Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*
 *  linux/arch/arm/kernel/setup.c
 *
 *  Copyright (C) 1995-2000 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/blk.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/init.h>

#include <asm/elf.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/procinfo.h>
#include <asm/setup.h>
#include <asm/mach-types.h>

#include <asm/mach/arch.h>
#include <asm/mach/irq.h>

#ifndef MEM_SIZE
#define MEM_SIZE	(16*1024*1024)
#endif

#ifndef CONFIG_CMDLINE
#define CONFIG_CMDLINE ""
#endif

#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
char fpe_type[8];

static int __init fpe_setup(char *line)
{
	memcpy(fpe_type, line, 8);
	return 1;
}

__setup("fpe=", fpe_setup);
#endif

extern unsigned int mem_fclk_21285;
extern void paging_init(struct meminfo *, struct machine_desc *desc);
extern void convert_to_tag_list(struct param_struct *params, int mem_init);
extern void bootmem_init(struct meminfo *);
extern void reboot_setup(char *str);
extern int root_mountflags;
extern int _stext, _text, _etext, _edata, _end;

unsigned int processor_id;
unsigned int compat;
unsigned int __machine_arch_type;
unsigned int system_rev;
unsigned int system_serial_low;
unsigned int system_serial_high;
unsigned int elf_hwcap;

#ifdef MULTI_CPU
struct processor processor;
#endif

unsigned char aux_device_present;
char elf_platform[ELF_PLATFORM_SIZE];
char saved_command_line[COMMAND_LINE_SIZE];

static struct meminfo meminfo __initdata = { 0, };
static struct proc_info_item proc_info;
static const char *machine_name;
static char command_line[COMMAND_LINE_SIZE];

static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
#define ENDIANNESS ((char)endian_test.l)

/*
 * Standard memory resources
 */
static struct resource mem_res[] = {
	{ "Video RAM",   0,     0,     IORESOURCE_MEM			},
	{ "Kernel code", 0,     0,     IORESOURCE_MEM			},
	{ "Kernel data", 0,     0,     IORESOURCE_MEM			}
};

#define video_ram   mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]

static struct resource io_res[] = {
	{ "reserved",    0x3bc, 0x3be, IORESOURCE_IO | IORESOURCE_BUSY },
	{ "reserved",    0x378, 0x37f, IORESOURCE_IO | IORESOURCE_BUSY },
	{ "reserved",    0x278, 0x27f, IORESOURCE_IO | IORESOURCE_BUSY }
};

#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]

static void __init setup_processor(void)
{
	extern struct proc_info_list __proc_info_begin, __proc_info_end;
	struct proc_info_list *list;

	/*
	 * locate processor in the list of supported processor
	 * types.  The linker builds this table for us from the
	 * entries in arch/arm/mm/proc-*.S
	 */
	for (list = &__proc_info_begin; list < &__proc_info_end ; list++)
		if ((processor_id & list->cpu_mask) == list->cpu_val)
			break;

	/*
	 * If processor type is unrecognised, then we
	 * can do nothing...
	 */
	if (list >= &__proc_info_end) {
		printk("CPU configuration botched (ID %08x), unable "
		       "to continue.\n", processor_id);
		while (1);
	}

	proc_info = *list->info;

#ifdef MULTI_CPU
	processor = *list->proc;
#endif

	printk("Processor: %s %s revision %d\n",
	       proc_info.manufacturer, proc_info.cpu_name,
	       (int)processor_id & 15);

	sprintf(system_utsname.machine, "%s%c", list->arch_name, ENDIANNESS);
	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
	elf_hwcap = list->elf_hwcap;

	cpu_proc_init();
}

static struct machine_desc * __init setup_architecture(unsigned int nr)
{
	extern struct machine_desc __arch_info_begin, __arch_info_end;
	struct machine_desc *list;

	/*
	 * locate architecture in the list of supported architectures.
	 */
	for (list = &__arch_info_begin; list < &__arch_info_end; list++)
		if (list->nr == nr)
			break;

	/*
	 * If the architecture type is not recognised, then we
	 * can co nothing...
	 */
	if (list >= &__arch_info_end) {
		printk("Architecture configuration botched (nr %d), unable "
		       "to continue.\n", nr);
		while (1);
	}

	printk("Architecture: %s\n", list->name);
	if (compat)
		printk(KERN_WARNING "Using compatibility code "
			"scheduled for removal in v%d.%d.%d\n",
			compat >> 24, (compat >> 12) & 0x3ff,
			compat & 0x3ff);

	return list;
}

/*
 * Initial parsing of the command line.  We need to pick out the
 * memory size.  We look for mem=size@start, where start and size
 * are "size[KkMm]"
 */
static void __init
parse_cmdline(struct meminfo *mi, char **cmdline_p, char *from)
{
	char c = ' ', *to = command_line;
	int usermem = 0, len = 0;

	for (;;) {
		if (c == ' ' && !memcmp(from, "mem=", 4)) {
			unsigned long size, start;

			if (to != command_line)
				to -= 1;

			/*
			 * If the user specifies memory size, we
			 * blow away any automatically generated
			 * size.
			 */
			if (usermem == 0) {
				usermem = 1;
				mi->nr_banks = 0;
			}

			start = PHYS_OFFSET;
			size  = memparse(from + 4, &from);
			if (*from == '@')
				start = memparse(from + 1, &from);

			mi->bank[mi->nr_banks].start = start;
			mi->bank[mi->nr_banks].size  = size;
			mi->bank[mi->nr_banks].node  = PHYS_TO_NID(start);
			mi->nr_banks += 1;
		}
		c = *from++;
		if (!c)
			break;
		if (COMMAND_LINE_SIZE <= ++len)
			break;
		*to++ = c;
	}
	*to = '\0';
	*cmdline_p = command_line;
}

void __init
setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
{
#ifdef CONFIG_BLK_DEV_RAM
	extern int rd_size;

	rd_image_start = image_start;
	rd_prompt = prompt;
	rd_doload = doload;

	if (rd_sz)
		rd_size = rd_sz;
#endif
}

/*
 * initial ram disk
 */
void __init setup_initrd(unsigned int start, unsigned int size)
{
#ifdef CONFIG_BLK_DEV_INITRD
	if (start == 0)
		size = 0;
	initrd_start = start;
	initrd_end   = start + size;
#endif
}

static void __init
request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
{
	struct resource *res;
	int i;

	kernel_code.start  = __virt_to_bus(init_mm.start_code);
	kernel_code.end    = __virt_to_bus(init_mm.end_code - 1);
	kernel_data.start  = __virt_to_bus(init_mm.end_code);
	kernel_data.end    = __virt_to_bus(init_mm.brk - 1);

	for (i = 0; i < mi->nr_banks; i++) {
		unsigned long virt_start, virt_end;

		if (mi->bank[i].size == 0)
			continue;

		virt_start = __phys_to_virt(mi->bank[i].start);
		virt_end   = virt_start + mi->bank[i].size - 1;

		res = alloc_bootmem_low(sizeof(*res));
		res->name  = "System RAM";
		res->start = __virt_to_phys(virt_start);
		res->end   = __virt_to_phys(virt_end);
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;

		request_resource(&iomem_resource, res);

		if (kernel_code.start >= res->start &&
		    kernel_code.end <= res->end)
			request_resource(res, &kernel_code);
		if (kernel_data.start >= res->start &&
		    kernel_data.end <= res->end)
			request_resource(res, &kernel_data);
	}

	if (mdesc->video_start) {
		video_ram.start = mdesc->video_start;
		video_ram.end   = mdesc->video_end;
		request_resource(&iomem_resource, &video_ram);
	}

	/*
	 * Some machines don't have the possibility of ever
	 * possessing lp0, lp1 or lp2
	 */
	if (mdesc->reserve_lp0)
		request_resource(&ioport_resource, &lp0);
	if (mdesc->reserve_lp1)
		request_resource(&ioport_resource, &lp1);
	if (mdesc->reserve_lp2)
		request_resource(&ioport_resource, &lp2);
}

/*
 *  Tag parsing.
 *
 * This is the new way of passing data to the kernel at boot time.  Rather
 * than passing a fixed inflexible structure to the kernel, we pass a list
 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 * tag for the list to be recognised (to distinguish the tagged list from
 * a param_struct).  The list is terminated with a zero-length tag (this tag
 * is not parsed in any way).
 */
static int __init parse_tag_core(const struct tag *tag)
{
	if (tag->hdr.size > 2) {
		if ((tag->u.core.flags & 1) == 0)
			root_mountflags &= ~MS_RDONLY;
		ROOT_DEV = to_kdev_t(tag->u.core.rootdev);
	}
	return 0;
}

__tagtable(ATAG_CORE, parse_tag_core);

static int __init parse_tag_mem32(const struct tag *tag)
{
	if (meminfo.nr_banks >= NR_BANKS) {
		printk(KERN_WARNING
		       "Ignoring memory bank 0x%08x size %dKB\n",
			tag->u.mem.start, tag->u.mem.size / 1024);
		return -EINVAL;
	}
	meminfo.bank[meminfo.nr_banks].start = tag->u.mem.start;
	meminfo.bank[meminfo.nr_banks].size  = tag->u.mem.size;
	meminfo.bank[meminfo.nr_banks].node  = PHYS_TO_NID(tag->u.mem.start);
	meminfo.nr_banks += 1;

	return 0;
}

__tagtable(ATAG_MEM, parse_tag_mem32);

#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
struct screen_info screen_info = {
 orig_video_lines:	30,
 orig_video_cols:	80,
 orig_video_mode:	0,
 orig_video_ega_bx:	0,
 orig_video_isVGA:	1,
 orig_video_points:	8
};

static int __init parse_tag_videotext(const struct tag *tag)
{
	screen_info.orig_x            = tag->u.videotext.x;
	screen_info.orig_y            = tag->u.videotext.y;
	screen_info.orig_video_page   = tag->u.videotext.video_page;
	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
	screen_info.orig_video_points = tag->u.videotext.video_points;
	return 0;
}

__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
#endif

static int __init parse_tag_ramdisk(const struct tag *tag)
{
	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
		      (tag->u.ramdisk.flags & 2) == 0,
		      tag->u.ramdisk.start, tag->u.ramdisk.size);
	return 0;
}

__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);

static int __init parse_tag_initrd(const struct tag *tag)
{
	setup_initrd(tag->u.initrd.start, tag->u.initrd.size);
	return 0;
}

__tagtable(ATAG_INITRD, parse_tag_initrd);

static int __init parse_tag_serialnr(const struct tag *tag)
{
	system_serial_low = tag->u.serialnr.low;
	system_serial_high = tag->u.serialnr.high;
	return 0;
}

__tagtable(ATAG_SERIAL, parse_tag_serialnr);

static int __init parse_tag_revision(const struct tag *tag)
{
	system_rev = tag->u.revision.rev;
	return 0;
}

__tagtable(ATAG_REVISION, parse_tag_revision);

static int __init parse_tag_cmdline(const struct tag *tag)
{
	strncpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
	default_command_line[COMMAND_LINE_SIZE - 1] = '\0';
	return 0;
}

__tagtable(ATAG_CMDLINE, parse_tag_cmdline);

/*
 * Scan the tag table for this tag, and call its parse function.
 * The tag table is built by the linker from all the __tagtable
 * declarations.
 */
static int __init parse_tag(const struct tag *tag)
{
	extern struct tagtable __tagtable_begin, __tagtable_end;
	struct tagtable *t;

	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
		if (tag->hdr.tag == t->tag) {
			t->parse(tag);
			break;
		}

	return t < &__tagtable_end;
}

/*
 * Parse all tags in the list, checking both the global and architecture
 * specific tag tables.
 */
static void __init parse_tags(const struct tag *t)
{
	for (; t->hdr.size; t = tag_next(t))
		if (!parse_tag(t))
			printk(KERN_WARNING
				"Ignoring unrecognised tag 0x%08x\n",
				t->hdr.tag);
}

void __init setup_arch(char **cmdline_p)
{
	struct tag *tags = NULL;
	struct machine_desc *mdesc;
	char *from = default_command_line;

	ROOT_DEV = MKDEV(0, 255);

	setup_processor();
	mdesc = setup_architecture(machine_arch_type);
	machine_name = mdesc->name;

	if (mdesc->soft_reboot)
		reboot_setup("s");

	if (mdesc->param_offset)
		tags = phys_to_virt(mdesc->param_offset);

	/*
	 * Do the machine-specific fixups before we parse the
	 * parameters or tags.
	 */
	if (mdesc->fixup)
		mdesc->fixup(mdesc, (struct param_struct *)tags,
			     &from, &meminfo);

	/*
	 * If we have the old style parameters, convert them to
	 * a tag list before.
	 */
	if (tags && tags->hdr.tag != ATAG_CORE)
		convert_to_tag_list((struct param_struct *)tags,
				    meminfo.nr_banks == 0);

	if (tags && tags->hdr.tag == ATAG_CORE)
		parse_tags(tags);

	if (meminfo.nr_banks == 0) {
		meminfo.nr_banks      = 1;
		meminfo.bank[0].start = PHYS_OFFSET;
		meminfo.bank[0].size  = MEM_SIZE;
	}

	init_mm.start_code = (unsigned long) &_text;
	init_mm.end_code   = (unsigned long) &_etext;
	init_mm.end_data   = (unsigned long) &_edata;
	init_mm.brk	   = (unsigned long) &_end;

	memcpy(saved_command_line, from, COMMAND_LINE_SIZE);
	saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
	parse_cmdline(&meminfo, cmdline_p, from);
	bootmem_init(&meminfo);
	paging_init(&meminfo, mdesc);
	request_standard_resources(&meminfo, mdesc);

	/*
	 * Set up various architecture-specific pointers
	 */
	init_arch_irq = mdesc->init_irq;

#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
	conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
	conswitchp = &dummy_con;
#endif
#endif
}

int get_cpuinfo(char * buffer)
{
	char *p = buffer;

	p += sprintf(p, "Processor\t: %s %s rev %d (%s)\n",
		     proc_info.manufacturer, proc_info.cpu_name,
		     (int)processor_id & 15, elf_platform);

	p += sprintf(p, "BogoMIPS\t: %lu.%02lu\n",
		     loops_per_jiffy / (500000/HZ),
		     (loops_per_jiffy / (5000/HZ)) % 100);

	p += sprintf(p, "Hardware\t: %s\n", machine_name);

	p += sprintf(p, "Revision\t: %04x\n",
		     system_rev);

	p += sprintf(p, "Serial\t\t: %08x%08x\n",
		     system_serial_high,
		     system_serial_low);

	return p - buffer;
}