Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/*
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */
#ifdef __KERNEL__

#include <linux/config.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/reiserfs_fs.h>
#include <linux/string.h>

#else

#include "nokernel.h"
#include <limits.h>

#endif

#include <stdarg.h>

static char error_buf[1024];
static char fmt_buf[1024];
static char off_buf[80];


static char * cpu_offset (struct cpu_key * key)
{
  if (cpu_key_k_type(key) == TYPE_DIRENTRY)
    sprintf (off_buf, "%Lu(%Lu)", 
	     (unsigned long long)GET_HASH_VALUE (cpu_key_k_offset (key)),
	     (unsigned long long)GET_GENERATION_NUMBER (cpu_key_k_offset (key)));
  else
    sprintf (off_buf, "0x%Lx", (unsigned long long)cpu_key_k_offset (key));
  return off_buf;
}


static char * le_offset (struct key * key)
{
  int version;

  version = le_key_version (key);
  if (le_key_k_type (version, key) == TYPE_DIRENTRY)
    sprintf (off_buf, "%Lu(%Lu)", 
	     (unsigned long long)GET_HASH_VALUE (le_key_k_offset (version, key)),
	     (unsigned long long)GET_GENERATION_NUMBER (le_key_k_offset (version, key)));
  else
    sprintf (off_buf, "0x%Lx", (unsigned long long)le_key_k_offset (version, key));
  return off_buf;
}


static char * cpu_type (struct cpu_key * key)
{
    if (cpu_key_k_type (key) == TYPE_STAT_DATA)
	return "SD";
    if (cpu_key_k_type (key) == TYPE_DIRENTRY)
	return "DIR";
    if (cpu_key_k_type (key) == TYPE_DIRECT)
	return "DIRECT";
    if (cpu_key_k_type (key) == TYPE_INDIRECT)
	return "IND";
    return "UNKNOWN";
}


static char * le_type (struct key * key)
{
    int version;
    
    version = le_key_version (key);

    if (le_key_k_type (version, key) == TYPE_STAT_DATA)
	return "SD";
    if (le_key_k_type (version, key) == TYPE_DIRENTRY)
	return "DIR";
    if (le_key_k_type (version, key) == TYPE_DIRECT)
	return "DIRECT";
    if (le_key_k_type (version, key) == TYPE_INDIRECT)
	return "IND";
    return "UNKNOWN";
}


/* %k */
static void sprintf_le_key (char * buf, struct key * key)
{
  if (key)
    sprintf (buf, "[%d %d %s %s]", le32_to_cpu (key->k_dir_id),
	     le32_to_cpu (key->k_objectid), le_offset (key), le_type (key));
  else
    sprintf (buf, "[NULL]");
}


/* %K */
static void sprintf_cpu_key (char * buf, struct cpu_key * key)
{
  if (key)
    sprintf (buf, "[%d %d %s %s]", key->on_disk_key.k_dir_id,
	     key->on_disk_key.k_objectid, cpu_offset (key), cpu_type (key));
  else
    sprintf (buf, "[NULL]");
}


static void sprintf_item_head (char * buf, struct item_head * ih)
{
    if (ih) {
	sprintf (buf, "%s", (ih_version (ih) == ITEM_VERSION_2) ? "*NEW* " : "*OLD*");
	sprintf_le_key (buf + strlen (buf), &(ih->ih_key));
	sprintf (buf + strlen (buf), ", item_len %d, item_location %d, "
		 "free_space(entry_count) %d",
		 ih->ih_item_len, ih->ih_item_location, ih_free_space (ih));
    } else
	sprintf (buf, "[NULL]");
}


static void sprintf_direntry (char * buf, struct reiserfs_dir_entry * de)
{
  char name[20];

  memcpy (name, de->de_name, de->de_namelen > 19 ? 19 : de->de_namelen);
  name [de->de_namelen > 19 ? 19 : de->de_namelen] = 0;
  sprintf (buf, "\"%s\"==>[%d %d]", name, de->de_dir_id, de->de_objectid);
}


static void sprintf_block_head (char * buf, struct buffer_head * bh)
{
  sprintf (buf, "level=%d, nr_items=%d, free_space=%d rdkey ",
	   B_LEVEL (bh), B_NR_ITEMS (bh), B_FREE_SPACE (bh));
#if 0
  if (B_LEVEL (bh) == DISK_LEAF_NODE_LEVEL)
    sprintf_le_key (buf + strlen (buf), B_PRIGHT_DELIM_KEY (bh));
#endif
}


static void sprintf_buffer_head (char * buf, struct buffer_head * bh) 
{
  sprintf (buf, "dev %s, size %d, blocknr %ld, count %d, list %d, state 0x%lx, page %p, (%s, %s, %s)",
	   kdevname (bh->b_dev), bh->b_size, bh->b_blocknr, atomic_read (&(bh->b_count)), bh->b_list,
	   bh->b_state, bh->b_page,
	   buffer_uptodate (bh) ? "UPTODATE" : "!UPTODATE",
	   buffer_dirty (bh) ? "DIRTY" : "CLEAN",
	   buffer_locked (bh) ? "LOCKED" : "UNLOCKED");
}


static void sprintf_disk_child (char * buf, struct disk_child * dc)
{
  sprintf (buf, "[dc_number=%d, dc_size=%u]", dc->dc_block_number, dc->dc_size);
}


static char * is_there_reiserfs_struct (char * fmt, int * what, int * skip)
{
  char * k = fmt;

  *skip = 0;
  
  while (1) {
    k = strstr (k, "%");
    if (!k)
      break;
    if (k && (k[1] == 'k' || k[1] == 'K' || k[1] == 'h' || k[1] == 't' ||
	      k[1] == 'z' || k[1] == 'b' || k[1] == 'y')) {
      *what = k[1];
      break;
    }
    (*skip) ++;
    k ++;
  }
  return k;
}


/* debugging reiserfs we used to print out a lot of different
   variables, like keys, item headers, buffer heads etc. Values of
   most fields matter. So it took a long time just to write
   appropriative printk. With this reiserfs_warning you can use format
   specification for complex structures like you used to do with
   printfs for integers, doubles and pointers. For instance, to print
   out key structure you have to write just: 
   reiserfs_warning ("bad key %k", key); 
   instead of 
   printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid, 
           key->k_offset, key->k_uniqueness); 
*/

#define do_reiserfs_warning \
{\
  char * fmt1 = fmt_buf;\
  va_list args;\
  int i, j;\
  char * k;\
  char * p = error_buf;\
  int what, skip;\
\
  strcpy (fmt1, fmt);\
  va_start(args, fmt);\
\
  while (1) {\
    k = is_there_reiserfs_struct (fmt1, &what, &skip);\
    if (k != 0) {\
      *k = 0;\
      p += vsprintf (p, fmt1, args);\
\
      for (i = 0; i < skip; i ++)\
	j = va_arg (args, int);\
\
      switch (what) {\
      case 'k':\
	sprintf_le_key (p, va_arg(args, struct key *));\
	break;\
      case 'K':\
	sprintf_cpu_key (p, va_arg(args, struct cpu_key *));\
	break;\
      case 'h':\
	sprintf_item_head (p, va_arg(args, struct item_head *));\
	break;\
      case 't':\
	sprintf_direntry (p, va_arg(args, struct reiserfs_dir_entry *));\
	break;\
      case 'y':\
	sprintf_disk_child (p, va_arg(args, struct disk_child *));\
	break;\
      case 'z':\
	sprintf_block_head (p, va_arg(args, struct buffer_head *));\
	break;\
      case 'b':\
	sprintf_buffer_head (p, va_arg(args, struct buffer_head *));\
	break;\
      }\
      p += strlen (p);\
      fmt1 = k + 2;\
    } else {\
      i = vsprintf (p, fmt1, args);\
      break;\
    }\
  }\
\
  va_end(args);\
}


/* in addition to usual conversion specifiers this accepts reiserfs
   specific conversion specifiers: 
   %k to print little endian key, 
   %K to print cpu key, 
   %h to print item_head,
   %t to print directory entry 
   %z to print block head (arg must be struct buffer_head *
   %b to print buffer_head
*/
void reiserfs_warning (const char * fmt, ...)
{
  do_reiserfs_warning;
  /* console_print (error_buf); */
  printk (KERN_WARNING "%s", error_buf);
}

void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...)
{
#ifdef CONFIG_REISERFS_CHECK
  do_reiserfs_warning;
  printk (KERN_DEBUG "%s", error_buf);
#else
  ; 
#endif
}

/* The format:

           maintainer-errorid: [function-name:] message

    where errorid is unique to the maintainer and function-name is
    optional, is recommended, so that anyone can easily find the bug
    with a simple grep for the short to type string
    maintainer-errorid.  Don't bother with reusing errorids, there are
    lots of numbers out there.

    Example: 
    
    reiserfs_panic(
	p_sb, "reiser-29: reiserfs_new_blocknrs: "
	"one of search_start or rn(%d) is equal to MAX_B_NUM,"
	"which means that we are optimizing location based on the bogus location of a temp buffer (%p).", 
	rn, bh
    );

    Regular panic()s sometimes clear the screen before the message can
    be read, thus the need for the while loop.  

    Numbering scheme for panic used by Vladimir and Anatoly( Hans completely ignores this scheme, and considers it
    pointless complexity):

    panics in reiserfs_fs.h have numbers from 1000 to 1999
    super.c				        2000 to 2999
    preserve.c				    3000 to 3999
    bitmap.c				    4000 to 4999
    stree.c				        5000 to 5999
    prints.c				    6000 to 6999
    namei.c                     7000 to 7999
    fix_nodes.c                 8000 to 8999
    dir.c                       9000 to 9999
	lbalance.c					10000 to 10999
	ibalance.c		11000 to 11999 not ready
	do_balan.c		12000 to 12999
	inode.c			13000 to 13999
	file.c			14000 to 14999
    objectid.c                       15000 - 15999
    buffer.c                         16000 - 16999
    symlink.c                        17000 - 17999

   .  */


#ifdef CONFIG_REISERFS_CHECK
extern struct tree_balance * cur_tb;
#endif

void reiserfs_panic (struct super_block * sb, const char * fmt, ...)
{
#ifdef __KERNEL__
  show_reiserfs_locks() ;
#endif
  do_reiserfs_warning;
  printk ("%s", error_buf);
  BUG ();
  // console_print (error_buf);
  // for (;;);

#ifdef __KERNEL__

  /* comment before release */
  //for (;;);

#if 0 /* this is not needed, the state is ignored */
  if (sb && !(sb->s_flags & MS_RDONLY)) {
    sb->u.reiserfs_sb.s_mount_state |= REISERFS_ERROR_FS;
    sb->u.reiserfs_sb.s_rs->s_state = REISERFS_ERROR_FS;
    
    mark_buffer_dirty(sb->u.reiserfs_sb.s_sbh) ;
    sb->s_dirt = 1;
  }
#endif

  /* this is to prevent panic from syncing this filesystem */
  if (sb)
    sb->s_flags |= MS_RDONLY;

  panic ("REISERFS: panic (device %s): %s\n",
	 sb ? kdevname(sb->s_dev) : "sb == 0", error_buf);
#else
  exit (0);
#endif
}


void print_virtual_node (struct virtual_node * vn)
{
    int i;
    struct virtual_item * vi;

    printk ("VIRTUAL NODE CONTAINS %d items, has size %d,%s,%s, ITEM_POS=%d POS_IN_ITEM=%d MODE=\'%c\'\n",
	    vn->vn_nr_item, vn->vn_size,
	    (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE )? "left mergeable" : "", 
	    (vn->vn_vi[vn->vn_nr_item - 1].vi_type & VI_TYPE_RIGHT_MERGEABLE) ? "right mergeable" : "",
	    vn->vn_affected_item_num, vn->vn_pos_in_item, vn->vn_mode);
    
    vi = vn->vn_vi;
    for (i = 0; i < vn->vn_nr_item; i ++, vi ++)
	op_print_vi (vi);
	
}


void print_path (struct tree_balance * tb, struct path * path)
{
    int h = 0;
    struct buffer_head * bh;
    
    if (tb) {
	while (tb->insert_size[h]) {
	    bh = PATH_H_PBUFFER (path, h);
	    printk ("block %lu (level=%d), position %d\n", bh ? bh->b_blocknr : 0,
		    bh ? B_LEVEL (bh) : 0, PATH_H_POSITION (path, h));
	    h ++;
	}
  } else {
      int offset = path->path_length;
      struct buffer_head * bh;
      printk ("Offset    Bh     (b_blocknr, b_count) Position Nr_item\n");
      while ( offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
	  bh = PATH_OFFSET_PBUFFER (path, offset);
	  printk ("%6d %10p (%9lu, %7d) %8d %7d\n", offset, 
		  bh, bh ? bh->b_blocknr : 0, bh ? atomic_read (&(bh->b_count)) : 0,
		  PATH_OFFSET_POSITION (path, offset), bh ? B_NR_ITEMS (bh) : -1);
	  
	  offset --;
      }
  }

}


/* this prints internal nodes (4 keys/items in line) (dc_number,
   dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number,
   dc_size)...*/
static int print_internal (struct buffer_head * bh, int first, int last)
{
    struct key * key;
    struct disk_child * dc;
    int i;
    int from, to;
    
    if (!B_IS_KEYS_LEVEL (bh))
	return 1;

    check_internal (bh);
    
    if (first == -1) {
	from = 0;
	to = B_NR_ITEMS (bh);
    } else {
	from = first;
	to = last < B_NR_ITEMS (bh) ? last : B_NR_ITEMS (bh);
    }

    reiserfs_warning ("INTERNAL NODE (%ld) contains %z\n",  bh->b_blocknr, bh);
    
    dc = B_N_CHILD (bh, from);
    reiserfs_warning ("PTR %d: %y ", from, dc);
    
    for (i = from, key = B_N_PDELIM_KEY (bh, from), dc ++; i < to; i ++, key ++, dc ++) {
	reiserfs_warning ("KEY %d: %k PTR %d: %y ", i, key, i + 1, dc);
	if (i && i % 4 == 0)
	    printk ("\n");
    }
    printk ("\n");
    return 0;
}





static int print_leaf (struct buffer_head * bh, int print_mode, int first, int last)
{
    struct block_head * blkh;
    struct item_head * ih;
    int i;
    int from, to;

    if (!B_IS_ITEMS_LEVEL (bh))
	return 1;

    check_leaf (bh);

    blkh = B_BLK_HEAD (bh);
    ih = B_N_PITEM_HEAD (bh,0);

    printk ("\n===================================================================\n");
    reiserfs_warning ("LEAF NODE (%ld) contains %z\n", bh->b_blocknr, bh);

    if (!(print_mode & PRINT_LEAF_ITEMS)) {
	reiserfs_warning ("FIRST ITEM_KEY: %k, LAST ITEM KEY: %k\n",
			  &(ih->ih_key), &((ih + le16_to_cpu (blkh->blk_nr_item) - 1)->ih_key));
	return 0;
    }

    if (first < 0 || first > le16_to_cpu (blkh->blk_nr_item) - 1) 
	from = 0;
    else 
	from = first;

    if (last < 0 || last > le16_to_cpu (blkh->blk_nr_item))
	to = le16_to_cpu (blkh->blk_nr_item);
    else
	to = last;

    ih += from;
    printk ("-------------------------------------------------------------------------------\n");
    printk ("|##|   type    |           key           | ilen | free_space | version | loc  |\n");
    for (i = from; i < to; i++, ih ++) {
	printk ("-------------------------------------------------------------------------------\n");
	reiserfs_warning ("|%2d| %h |\n", i, ih);
	if (print_mode & PRINT_LEAF_ITEMS)
	    op_print_item (ih, B_I_PITEM (bh, ih));
    }

    printk ("===================================================================\n");

    return 0;
}

static char * reiserfs_version (char * buf)
{
    __u16 * pversion;

    pversion = (__u16 *)(buf) + 36;
    if (*pversion == 0)
	return "0";
    if (*pversion == 2)
	return "2";
    return "Unknown";
}


/* return 1 if this is not super block */
static int print_super_block (struct buffer_head * bh)
{
    struct reiserfs_super_block * rs = (struct reiserfs_super_block *)(bh->b_data);
    int skipped, data_blocks;
    

    if (strncmp (rs->s_magic,  REISERFS_SUPER_MAGIC_STRING, strlen ( REISERFS_SUPER_MAGIC_STRING)) &&
	strncmp (rs->s_magic,  REISER2FS_SUPER_MAGIC_STRING, strlen ( REISER2FS_SUPER_MAGIC_STRING)))
	return 1;

    printk ("%s\'s super block in block %ld\n======================\n", kdevname (bh->b_dev), bh->b_blocknr);
    printk ("Reiserfs version %s\n", reiserfs_version (bh->b_data));
    printk ("Block count %u\n", le32_to_cpu (rs->s_block_count));
    printk ("Blocksize %d\n", le16_to_cpu (rs->s_blocksize));
    printk ("Free blocks %u\n", le32_to_cpu (rs->s_free_blocks));
    skipped = bh->b_blocknr; // FIXME: this would be confusing if
    // someone stores reiserfs super block in some data block ;)
    data_blocks = le32_to_cpu (rs->s_block_count) - skipped - 1 -
      le16_to_cpu (rs->s_bmap_nr) - (le32_to_cpu (rs->s_orig_journal_size) + 1) -
      le32_to_cpu (rs->s_free_blocks);
    printk ("Busy blocks (skipped %d, bitmaps - %d, journal blocks - %d\n"
	    "1 super blocks, %d data blocks\n", 
	    skipped, le16_to_cpu (rs->s_bmap_nr), 
	    (le32_to_cpu (rs->s_orig_journal_size) + 1), data_blocks);
    printk ("Root block %u\n", le32_to_cpu (rs->s_root_block));
    printk ("Journal block (first) %d\n", le32_to_cpu (rs->s_journal_block));
    printk ("Journal dev %d\n", le32_to_cpu (rs->s_journal_dev));    
    printk ("Journal orig size %d\n", le32_to_cpu (rs->s_orig_journal_size));
    printk ("Filesystem state %s\n", 
	    (le16_to_cpu (rs->s_state) == REISERFS_VALID_FS) ? "VALID" : "ERROR");
    printk ("Hash function \"%s\"\n", le16_to_cpu (rs->s_hash_function_code) == TEA_HASH ? "tea" :
	    ((le16_to_cpu (rs->s_hash_function_code) == YURA_HASH) ? "rupasov" : "unknown"));

#if 0
    __u32 s_journal_trans_max ;           /* max number of blocks in a transaction.  */
    __u32 s_journal_block_count ;         /* total size of the journal. can change over time  */
    __u32 s_journal_max_batch ;           /* max number of blocks to batch into a trans */
    __u32 s_journal_max_commit_age ;      /* in seconds, how old can an async commit be */
    __u32 s_journal_max_trans_age ;       /* in seconds, how old can a transaction be */
#endif
    printk ("Tree height %d\n", rs->s_tree_height);
    return 0;
}


static int print_desc_block (struct buffer_head * bh)
{
    struct reiserfs_journal_desc * desc;

    desc = (struct reiserfs_journal_desc *)(bh->b_data);
    if (memcmp(desc->j_magic, JOURNAL_DESC_MAGIC, 8))
	return 1;

    printk ("Desc block %lu (j_trans_id %d, j_mount_id %d, j_len %d)",
	    bh->b_blocknr, desc->j_trans_id, desc->j_mount_id, desc->j_len);

    return 0;
}


void print_block (struct buffer_head * bh, ...)//int print_mode, int first, int last)
{
    va_list args;
    int mode, first, last;

    va_start (args, bh);

    if ( ! bh ) {
	printk("print_block: buffer is NULL\n");
	return;
    }

    mode = va_arg (args, int);
    first = va_arg (args, int);
    last = va_arg (args, int);
    if (print_leaf (bh, mode, first, last))
	if (print_internal (bh, first, last))
	    if (print_super_block (bh))
		if (print_desc_block (bh))
		    printk ("Block %ld contains unformatted data\n", bh->b_blocknr);
}



char print_tb_buf[2048];

/* this stores initial state of tree balance in the print_tb_buf */
void store_print_tb (struct tree_balance * tb)
{
    int h = 0;
    int i;
    struct buffer_head * tbSh, * tbFh;

    if (!tb)
	return;

    sprintf (print_tb_buf, "\n"
	     "BALANCING %d\n"
	     "MODE=%c, ITEM_POS=%d POS_IN_ITEM=%d\n" 
	     "=====================================================================\n"
	     "* h *    S    *    L    *    R    *   F   *   FL  *   FR  *  CFL  *  CFR  *\n",
	     tb->tb_sb->u.reiserfs_sb.s_do_balance,
	     tb->tb_mode, PATH_LAST_POSITION (tb->tb_path), tb->tb_path->pos_in_item);
  
    for (h = 0; h < sizeof(tb->insert_size) / sizeof (tb->insert_size[0]); h ++) {
	if (PATH_H_PATH_OFFSET (tb->tb_path, h) <= tb->tb_path->path_length && 
	    PATH_H_PATH_OFFSET (tb->tb_path, h) > ILLEGAL_PATH_ELEMENT_OFFSET) {
	    tbSh = PATH_H_PBUFFER (tb->tb_path, h);
	    tbFh = PATH_H_PPARENT (tb->tb_path, h);
	} else {
	    tbSh = 0;
	    tbFh = 0;
	}
	sprintf (print_tb_buf + strlen (print_tb_buf),
		 "* %d * %3ld(%2d) * %3ld(%2d) * %3ld(%2d) * %5ld * %5ld * %5ld * %5ld * %5ld *\n",
		 h, 
		 (tbSh) ? (tbSh->b_blocknr):(-1),
		 (tbSh) ? atomic_read (&(tbSh->b_count)) : -1,
		 (tb->L[h]) ? (tb->L[h]->b_blocknr):(-1),
		 (tb->L[h]) ? atomic_read (&(tb->L[h]->b_count)) : -1,
		 (tb->R[h]) ? (tb->R[h]->b_blocknr):(-1),
		 (tb->R[h]) ? atomic_read (&(tb->R[h]->b_count)) : -1,
		 (tbFh) ? (tbFh->b_blocknr):(-1),
		 (tb->FL[h]) ? (tb->FL[h]->b_blocknr):(-1),
		 (tb->FR[h]) ? (tb->FR[h]->b_blocknr):(-1),
		 (tb->CFL[h]) ? (tb->CFL[h]->b_blocknr):(-1),
		 (tb->CFR[h]) ? (tb->CFR[h]->b_blocknr):(-1));
    }

    sprintf (print_tb_buf + strlen (print_tb_buf), 
	     "=====================================================================\n"
	     "* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n"
	     "* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n",
	     tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0],tb->rbytes, tb->blknum[0], 
	     tb->s0num, tb->s1num,tb->s1bytes,  tb->s2num, tb->s2bytes, tb->cur_blknum, tb->lkey[0], tb->rkey[0]);

    /* this prints balance parameters for non-leaf levels */
    h = 0;
    do {
	h++;
	sprintf (print_tb_buf + strlen (print_tb_buf),
		 "* %d * %4d * %2d *    * %2d *    * %2d *\n",
		h, tb->insert_size[h], tb->lnum[h], tb->rnum[h], tb->blknum[h]);
    } while (tb->insert_size[h]);

    sprintf (print_tb_buf + strlen (print_tb_buf), 
	     "=====================================================================\n"
	     "FEB list: ");

    /* print FEB list (list of buffers in form (bh (b_blocknr, b_count), that will be used for new nodes) */
    h = 0;
    for (i = 0; i < sizeof (tb->FEB) / sizeof (tb->FEB[0]); i ++)
	sprintf (print_tb_buf + strlen (print_tb_buf),
		 "%p (%lu %d)%s", tb->FEB[i], tb->FEB[i] ? tb->FEB[i]->b_blocknr : 0,
		 tb->FEB[i] ? atomic_read (&(tb->FEB[i]->b_count)) : 0, 
		 (i == sizeof (tb->FEB) / sizeof (tb->FEB[0]) - 1) ? "\n" : ", ");

    sprintf (print_tb_buf + strlen (print_tb_buf), 
	     "======================== the end ====================================\n");
}

void print_cur_tb (char * mes)
{
    printk ("%s\n%s", mes, print_tb_buf);
}


#ifndef __KERNEL__

void print_bmap_block (int i, char * data, int size, int silent)
{
    int j, k;
    int bits = size * 8;
    int zeros = 0, ones = 0;
  

    if (test_bit (0, data)) {
	/* first block addressed by this bitmap block is used */
	ones ++;
	if (!silent)
	    printf ("Busy (%d-", i * bits);
	for (j = 1; j < bits; j ++) {
	    while (test_bit (j, data)) {
		ones ++;
		if (j == bits - 1) {
		    if (!silent)
			printf ("%d)\n", j + i * bits);
		    goto end;
		}
		j++;
	    }
	    if (!silent)
		printf ("%d) Free(%d-", j - 1 + i * bits, j + i * bits);

	    while (!test_bit (j, data)) {
		zeros ++;
		if (j == bits - 1) {
		    if (!silent)
			printf ("%d)\n", j + i * bits);
		    goto end;
		}
		j++;
	    }
	    if (!silent)
		printf ("%d) Busy(%d-", j - 1 + i * bits, j + i * bits);

	    j --;
	end:
	}
    } else {
	/* first block addressed by this bitmap is free */
	zeros ++;
	if (!silent)
	    printf ("Free (%d-", i * bits);
	for (j = 1; j < bits; j ++) {
	    k = 0;
	    while (!test_bit (j, data)) {
		k ++;
		if (j == bits - 1) {
		    if (!silent)
			printf ("%d)\n", j + i * bits);
		    zeros += k;
		    goto end2;
		}
		j++;
	    }
	    zeros += k;
	    if (!silent)
		printf ("%d) Busy(%d-", j - 1 + i * bits, j + i * bits);
	    
	    k = 0;
	    while (test_bit (j, data)) {
		ones ++;
		if (j == bits - 1) {
		    if (!silent)
			printf ("%d)\n", j + i * bits);
		    ones += k;
		    goto end2;
		}
		j++;
	    }
	    ones += k;
	    if (!silent)
		printf ("%d) Busy(%d-", j - 1 + i * bits, j + i * bits);
	
	    j --;
	end2:
	}
    }

    printf ("used %d, free %d\n", ones, zeros);
}


/* if silent == 1, do not print details */
void print_bmap (struct super_block * s, int silent)
{
    int bmapnr = SB_BMAP_NR (s);
    int i;

    printf ("Bitmap blocks are:\n");
    for (i = 0; i < bmapnr; i ++) {
	printf ("#%d: block %lu: ", i, SB_AP_BITMAP(s)[i]->b_blocknr);
	print_bmap_block (i, SB_AP_BITMAP(s)[i]->b_data, s->s_blocksize, silent);
    }

}




void print_objectid_map (struct super_block * s)
{
  int i;
  struct reiserfs_super_block * rs;
  unsigned long * omap;

  rs = SB_DISK_SUPER_BLOCK (s);
  omap = (unsigned long *)(rs + 1);
  printk ("Map of objectids\n");
      
  for (i = 0; i < rs->s_oid_cursize; i ++) {
    if (i % 2 == 0)
      printk ("busy(%lu-%lu) ", omap[i], omap[i+1] - 1); 
    else
      printk ("free(%lu-%lu) ", 
	      omap[i], ((i+1) == rs->s_oid_cursize) ? -1 : omap[i+1] - 1);
    }
  printk ("\n");
  
  printk ("Object id array has size %d (max %d):", rs->s_oid_cursize, 
	  rs->s_oid_maxsize);
  
  for (i = 0; i < rs->s_oid_cursize; i ++)
    printk ("%lu ", omap[i]); 
  printk ("\n");

}

#endif	/* #ifndef __KERNEL__ */


static void check_leaf_block_head (struct buffer_head * bh)
{
  struct block_head * blkh;

  blkh = B_BLK_HEAD (bh);
  if (le16_to_cpu (blkh->blk_nr_item) > (bh->b_size - BLKH_SIZE) / IH_SIZE)
    reiserfs_panic (0, "vs-6010: check_leaf_block_head: invalid item number %z", bh);
  if (le16_to_cpu (blkh->blk_free_space) > 
      bh->b_size - BLKH_SIZE - IH_SIZE * le16_to_cpu (blkh->blk_nr_item))
    reiserfs_panic (0, "vs-6020: check_leaf_block_head: invalid free space %z", bh);
    
}

static void check_internal_block_head (struct buffer_head * bh)
{
    struct block_head * blkh;
    
    blkh = B_BLK_HEAD (bh);
    if (!(B_LEVEL (bh) > DISK_LEAF_NODE_LEVEL && B_LEVEL (bh) <= MAX_HEIGHT))
	reiserfs_panic (0, "vs-6025: check_internal_block_head: invalid level %z", bh);

    if (B_NR_ITEMS (bh) > (bh->b_size - BLKH_SIZE) / IH_SIZE)
	reiserfs_panic (0, "vs-6030: check_internal_block_head: invalid item number %z", bh);

    if (B_FREE_SPACE (bh) != 
	bh->b_size - BLKH_SIZE - KEY_SIZE * B_NR_ITEMS (bh) - DC_SIZE * (B_NR_ITEMS (bh) + 1))
	reiserfs_panic (0, "vs-6040: check_internal_block_head: invalid free space %z", bh);

}


void check_leaf (struct buffer_head * bh)
{
    int i;
    struct item_head * ih;

    if (!bh)
	return;
    check_leaf_block_head (bh);
    for (i = 0, ih = B_N_PITEM_HEAD (bh, 0); i < B_NR_ITEMS (bh); i ++, ih ++)
	op_check_item (ih, B_I_PITEM (bh, ih));
}


void check_internal (struct buffer_head * bh)
{
  if (!bh)
    return;
  check_internal_block_head (bh);
}


void print_statistics (struct super_block * s)
{

  /*
  printk ("reiserfs_put_super: session statistics: balances %d, fix_nodes %d, preserve list freeings %d, \
bmap with search %d, without %d, dir2ind %d, ind2dir %d\n",
	  s->u.reiserfs_sb.s_do_balance, s->u.reiserfs_sb.s_fix_nodes, s->u.reiserfs_sb.s_preserve_list_freeings,
	  s->u.reiserfs_sb.s_bmaps, s->u.reiserfs_sb.s_bmaps_without_search,
	  s->u.reiserfs_sb.s_direct2indirect, s->u.reiserfs_sb.s_indirect2direct);
  */

}