_cache_page)(struct vm_area_struct *vma, unsigned long page);
extern void (*_flush_page_to_ram)(struct page * page);

#define flush_cache_all()		do { } while(0)
#define flush_dcache_page(page)		do { } while (0)

#ifndef CONFIG_CPU_R10000
#define flush_cache_mm(mm)		_flush_cache_mm(mm)
#define flush_cache_range(vma,start,end) _flush_cache_range(vma,start,end)
#define flush_cache_page(vma,page)	_flush_cache_page(vma, page)
#define flush_page_to_ram(page)		_flush_page_to_ram(page)

#define flush_icache_range(start, end)	_flush_cache_l1()
#define flush_icache_user_range(vma, page, addr, len)	\
					flush_icache_page((vma), (page))

#define flush_icache_page(vma, page)					\
do {									\
	unsigned long addr;						\
	addr = (unsigned long) page_address(page);			\
	_flush_cache_page(vma, addr);					\
} while (0)                                                              
#else /* !CONFIG_CPU_R10000 */
/*
 * Since the r10k handles VCEs in hardware, most of the flush cache
 * routines are not needed. Only the icache on a processor is not
 * coherent with the dcache of the _same_ processor, so we must flush
 * the icache so that it does not contain stale contents of physical
 * memory. No flushes are needed for dma coherency, since the o200s 
 * are io coherent. The only place where we might be overoptimizing 
 * out icache flushes are from mprotect (when PROT_EXEC is added).
 */
extern void andes_flush_icache_page(unsigned long);
#define flush_cache_mm(mm)		do { } while(0)
#define flush_cache_range(vma,start,end) do { } while(0)
#define flush_cache_page(vma,page)	do { } while(0)
#define flush_page_to_ram(page)		do { } while(0)
#define flush_icache_range(start, end)	_flush_cache_l1()
#define flush_icache_user_range(vma, page, addr, len)	\
					flush_icache_page((vma), (page))
#define flush_icache_page(vma, page)					\
do {									\
	if ((vma)->vm_flags & VM_EXEC)					\
		andes_flush_icache_page(page_address(page));		\
} while (0)
#endif /* !CONFIG_CPU_R10000 */

/*
 * The foll cache flushing routines are MIPS specific.
 * flush_cache_l2 is needed only during initialization.
 */
extern void (*_flush_cache_sigtramp)(unsigned long addr);
extern void (*_flush_cache_l2)(void);
extern void (*_flush_cache_l1)(void);

#define flush_cache_sigtramp(addr)	_flush_cache_sigtramp(addr)
#define flush_cache_l2()		_flush_cache_l2()
#define flush_cache_l1()		_flush_cache_l1()

/*
 * Each address space has 2 4K pages as its page directory, giving 1024
 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
 * pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to
 * page tables. Each page table is a single 4K page, giving 512 (==
 * PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to
 * invalid_pmd_table, each pmde is initialized to point to 
 * invalid_pte_table, each pte is initialized to 0. When memory is low,
 * and a pmd table or a page table allocation fails, empty_bad_pmd_table
 * and empty_bad_page_table is returned back to higher layer code, so
 * that the failure is recognized later on. Linux does not seem to 
 * handle these failures very well though. The empty_bad_page_table has
 * invalid pte entries in it, to force page faults.
 * Vmalloc handling: vmalloc uses swapper_pg_dir[0] (returned by 
 * pgd_offset_k), which is initalized to point to kpmdtbl. kpmdtbl is 
 * the only single page pmd in the system. kpmdtbl entries point into 
 * kptbl[] array. We reserve 1<<KPTBL_PAGE_ORDER pages to hold the
 * vmalloc range translations, which the fault handler looks at.
 */

#endif /* !defined (_LANGUAGE_ASSEMBLY) */

/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT - 3))
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT	(PMD_SHIFT + (PAGE_SHIFT + 1 - 3))
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/* Entries per page directory level: we use two-level, so we don't really
   have any PMD directory physically.  */
#define PTRS_PER_PGD	1024
#define PTRS_PER_PMD	1024
#define PTRS_PER_PTE	512
#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_PGD_NR	0

#define KPTBL_PAGE_ORDER  1
#define VMALLOC_START     XKSEG
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END       \
  (VMALLOC_START + ((1 << KPTBL_PAGE_ORDER) * PTRS_PER_PTE * PAGE_SIZE))

/* Note that we shift the lower 32bits of each EntryLo[01] entry
 * 6 bits to the left. That way we can convert the PFN into the
 * physical address by a single 'and' operation and gain 6 additional
 * bits for storing information which isn't present in a normal
 * MIPS page table.
 *
 * Similar to the Alpha port, we need to keep track of the ref
 * and mod bits in software.  We have a software "yeah you can read
 * from this page" bit, and a hardware one which actually lets the
 * process read from the page.  On the same token we have a software
 * writable bit and the real hardware one which actually lets the
 * process write to the page, this keeps a mod bit via the hardware
 * dirty bit.
 *
 * Certain revisions of the R4000 and R5000 have a bug where if a
 * certain sequence occurs in the last 3 instructions of an executable
 * page, and the following page is not mapped, the cpu can do
 * unpredictable things.  The code (when it is written) to deal with
 * this problem will be in the update_mmu_cache() code for the r4k.
 */
#define _PAGE_PRESENT               (1<<0)  /* implemented in software */
#define _PAGE_READ                  (1<<1)  /* implemented in software */
#define _PAGE_WRITE                 (1<<2)  /* implemented in software */
#define _PAGE_ACCESSED              (1<<3)  /* implemented in software */
#define _PAGE_MODIFIED              (1<<4)  /* implemented in software */
#define _PAGE_R4KBUG                (1<<5)  /* workaround for r4k bug  */
#define _PAGE_GLOBAL                (1<<6)
#define _PAGE_VALID                 (1<<7)
#define _PAGE_SILENT_READ           (1<<7)  /* synonym                 */
#define _PAGE_DIRTY                 (1<<8)  /* The MIPS dirty bit      */
#define _PAGE_SILENT_WRITE          (1<<8)
#define _CACHE_CACHABLE_NO_WA       (0<<9)  /* R4600 only              */
#define _CACHE_CACHABLE_WA          (1<<9)  /* R4600 only              */
#define _CACHE_UNCACHED             (2<<9)  /* R4[0246]00              */
#define _CACHE_CACHABLE_NONCOHERENT (3<<9)  /* R4[0246]00              */
#define _CACHE_CACHABLE_CE          (4<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_COW         (5<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_CUW         (6<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_ACCELERATED (7<<9)  /* R10000 only             */
#define _CACHE_MASK                 (7<<9)

#define __READABLE	(_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED)
#define __WRITEABLE	(_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED)

#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED | _CACHE_MASK)

#ifdef CONFIG_MIPS_UNCACHED
#define PAGE_CACHABLE_DEFAULT _CACHE_UNCACHED
#else /* ! UNCACHED */
#ifdef CONFIG_SGI_IP22
#define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_NONCOHERENT
#else /* ! IP22 */
#define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_COW
#endif /* IP22 */
#endif /* UNCACHED */

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | PAGE_CACHABLE_DEFAULT)
#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
			PAGE_CACHABLE_DEFAULT)
#define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_READ | \
			PAGE_CACHABLE_DEFAULT)
#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_READ | \
			PAGE_CACHABLE_DEFAULT)
#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
			PAGE_CACHABLE_DEFAULT)
#define PAGE_USERIO     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
			_CACHE_UNCACHED)
#define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
			_CACHE_UNCACHED)

/*
 * MIPS can't do page protection for execute, and considers that the same like
 * read. Also, write permissions imply read permissions. This is the closest
 * we can get by reasonable means..
 */
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY
#define __P101	PAGE_READONLY
#define __P110	PAGE_COPY
#define __P111	PAGE_COPY

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED

#if !defined (_LANGUAGE_ASSEMBLY)

#define pte_ERROR(e) \
	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */

extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;

#define ZERO_PAGE(vaddr) \
	(virt_to_page(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/*
 * sizeof(void*) == (1 << SIZEOF_PTR_LOG2)
 */
#define SIZEOF_PTR_LOG2			3

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)];
extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)];
extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern inline unsigned long pmd_page(pmd_t pmd)
{
	return pmd_val(pmd);
}

extern inline unsigned long pgd_page(pgd_t pgd)
{
	return pgd_val(pgd);
}

extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
	pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK);
}

extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{
	pgd_val(*pgdp) = (((unsigned long) pmdp) & PAGE_MASK);
}

extern inline int pte_none(pte_t pte)
{
	return !pte_val(pte);
}

extern inline int pte_present(pte_t pte)
{
	return pte_val(pte) & _PAGE_PRESENT;
}

/*
 * Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
extern inline void set_pte(pte_t *ptep, pte_t pteval)
{
	*ptep = pteval;
}

extern inline void pte_clear(pte_t *ptep)
{
	set_pte(ptep, __pte(0));
}

/*
 * (pmds are folded into pgds so this doesn't get actually called,
 * but the define is needed for a generic inline function.)
 */
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)

/*
 * Empty pmd entries point to the invalid_pte_table.
 */
extern inline int pmd_none(pmd_t pmd)
{
	return pmd_val(pmd) == (unsigned long) invalid_pte_table;
}

extern inline int pmd_bad(pmd_t pmd)
{
	return pmd_val(pmd) &~ PAGE_MASK;
}

extern inline int pmd_present(pmd_t pmd)
{
	return pmd_val(pmd) != (unsigned long) invalid_pte_table;
}

extern inline void pmd_clear(pmd_t *pmdp)
{
	pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
}

/*
 * Empty pgd entries point to the invalid_pmd_table.
 */
extern inline int pgd_none(pgd_t pgd)
{
	return pgd_val(pgd) == (unsigned long) invalid_pmd_table;
}

extern inline int pgd_bad(pgd_t pgd)
{
	return pgd_val(pgd) &~ PAGE_MASK;
}

extern inline int pgd_present(pgd_t pgd)
{
	return pgd_val(pgd) != (unsigned long) invalid_pmd_table;
}

extern inline void pgd_clear(pgd_t *pgdp)
{
	pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table);
}

#ifndef CONFIG_DISCONTIGMEM
#define pte_page(x)		(mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))
#else

#define pte_page(x) ( NODE_MEM_MAP(PHYSADDR_TO_NID(pte_val(x))) +
	PLAT_NODE_DATA_LOCALNR(pte_val(x), PHYSADDR_TO_NID(pte_val(x))) )
				  
#endif

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)
{
	return pte_val(pte) & _PAGE_READ;
}

extern inline int pte_write(pte_t pte)
{
	return pte_val(pte) & _PAGE_WRITE;
}

extern inline int pte_dirty(pte_t pte)
{
	return pte_val(pte) & _PAGE_MODIFIED;
}

extern inline int pte_young(pte_t pte)
{
	return pte_val(pte) & _PAGE_ACCESSED;
}

extern inline pte_t pte_wrprotect(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
	return pte;
}

extern inline pte_t pte_rdprotect(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
	return pte;
}

extern inline pte_t pte_mkclean(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE);
	return pte;
}

extern inline pte_t pte_mkold(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);
	return pte;
}

extern inline pte_t pte_mkwrite(pte_t pte)
{
	pte_val(pte) |= _PAGE_WRITE;
	if (pte_val(pte) & _PAGE_MODIFIED)
		pte_val(pte) |= _PAGE_SILENT_WRITE;
	return pte;
}

extern inline pte_t pte_mkread(pte_t pte)
{
	pte_val(pte) |= _PAGE_READ;
	if (pte_val(pte) & _PAGE_ACCESSED)
		pte_val(pte) |= _PAGE_SILENT_READ;
	return pte;
}

extern inline pte_t pte_mkdirty(pte_t pte)
{
	pte_val(pte) |= _PAGE_MODIFIED;
	if (pte_val(pte) & _PAGE_WRITE)
		pte_val(pte) |= _PAGE_SILENT_WRITE;
	return pte;
}

extern inline pte_t pte_mkyoung(pte_t pte)
{
	pte_val(pte) |= _PAGE_ACCESSED;
	if (pte_val(pte) & _PAGE_READ)
		pte_val(pte) |= _PAGE_SILENT_READ;
	return pte;
}

/*
 * Macro to make mark a page protection value as "uncacheable".  Note
 * that "protection" is really a misnomer here as the protection value
 * contains the memory attribute bits, dirty bits, and various other
 * bits as well.
 */
#define pgprot_noncached pgprot_noncached

static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
	unsigned long prot = pgprot_val(_prot);

	prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;

	return __pgprot(prot);
}

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#ifndef CONFIG_DISCONTIGMEM
#define PAGE_TO_PA(page)	((page - mem_map) << PAGE_SHIFT)
#else
#define PAGE_TO_PA(page) \
		(( ((page)-(page)->zone->zone_mem_map) + \
		   (page)->zone->zone_start_pfn) << PAGE_SHIFT)
#endif
#define mk_pte(page, pgprot)						\
({									\
	pte_t	__pte;							\
									\
	pte_val(__pte) = ((unsigned long)(PAGE_TO_PA(page))) |		\
						pgprot_val(pgprot);	\
									\
	__pte;								\
})

extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
	return __pte(physpage | pgprot_val(pgprot));
}

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}

#define page_pte(page) page_pte_prot(page, __pgprot(0))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, 0)

#define pgd_index(address)	((address >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))

/* to find an entry in a page-table-directory */
extern inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address)
{
	return mm->pgd + pgd_index(address);
}

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) pgd_page(*dir) +
	       ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
}

/* Find an entry in the third-level page table.. */ 
extern inline pte_t *pte_offset(pmd_t * dir, unsigned long address)
{
	return (pte_t *) (pmd_page(*dir)) +
	       ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

/*
 * Initialize a new pgd / pmd table with invalid pointers.
 */
extern void pgd_init(unsigned long page);
extern void pmd_init(unsigned long page, unsigned long pagetable);

extern pgd_t swapper_pg_dir[1024];
extern void paging_init(void);

extern void (*update_mmu_cache)(struct vm_area_struct *vma,
				unsigned long address, pte_t pte);

/*
 * Non-present pages:  high 24 bits are offset, next 8 bits type,
 * low 32 bits zero.
 */
extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }

#define __swp_type(x)		(((x).val >> 32) & 0xff)
#define __swp_offset(x)		((x).val >> 40)
#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x)	((pte_t) { (x).val })

#ifndef CONFIG_DISCONTIGMEM
#define kern_addr_valid(addr)	(1)
#endif

/* TLB operations. */
extern inline void tlb_probe(void)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"tlbp\n\t"
		".set reorder");
}

extern inline void tlb_read(void)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"tlbr\n\t"
		".set reorder");
}

extern inline void tlb_write_indexed(void)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"tlbwi\n\t"
		".set reorder");
}

extern inline void tlb_write_random(void)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"tlbwr\n\t"
		".set reorder");
}

/* Dealing with various CP0 mmu/cache related registers. */

/* CP0_PAGEMASK register */
extern inline unsigned long get_pagemask(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"mfc0 %0, $5\n\t"
		".set reorder"
		: "=r" (val));
	return val;
}

extern inline void set_pagemask(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"mtc0 %z0, $5\n\t"
		".set reorder"
		: : "Jr" (val));
}

/* CP0_ENTRYLO0 and CP0_ENTRYLO1 registers */
extern inline unsigned long get_entrylo0(void)
{
	unsigned long val;

	__asm__ __volatile__(	
		".set noreorder\n\t"
		"dmfc0 %0, $2\n\t"
		".set reorder"
		: "=r" (val));
	return val;
}

extern inline void set_entrylo0(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmtc0 %z0, $2\n\t"
		".set reorder"
		: : "Jr" (val));
}

extern inline unsigned long get_entrylo1(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmfc0 %0, $3\n\t"
		".set reorder" : "=r" (val));

	return val;
}

extern inline void set_entrylo1(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmtc0 %z0, $3\n\t"
		".set reorder"
		: : "Jr" (val));
}

/* CP0_ENTRYHI register */
extern inline unsigned long get_entryhi(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmfc0 %0, $10\n\t"
		".set reorder"
		: "=r" (val));

	return val;
}

extern inline void set_entryhi(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmtc0 %z0, $10\n\t"
		".set reorder"
		: : "Jr" (val));
}

/* CP0_INDEX register */
extern inline unsigned int get_index(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"mfc0 %0, $0\n\t"
		".set reorder"
		: "=r" (val));
	return val;
}

extern inline void set_index(unsigned int val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"mtc0 %z0, $0\n\t"
		".set reorder\n\t"
		: : "Jr" (val));
}

/* CP0_WIRED register */
extern inline unsigned long get_wired(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"mfc0 %0, $6\n\t"
		".set reorder\n\t"
		: "=r" (val));
	return val;
}

extern inline void set_wired(unsigned long val)
{
	__asm__ __volatile__(
		"\n\t.set noreorder\n\t"
		"mtc0 %z0, $6\n\t"
		".set reorder"
		: : "Jr" (val));
}

extern inline unsigned long get_info(void)
{
	unsigned long val;

	__asm__(
		".set push\n\t"
		".set reorder\n\t"
		"mfc0 %0, $7\n\t"
		".set pop"
		: "=r" (val));
	return val;
}

/* CP0_TAGLO and CP0_TAGHI registers */
extern inline unsigned long get_taglo(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"mfc0 %0, $28\n\t"
		".set reorder"
		: "=r" (val));
	return val;
}

extern inline void set_taglo(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"mtc0 %z0, $28\n\t"
		".set reorder"
		: : "Jr" (val));
}

extern inline unsigned long get_taghi(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"mfc0 %0, $29\n\t"
		".set reorder"
		: "=r" (val));
	return val;
}

extern inline void set_taghi(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"mtc0 %z0, $29\n\t"
		".set reorder"
		: : "Jr" (val));
}

/* CP0_CONTEXT register */
extern inline unsigned long get_context(void)
{
	unsigned long val;

	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmfc0 %0, $4\n\t"
		".set reorder"
		: "=r" (val));

	return val;
}

extern inline void set_context(unsigned long val)
{
	__asm__ __volatile__(
		".set noreorder\n\t"
		"dmtc0 %z0, $4\n\t"
		".set reorder"
		: : "Jr" (val));
}

#include <asm-generic/pgtable.h>

typedef pte_t *pte_addr_t;

#endif /* !defined (_LANGUAGE_ASSEMBLY) */

/*
 * No page table caches to initialise
 */
#define pgtable_cache_init()	do { } while (0)

#endif /* _ASM_PGTABLE_H */