Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | /* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * This code is released under the GNU General Public License version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIP report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs */ #include <linux/config.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/smp_lock.h> #include <linux/irq.h> #include <linux/bootmem.h> #include <linux/delay.h> #include <linux/mc146818rtc.h> #include <asm/mtrr.h> #include <asm/pgalloc.h> /* Set if we find a B stepping CPU */ static int smp_b_stepping; /* Setup configured maximum number of CPUs to activate */ static int max_cpus = -1; /* Total count of live CPUs */ int smp_num_cpus = 1; /* Bitmask of currently online CPUs */ unsigned long cpu_online_map; /* which CPU (physical APIC ID) maps to which logical CPU number */ volatile int x86_apicid_to_cpu[NR_CPUS]; /* which logical CPU number maps to which CPU (physical APIC ID) */ volatile int x86_cpu_to_apicid[NR_CPUS]; static volatile unsigned long cpu_callin_map; static volatile unsigned long cpu_callout_map; /* Per CPU bogomips and other parameters */ struct cpuinfo_x86 cpu_data[NR_CPUS]; /* Set when the idlers are all forked */ int smp_threads_ready; /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ static int __init nosmp(char *str) { max_cpus = 0; return 1; } __setup("nosmp", nosmp); static int __init maxcpus(char *str) { get_option(&str, &max_cpus); return 1; } __setup("maxcpus=", maxcpus); /* * Trampoline 80x86 program as an array. */ extern unsigned char trampoline_data []; extern unsigned char trampoline_end []; static unsigned char *trampoline_base; /* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */ static unsigned long __init setup_trampoline(void) { memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); return virt_to_phys(trampoline_base); } /* * We are called very early to get the low memory for the * SMP bootup trampoline page. */ void __init smp_alloc_memory(void) { trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); /* * Has to be in very low memory so we can execute * real-mode AP code. */ if (__pa(trampoline_base) >= 0x9F000) BUG(); } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ void __init smp_store_cpu_info(int id) { struct cpuinfo_x86 *c = cpu_data + id; *c = boot_cpu_data; c->pte_quick = 0; c->pmd_quick = 0; c->pgd_quick = 0; c->pgtable_cache_sz = 0; identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) /* * Remember we have B step Pentia with bugs */ smp_b_stepping = 1; } /* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */ static atomic_t smp_commenced = ATOMIC_INIT(0); void __init smp_commence(void) { /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1); } /* * TSC synchronization. * * We first check wether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */ static atomic_t tsc_start_flag = ATOMIC_INIT(0); static atomic_t tsc_count_start = ATOMIC_INIT(0); static atomic_t tsc_count_stop = ATOMIC_INIT(0); static unsigned long long tsc_values[NR_CPUS]; #define NR_LOOPS 5 extern unsigned long fast_gettimeoffset_quotient; /* * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit * multiplication. Not terribly optimized but we need it at boot time only * anyway. * * result == a / b * == (a1 + a2*(2^32)) / b * == a1/b + a2*(2^32/b) * == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b * ^---- (this multiplication can overflow) */ static unsigned long long div64 (unsigned long long a, unsigned long b0) { unsigned int a1, a2; unsigned long long res; a1 = ((unsigned int*)&a)[0]; a2 = ((unsigned int*)&a)[1]; res = a1/b0 + (unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) + a2 / b0 + (a2 * (0xffffffff % b0)) / b0; return res; } static void __init synchronize_tsc_bp (void) { int i; unsigned long long t0; unsigned long long sum, avg; long long delta; unsigned long one_usec; int buggy = 0; printk("checking TSC synchronization across CPUs: "); one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2); atomic_set(&tsc_start_flag, 1); wmb(); /* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronized and * the BP and APs set their cycle counters to zero all at * once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* * all APs synchronize but they loop on '== num_cpus' */ while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_stop, 0); wmb(); /* * this lets the APs save their current TSC: */ atomic_inc(&tsc_count_start); rdtscll(tsc_values[smp_processor_id()]); /* * We clear the TSC in the last loop: */ if (i == NR_LOOPS-1) write_tsc(0, 0); /* * Wait for all APs to leave the synchronization point: */ while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_start, 0); wmb(); atomic_inc(&tsc_count_stop); } sum = 0; for (i = 0; i < smp_num_cpus; i++) { t0 = tsc_values[i]; sum += t0; } avg = div64(sum, smp_num_cpus); sum = 0; for (i = 0; i < smp_num_cpus; i++) { delta = tsc_values[i] - avg; if (delta < 0) delta = -delta; /* * We report bigger than 2 microseconds clock differences. */ if (delta > 2*one_usec) { long realdelta; if (!buggy) { buggy = 1; printk("\n"); } realdelta = div64(delta, one_usec); if (tsc_values[i] < avg) realdelta = -realdelta; printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n", i, realdelta); } sum += delta; } if (!buggy) printk("passed.\n"); } static void __init synchronize_tsc_ap (void) { int i; /* * smp_num_cpus is not necessarily known at the time * this gets called, so we first wait for the BP to * finish SMP initialization: */ while (!atomic_read(&tsc_start_flag)) mb(); for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&tsc_count_start); while (atomic_read(&tsc_count_start) != smp_num_cpus) mb(); rdtscll(tsc_values[smp_processor_id()]); if (i == NR_LOOPS-1) write_tsc(0, 0); atomic_inc(&tsc_count_stop); while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb(); } } #undef NR_LOOPS extern void calibrate_delay(void); static atomic_t init_deasserted; void __init smp_callin(void) { int cpuid, phys_id; unsigned long timeout; /* * If waken up by an INIT in an 82489DX configuration * we may get here before an INIT-deassert IPI reaches * our local APIC. We have to wait for the IPI or we'll * lock up on an APIC access. */ while (!atomic_read(&init_deasserted)); /* * (This works even if the APIC is not enabled.) */ phys_id = GET_APIC_ID(apic_read(APIC_ID)); cpuid = current->processor; if (test_and_set_bit(cpuid, &cpu_online_map)) { printk("huh, phys CPU#%d, CPU#%d already present??\n", phys_id, cpuid); BUG(); } Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); /* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */ /* * Waiting 2s total for startup (udelay is not yet working) */ timeout = jiffies + 2*HZ; while (time_before(jiffies, timeout)) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (test_bit(cpuid, &cpu_callout_map)) break; rep_nop(); } if (!time_before(jiffies, timeout)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); BUG(); } /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ Dprintk("CALLIN, before setup_local_APIC().\n"); setup_local_APIC(); sti(); #ifdef CONFIG_MTRR /* * Must be done before calibration delay is computed */ mtrr_init_secondary_cpu (); #endif /* * Get our bogomips. */ calibrate_delay(); Dprintk("Stack at about %p\n",&cpuid); /* * Save our processor parameters */ smp_store_cpu_info(cpuid); /* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map); /* * Synchronize the TSC with the BP */ if (cpu_has_tsc) synchronize_tsc_ap(); } int cpucount; extern int cpu_idle(void); /* * Activate a secondary processor. */ int __init start_secondary(void *unused) { /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ cpu_init(); smp_callin(); while (!atomic_read(&smp_commenced)) rep_nop(); /* * low-memory mappings have been cleared, flush them from * the local TLBs too. */ local_flush_tlb(); return cpu_idle(); } /* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */ void __init initialize_secondary(void) { /* * We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */ asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (current->thread.esp),"r" (current->thread.eip)); } extern struct { void * esp; unsigned short ss; } stack_start; static int __init fork_by_hand(void) { struct pt_regs regs; /* * don't care about the eip and regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); } #if APIC_DEBUG static inline void inquire_remote_apic(int apicid) { int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; char *names[] = { "ID", "VERSION", "SPIV" }; int timeout, status; printk("Inquiring remote APIC #%d...\n", apicid); for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { printk("... APIC #%d %s: ", apicid, names[i]); /* * Wait for idle. */ apic_wait_icr_idle(); apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); timeout = 0; do { udelay(100); status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); switch (status) { case APIC_ICR_RR_VALID: status = apic_read(APIC_RRR); printk("%08x\n", status); break; default: printk("failed\n"); } } } #endif static void __init do_boot_cpu (int apicid) { struct task_struct *idle; unsigned long send_status, accept_status, boot_status, maxlvt; int timeout, num_starts, j, cpu; unsigned long start_eip; cpu = ++cpucount; /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu); /* * We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu); idle->processor = cpu; x86_cpu_to_apicid[cpu] = apicid; x86_apicid_to_cpu[apicid] = cpu; idle->has_cpu = 1; /* we schedule the first task manually */ idle->thread.eip = (unsigned long) start_secondary; del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle; /* start_eip had better be page-aligned! */ start_eip = setup_trampoline(); /* So we see what's up */ printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle); /* * This grunge runs the startup process for * the targeted processor. */ atomic_set(&init_deasserted, 0); Dprintk("Setting warm reset code and vector.\n"); CMOS_WRITE(0xa, 0xf); local_flush_tlb(); Dprintk("1.\n"); *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4; Dprintk("2.\n"); *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf; Dprintk("3.\n"); /* * Be paranoid about clearing APIC errors. */ if (APIC_INTEGRATED(apic_version[apicid])) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } /* * Status is now clean */ send_status = 0; accept_status = 0; boot_status = 0; /* * Starting actual IPI sequence... */ Dprintk("Asserting INIT.\n"); /* * Turn INIT on target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* * Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); mdelay(10); Dprintk("Deasserting INIT.\n"); /* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); atomic_set(&init_deasserted, 1); /* * Should we send STARTUP IPIs ? * * Determine this based on the APIC version. * If we don't have an integrated APIC, don't * send the STARTUP IPIs. */ if (APIC_INTEGRATED(apic_version[apicid])) num_starts = 2; else num_starts = 0; /* * Run STARTUP IPI loop. */ Dprintk("#startup loops: %d.\n", num_starts); maxlvt = get_maxlvt(); for (j = 1; j <= num_starts; j++) { Dprintk("Sending STARTUP #%d.\n",j); apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); Dprintk("After apic_write.\n"); /* * STARTUP IPI */ /* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* Boot on the stack */ /* Kick the second */ apic_write_around(APIC_ICR, APIC_DM_STARTUP | (start_eip >> 12)); /* * Give the other CPU some time to accept the IPI. */ udelay(300); Dprintk("Startup point 1.\n"); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); /* * Give the other CPU some time to accept the IPI. */ udelay(200); /* * Due to the Pentium erratum 3AP. */ if (maxlvt > 3) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); } accept_status = (apic_read(APIC_ESR) & 0xEF); if (send_status || accept_status) break; } Dprintk("After Startup.\n"); if (send_status) printk("APIC never delivered???\n"); if (accept_status) printk("APIC delivery error (%lx).\n", accept_status); if (!send_status && !accept_status) { /* * allow APs to start initializing. */ Dprintk("Before Callout %d.\n", cpu); set_bit(cpu, &cpu_callout_map); Dprintk("After Callout %d.\n", cpu); /* * Wait 5s total for a response */ for (timeout = 0; timeout < 50000; timeout++) { if (test_bit(cpu, &cpu_callin_map)) break; /* It has booted */ udelay(100); } if (test_bit(cpu, &cpu_callin_map)) { /* number CPUs logically, starting from 1 (BSP is 0) */ Dprintk("OK.\n"); printk("CPU%d: ", cpu); print_cpu_info(&cpu_data[cpu]); Dprintk("CPU has booted.\n"); } else { boot_status = 1; if (*((volatile unsigned char *)phys_to_virt(8192)) == 0xA5) /* trampoline started but...? */ printk("Stuck ??\n"); else /* trampoline code not run */ printk("Not responding.\n"); #if APIC_DEBUG inquire_remote_apic(apicid); #endif } } if (send_status || accept_status || boot_status) { x86_cpu_to_apicid[cpu] = -1; x86_apicid_to_cpu[apicid] = -1; cpucount--; } /* mark "stuck" area as not stuck */ *((volatile unsigned long *)phys_to_virt(8192)) = 0; } cycles_t cacheflush_time; extern unsigned long cpu_khz; static void smp_tune_scheduling (void) { unsigned long cachesize; /* kB */ unsigned long bandwidth = 350; /* MB/s */ /* * Rough estimation for SMP scheduling, this is the number of * cycles it takes for a fully memory-limited process to flush * the SMP-local cache. * * (For a P5 this pretty much means we will choose another idle * CPU almost always at wakeup time (this is due to the small * L1 cache), on PIIs it's around 50-100 usecs, depending on * the cache size) */ if (!cpu_khz) { /* * this basically disables processor-affinity * scheduling on SMP without a TSC. */ cacheflush_time = 0; return; } else { cachesize = boot_cpu_data.x86_cache_size; if (cachesize == -1) { cachesize = 16; /* Pentiums, 2x8kB cache */ bandwidth = 100; } cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth; } printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n", (long)cacheflush_time/(cpu_khz/1000), ((long)cacheflush_time*100/(cpu_khz/1000)) % 100); } /* * Cycle through the processors sending APIC IPIs to boot each. */ extern int prof_multiplier[NR_CPUS]; extern int prof_old_multiplier[NR_CPUS]; extern int prof_counter[NR_CPUS]; void __init smp_boot_cpus(void) { int apicid, cpu; #ifdef CONFIG_MTRR /* Must be done before other processors booted */ mtrr_init_boot_cpu (); #endif /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */ for (apicid = 0; apicid < NR_CPUS; apicid++) { x86_apicid_to_cpu[apicid] = -1; prof_counter[apicid] = 1; prof_old_multiplier[apicid] = 1; prof_multiplier[apicid] = 1; } /* * Setup boot CPU information */ smp_store_cpu_info(0); /* Final full version of the data */ printk("CPU%d: ", 0); print_cpu_info(&cpu_data[0]); /* * We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); x86_apicid_to_cpu[boot_cpu_id] = 0; x86_cpu_to_apicid[0] = boot_cpu_id; global_irq_holder = 0; current->processor = 0; init_idle(); smp_tune_scheduling(); /* * If we couldnt find an SMP configuration at boot time, * get out of here now! */ if (!smp_found_config) { printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; } /* * Should not be necessary because the MP table should list the boot * CPU too, but we do it for the sake of robustness anyway. */ if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) { printk("weird, boot CPU (#%d) not listed by the BIOS.\n", boot_cpu_id); phys_cpu_present_map |= (1 << hard_smp_processor_id()); } /* * If we couldn't find a local APIC, then get out of here now! */ if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) { printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", boot_cpu_id); printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; } verify_local_APIC(); /* * If SMP should be disabled, then really disable it! */ if (!max_cpus) { smp_found_config = 0; printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; } connect_bsp_APIC(); setup_local_APIC(); if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) BUG(); /* * Now scan the CPU present map and fire up the other CPUs. */ Dprintk("CPU present map: %lx\n", phys_cpu_present_map); for (apicid = 0; apicid < NR_CPUS; apicid++) { /* * Don't even attempt to start the boot CPU! */ if (apicid == boot_cpu_id) continue; if (!(phys_cpu_present_map & (1 << apicid))) continue; if ((max_cpus >= 0) && (max_cpus <= cpucount+1)) continue; do_boot_cpu(apicid); /* * Make sure we unmap all failed CPUs */ if ((x86_apicid_to_cpu[apicid] == -1) && (phys_cpu_present_map & (1 << apicid))) printk("phys CPU #%d not responding - cannot use it.\n",apicid); } /* * Cleanup possible dangling ends... */ #ifndef CONFIG_VISWS { /* * Install writable page 0 entry to set BIOS data area. */ local_flush_tlb(); /* * Paranoid: Set warm reset code and vector here back * to default values. */ CMOS_WRITE(0, 0xf); *((volatile long *) phys_to_virt(0x467)) = 0; } #endif /* * Allow the user to impress friends. */ Dprintk("Before bogomips.\n"); if (!cpucount) { printk(KERN_ERR "Error: only one processor found.\n"); } else { unsigned long bogosum = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpu_online_map & (1<<cpu)) bogosum += cpu_data[cpu].loops_per_jiffy; printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount+1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); Dprintk("Before bogocount - setting activated=1.\n"); } smp_num_cpus = cpucount + 1; if (smp_b_stepping) printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); Dprintk("Boot done.\n"); #ifndef CONFIG_VISWS /* * Here we can be sure that there is an IO-APIC in the system. Let's * go and set it up: */ if (!skip_ioapic_setup) setup_IO_APIC(); #endif /* * Set up all local APIC timers in the system: */ setup_APIC_clocks(); /* * Synchronize the TSC with the AP */ if (cpu_has_tsc && cpucount) synchronize_tsc_bp(); smp_done: zap_low_mappings(); } |