Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/* fmv18x.c: A network device driver for the Fujitsu FMV-181/182/183/184.

	Original: at1700.c (1993-94 by Donald Becker).
		Copyright 1993 United States Government as represented by the
		Director, National Security Agency.
		The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O
		Center of Excellence in Space Data and Information Sciences
		   Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771

	Modified by Yutaka TAMIYA (tamy@flab.fujitsu.co.jp)
		Copyright 1994 Fujitsu Laboratories Ltd.
	Special thanks to:
		Masayoshi UTAKA (utaka@ace.yk.fujitsu.co.jp)
			for testing this driver.
		H. NEGISHI (agy, negishi@sun45.psd.cs.fujitsu.co.jp)
			for suggestion of some program modification.
		Masahiro SEKIGUCHI <seki@sysrap.cs.fujitsu.co.jp>
			for suggestion of some program modification.
		Kazutoshi MORIOKA (morioka@aurora.oaks.cs.fujitsu.co.jp)
			for testing this driver.

	This software may be used and distributed according to the terms
	of the GNU General Public License, incorporated herein by reference.

	This is a device driver for the Fujitsu FMV-181/182/183/184, which
	is a straight-forward Fujitsu MB86965 implementation.

  Sources:
    at1700.c
    The Fujitsu MB86965 datasheet.
    The Fujitsu FMV-181/182 user's guide
*/

static const char version[] =
	"fmv18x.c:v2.2.0 09/24/98  Yutaka TAMIYA (tamy@flab.fujitsu.co.jp)\n";

#include <linux/module.h>

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <linux/spinlock.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>

static int fmv18x_probe_list[] __initdata = {
	0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x300, 0x340, 0
};

/* use 0 for production, 1 for verification, >2 for debug */
#ifndef NET_DEBUG
#define NET_DEBUG 1
#endif
static unsigned int net_debug = NET_DEBUG;

typedef unsigned char uchar;

/* Information that need to be kept for each board. */
struct net_local {
	struct net_device_stats stats;
	long open_time;				/* Useless example local info. */
	uint tx_started:1;			/* Number of packet on the Tx queue. */
	uint tx_queue_ready:1;		/* Tx queue is ready to be sent. */
	uint rx_started:1;			/* Packets are Rxing. */
	uchar tx_queue;				/* Number of packet on the Tx queue. */
	ushort tx_queue_len;		/* Current length of the Tx queue. */
	spinlock_t lock;
};


/* Offsets from the base address. */
#define STATUS			0
#define TX_STATUS		0
#define RX_STATUS		1
#define TX_INTR			2		/* Bit-mapped interrupt enable registers. */
#define RX_INTR			3
#define TX_MODE			4
#define RX_MODE			5
#define CONFIG_0		6		/* Misc. configuration settings. */
#define CONFIG_1		7
/* Run-time register bank 2 definitions. */
#define DATAPORT		8		/* Word-wide DMA or programmed-I/O dataport. */
#define TX_START		10
#define COL16CNTL		11		/* Controll Reg for 16 collisions */
#define MODE13			13
/* Fujitsu FMV-18x Card Configuration */
#define	FJ_STATUS0		0x10
#define	FJ_STATUS1		0x11
#define	FJ_CONFIG0		0x12
#define	FJ_CONFIG1		0x13
#define	FJ_MACADDR		0x14	/* 0x14 - 0x19 */
#define	FJ_BUFCNTL		0x1A
#define	FJ_BUFDATA		0x1C
#define FMV18X_IO_EXTENT	32

/* Index to functions, as function prototypes. */

extern int fmv18x_probe(struct net_device *dev);

static int fmv18x_probe1(struct net_device *dev, short ioaddr);
static int net_open(struct net_device *dev);
static int net_send_packet(struct sk_buff *skb, struct net_device *dev);
static void net_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void net_rx(struct net_device *dev);
static void net_timeout(struct net_device *dev);
static int net_close(struct net_device *dev);
static struct net_device_stats *net_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);


/* Check for a network adaptor of this type, and return '0' iff one exists.
   If dev->base_addr == 0, probe all likely locations.
   If dev->base_addr == 1, always return failure.
   If dev->base_addr == 2, allocate space for the device and return success
   (detachable devices only).
   */

int __init fmv18x_probe(struct net_device *dev)
{
	int i;
	int base_addr = dev->base_addr;

	SET_MODULE_OWNER(dev);

	if (base_addr > 0x1ff)		/* Check a single specified location. */
		return fmv18x_probe1(dev, base_addr);
	else if (base_addr != 0)	/* Don't probe at all. */
		return -ENXIO;

	for (i = 0; fmv18x_probe_list[i]; i++)
		if (fmv18x_probe1(dev, fmv18x_probe_list[i]) == 0)
			return 0;

	return -ENODEV;
}

/* The Fujitsu datasheet suggests that the NIC be probed for by checking its
   "signature", the default bit pattern after a reset.  This *doesn't* work --
   there is no way to reset the bus interface without a complete power-cycle!

   It turns out that ATI came to the same conclusion I did: the only thing
   that can be done is checking a few bits and then diving right into MAC
   address check. */

static int __init fmv18x_probe1(struct net_device *dev, short ioaddr)
{
	char irqmap[4] = {3, 7, 10, 15};
	char irqmap_pnp[8] = {3, 4, 5, 7, 9, 10, 11, 15};
	unsigned int i, irq, retval;
	struct net_local *lp;

	/* Resetting the chip doesn't reset the ISA interface, so don't bother.
	   That means we have to be careful with the register values we probe for.
	   */

	if (!request_region(ioaddr, FMV18X_IO_EXTENT, dev->name))
		return -EBUSY;

	/* Check I/O address configuration and Fujitsu vendor code */
	if (inb(ioaddr+FJ_MACADDR  ) != 0x00
	||  inb(ioaddr+FJ_MACADDR+1) != 0x00
	||  inb(ioaddr+FJ_MACADDR+2) != 0x0e) {
		retval = -ENODEV;
		goto out;
	}

	/* Check PnP mode for FMV-183/184/183A/184A. */
	/* This PnP routine is very poor. IO and IRQ should be known. */
	if (inb(ioaddr + FJ_STATUS1) & 0x20) {
		irq = dev->irq;
		for (i = 0; i < 8; i++) {
			if (irq == irqmap_pnp[i])
				break;
		}
		if (i == 8) {
			retval = -ENODEV;
			goto out;
		}
	} else {
		if (fmv18x_probe_list[inb(ioaddr + FJ_CONFIG0) & 0x07] != ioaddr)
			return -ENODEV;
		irq = irqmap[(inb(ioaddr + FJ_CONFIG0)>>6) & 0x03];
	}

	/* Snarf the interrupt vector now. */
	retval = request_irq(irq, &net_interrupt, 0, dev->name, dev);
	if (retval) {
		printk ("FMV-18x found at %#3x, but it's unusable due to a conflict on"
				"IRQ %d.\n", ioaddr, irq);
		goto out;
	}

	printk("%s: FMV-18x found at %#3x, IRQ %d, address ", dev->name,
		   ioaddr, irq);

	dev->base_addr = ioaddr;
	dev->irq = irq;

	for(i = 0; i < 6; i++) {
		unsigned char val = inb(ioaddr + FJ_MACADDR + i);
		printk("%02x", val);
		dev->dev_addr[i] = val;
	}

	/* "FJ_STATUS0" 12 bit 0x0400 means use regular 100 ohm 10baseT signals,
	   rather than 150 ohm shielded twisted pair compensation.
	   0x0000 == auto-sense the interface
	   0x0800 == use TP interface
	   0x1800 == use coax interface
	   */
	{
		const char *porttype[] = {"auto-sense", "10baseT", "auto-sense", "10base2/5"};
		ushort setup_value = inb(ioaddr + FJ_STATUS0);

		switch( setup_value & 0x07 ){
		case 0x01 /* 10base5 */:
		case 0x02 /* 10base2 */: dev->if_port = 0x18; break;
		case 0x04 /* 10baseT */: dev->if_port = 0x08; break;
		default /* auto-sense*/: dev->if_port = 0x00; break;
		}
		printk(" %s interface.\n", porttype[(dev->if_port>>3) & 3]);
	}

	/* Initialize LAN Controller and LAN Card */
	outb(0xda, ioaddr + CONFIG_0);	 /* Initialize LAN Controller */
	outb(0x00, ioaddr + CONFIG_1);	 /* Stand by mode */
	outb(0x00, ioaddr + FJ_CONFIG1); /* Disable IRQ of LAN Card */
	outb(0x00, ioaddr + FJ_BUFCNTL); /* Reset ? I'm not sure (TAMIYA) */

	/* wait for a while */
	udelay(200);

	/* Set the station address in bank zero. */
	outb(0x00, ioaddr + CONFIG_1);
	for (i = 0; i < 6; i++)
		outb(dev->dev_addr[i], ioaddr + 8 + i);

	/* Switch to bank 1 and set the multicast table to accept none. */
	outb(0x04, ioaddr + CONFIG_1);
	for (i = 0; i < 8; i++)
		outb(0x00, ioaddr + 8 + i);

	/* Switch to bank 2 and lock our I/O address. */
	outb(0x08, ioaddr + CONFIG_1);
	outb(dev->if_port, ioaddr + MODE13);
	outb(0x00, ioaddr + COL16CNTL);

	if (net_debug)
		printk(version);

	/* Initialize the device structure. */
	dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL);
	if (!dev->priv) {
		retval = -ENOMEM;
		goto out_irq;
	}
	memset(dev->priv, 0, sizeof(struct net_local));
	lp = dev->priv;
	spin_lock_init(&lp->lock);

	dev->open		= net_open;
	dev->stop		= net_close;
	dev->hard_start_xmit	= net_send_packet;
	dev->tx_timeout		= net_timeout;
	dev->watchdog_timeo	= HZ/10;
	dev->get_stats		= net_get_stats;
	dev->set_multicast_list = set_multicast_list;

	/* Fill in the fields of 'dev' with ethernet-generic values. */

	ether_setup(dev);
	return 0;

out_irq:
	free_irq(irq, dev);
out:
	release_region(ioaddr, FMV18X_IO_EXTENT);
	return retval;
}


static int net_open(struct net_device *dev)
{
	struct net_local *lp = dev->priv;
	int ioaddr = dev->base_addr;

	/* Set the configuration register 0 to 32K 100ns. byte-wide memory,
	   16 bit bus access, and two 4K Tx, enable the Rx and Tx. */
	outb(0x5a, ioaddr + CONFIG_0);

	/* Powerup and switch to register bank 2 for the run-time registers. */
	outb(0xe8, ioaddr + CONFIG_1);

	lp->tx_started = 0;
	lp->tx_queue_ready = 1;
	lp->rx_started = 0;
	lp->tx_queue = 0;
	lp->tx_queue_len = 0;

	/* Clear Tx and Rx Status */
	outb(0xff, ioaddr + TX_STATUS);
	outb(0xff, ioaddr + RX_STATUS);
	lp->open_time = jiffies;

	netif_start_queue(dev);
	
	/* Enable the IRQ of the LAN Card */
	outb(0x80, ioaddr + FJ_CONFIG1);

	/* Enable both Tx and Rx interrupts */
	outw(0x8182, ioaddr+TX_INTR);

	return 0;
}

static void net_timeout(struct net_device *dev)
{
	struct net_local *lp = dev->priv;
	int ioaddr = dev->base_addr;
	unsigned long flags;
	
	
	printk(KERN_WARNING "%s: transmit timed out with status %04x, %s?\n", dev->name,
		   htons(inw(ioaddr + TX_STATUS)),
		   inb(ioaddr + TX_STATUS) & 0x80
		   ? "IRQ conflict" : "network cable problem");
	printk(KERN_WARNING "%s: timeout registers: %04x %04x %04x %04x %04x %04x %04x %04x.\n",
		   dev->name, htons(inw(ioaddr + 0)),
		   htons(inw(ioaddr + 2)), htons(inw(ioaddr + 4)),
		   htons(inw(ioaddr + 6)), htons(inw(ioaddr + 8)),
		   htons(inw(ioaddr +10)), htons(inw(ioaddr +12)),
		   htons(inw(ioaddr +14)));
	printk(KERN_WARNING "eth card: %04x %04x\n",
		htons(inw(ioaddr+FJ_STATUS0)),
		htons(inw(ioaddr+FJ_CONFIG0)));
	lp->stats.tx_errors++;
	/* ToDo: We should try to restart the adaptor... */
	spin_lock_irqsave(&lp->lock, flags);

	/* Initialize LAN Controller and LAN Card */
	outb(0xda, ioaddr + CONFIG_0);   /* Initialize LAN Controller */
	outb(0x00, ioaddr + CONFIG_1);   /* Stand by mode */
	outb(0x00, ioaddr + FJ_CONFIG1); /* Disable IRQ of LAN Card */
	outb(0x00, ioaddr + FJ_BUFCNTL); /* Reset ? I'm not sure */
	net_open(dev);
	spin_unlock_irqrestore(&lp->lock, flags);

	netif_wake_queue(dev);
}

static int net_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct net_local *lp = dev->priv;
	int ioaddr = dev->base_addr;
	short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
	unsigned char *buf = skb->data;
	unsigned long flags;

	/* Block a transmit from overlapping.  */
	
	if (length > ETH_FRAME_LEN) {
		if (net_debug)
			printk("%s: Attempting to send a large packet (%d bytes).\n",
				dev->name, length);
		return 1;
	}
	if (net_debug > 4)
		printk("%s: Transmitting a packet of length %lu.\n", dev->name,
			   (unsigned long)skb->len);
	/* We may not start transmitting unless we finish transferring
	   a packet into the Tx queue. During executing the following
	   codes we possibly catch a Tx interrupt. Thus we flag off
	   tx_queue_ready, so that we prevent the interrupt routine
	   (net_interrupt) to start transmitting. */
	spin_lock_irqsave(&lp->lock, flags);
	lp->tx_queue_ready = 0;
	{
		outw(length, ioaddr + DATAPORT);
		outsw(ioaddr + DATAPORT, buf, (length + 1) >> 1);
		lp->tx_queue++;
		lp->tx_queue_len += length + 2;
	}
	lp->tx_queue_ready = 1;
	spin_unlock_irqrestore(&lp->lock, flags);

	if (lp->tx_started == 0) {
		/* If the Tx is idle, always trigger a transmit. */
		outb(0x80 | lp->tx_queue, ioaddr + TX_START);
		lp->tx_queue = 0;
		lp->tx_queue_len = 0;
		dev->trans_start = jiffies;
		lp->tx_started = 1;
	} else if (lp->tx_queue_len < 4096 - 1502)
		/* Yes, there is room for one more packet. */
	else
		netif_stop_queue(dev);

	dev_kfree_skb(skb);
	return 0;
}

/* The typical workload of the driver:
   Handle the network interface interrupts. */
static void
net_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = dev_id;
	struct net_local *lp;
	int ioaddr, status;

	ioaddr = dev->base_addr;
	lp = dev->priv;
	status = inw(ioaddr + TX_STATUS);
	outw(status, ioaddr + TX_STATUS);

	if (net_debug > 4)
		printk("%s: Interrupt with status %04x.\n", dev->name, status);
	if (lp->rx_started == 0 &&
		(status & 0xff00 || (inb(ioaddr + RX_MODE) & 0x40) == 0)) {
		/* Got a packet(s).
		   We cannot execute net_rx more than once at the same time for
		   the same device. During executing net_rx, we possibly catch a
		   Tx interrupt. Thus we flag on rx_started, so that we prevent
		   the interrupt routine (net_interrupt) to dive into net_rx
		   again. */
		lp->rx_started = 1;
		outb(0x00, ioaddr + RX_INTR);	/* Disable RX intr. */
		net_rx(dev);
		outb(0x81, ioaddr + RX_INTR);	/* Enable  RX intr. */
		lp->rx_started = 0;
	}
	if (status & 0x00ff) {
		if (status & 0x02) {
			/* More than 16 collisions occurred */
			if (net_debug > 4)
				printk("%s: 16 Collision occur during Txing.\n", dev->name);
			/* Cancel sending a packet. */
			outb(0x03, ioaddr + COL16CNTL);
			lp->stats.collisions++;
		}
		if (status & 0x82) {
			spin_lock(&lp->lock);
			lp->stats.tx_packets++;
			if (lp->tx_queue && lp->tx_queue_ready) {
				outb(0x80 | lp->tx_queue, ioaddr + TX_START);
				lp->tx_queue = 0;
				lp->tx_queue_len = 0;
				dev->trans_start = jiffies;
				netif_wake_queue(dev);	/* Inform upper layers. */
			} else {
				lp->tx_started = 0;
				netif_wake_queue(dev);	/* Inform upper layers. */
			}
			spin_unlock(&lp->lock);
		}
	}
	return;
}

/* We have a good packet(s), get it/them out of the buffers. */
static void net_rx(struct net_device *dev)
{
	struct net_local *lp = dev->priv;
	int ioaddr = dev->base_addr;
	int boguscount = 5;

	while ((inb(ioaddr + RX_MODE) & 0x40) == 0) {
		/* Clear PKT_RDY bit: by agy 19940922 */
		/* outb(0x80, ioaddr + RX_STATUS); */
		ushort status = inw(ioaddr + DATAPORT);

		if (net_debug > 4)
			printk("%s: Rxing packet mode %02x status %04x.\n",
				   dev->name, inb(ioaddr + RX_MODE), status);
#ifndef final_version
		if (status == 0) {
			outb(0x05, ioaddr + 14);
			break;
		}
#endif

		if ((status & 0xF0) != 0x20) {	/* There was an error. */
			lp->stats.rx_errors++;
			if (status & 0x08) lp->stats.rx_length_errors++;
			if (status & 0x04) lp->stats.rx_frame_errors++;
			if (status & 0x02) lp->stats.rx_crc_errors++;
			if (status & 0x01) lp->stats.rx_over_errors++;
		} else {
			ushort pkt_len = inw(ioaddr + DATAPORT);
			/* Malloc up new buffer. */
			struct sk_buff *skb;

			if (pkt_len > 1550) {
				printk("%s: The FMV-18x claimed a very large packet, size %d.\n",
					   dev->name, pkt_len);
				outb(0x05, ioaddr + 14);
				lp->stats.rx_errors++;
				break;
			}
			skb = dev_alloc_skb(pkt_len+3);
			if (skb == NULL) {
				printk("%s: Memory squeeze, dropping packet (len %d).\n",
					   dev->name, pkt_len);
				outb(0x05, ioaddr + 14);
				lp->stats.rx_dropped++;
				break;
			}
			skb->dev = dev;
			skb_reserve(skb,2);

			insw(ioaddr + DATAPORT, skb_put(skb,pkt_len), (pkt_len + 1) >> 1);

			if (net_debug > 5) {
				int i;
				printk("%s: Rxed packet of length %d: ", dev->name, pkt_len);
				for (i = 0; i < 14; i++)
					printk(" %02x", skb->data[i]);
				printk(".\n");
			}

			skb->protocol=eth_type_trans(skb, dev);
			netif_rx(skb);
			dev->last_rx = jiffies;
			lp->stats.rx_packets++;
			lp->stats.rx_bytes += pkt_len;
		}
		if (--boguscount <= 0)
			break;
	}

	/* If any worth-while packets have been received, dev_rint()
	   has done a mark_bh(NET_BH) for us and will work on them
	   when we get to the bottom-half routine. */
	{
		int i;
		for (i = 0; i < 20; i++) {
			if ((inb(ioaddr + RX_MODE) & 0x40) == 0x40)
				break;
			(void)inw(ioaddr + DATAPORT);				/* dummy status read */
			outb(0x05, ioaddr + 14);
		}

		if (net_debug > 5 && i > 0)
			printk("%s: Exint Rx packet with mode %02x after %d ticks.\n",
				   dev->name, inb(ioaddr + RX_MODE), i);
	}

	return;
}

/* The inverse routine to net_open(). */
static int net_close(struct net_device *dev)
{
	int ioaddr = dev->base_addr;

	((struct net_local *)dev->priv)->open_time = 0;

	netif_stop_queue(dev);
	
	/* Set configuration register 0 to disable Tx and Rx. */
	outb(0xda, ioaddr + CONFIG_0);

	/* Update the statistics -- ToDo. */

	/* Power-down the chip.  Green, green, green! */
	outb(0x00, ioaddr + CONFIG_1);

	/* Set the ethernet adaptor disable IRQ */
	outb(0x00, ioaddr + FJ_CONFIG1);

	return 0;
}

/* Get the current statistics.	This may be called with the card open or
   closed. */
static struct net_device_stats *net_get_stats(struct net_device *dev)
{
	struct net_local *lp = dev->priv;
	return &lp->stats;
}

/* Set or clear the multicast filter for this adaptor.
   num_addrs == -1	Promiscuous mode, receive all packets
   num_addrs == 0	Normal mode, clear multicast list
   num_addrs > 0	Multicast mode, receive normal and MC packets, and do
			best-effort filtering.
 */
 
static void set_multicast_list(struct net_device *dev)
{
	short ioaddr = dev->base_addr;
	if (dev->mc_count || dev->flags&(IFF_PROMISC|IFF_ALLMULTI))
	{
		/*
		 *	We must make the kernel realise we had to move
		 *	into promisc mode or we start all out war on
		 *	the cable. - AC
		 */
		dev->flags|=IFF_PROMISC;

		outb(3, ioaddr + RX_MODE);	/* Enable promiscuous mode */
	}
	else
		outb(2, ioaddr + RX_MODE);	/* Disable promiscuous, use normal mode */
}

#ifdef MODULE
static struct net_device dev_fmv18x;
static int io = 0x220;
static int irq;

MODULE_PARM(io, "i");
MODULE_PARM(irq, "i");
MODULE_PARM(net_debug, "i");
MODULE_PARM_DESC(io, "FMV-18X I/O address");
MODULE_PARM_DESC(irq, "FMV-18X IRQ number");
MODULE_PARM_DESC(net_debug, "FMV-18X debug level (0-1,5-6)");

int init_module(void)
{
	if (io == 0)
		printk("fmv18x: You should not use auto-probing with insmod!\n");
	dev_fmv18x.base_addr	= io;
	dev_fmv18x.irq		= irq;
	dev_fmv18x.init		= fmv18x_probe;
	if (register_netdev(&dev_fmv18x) != 0) {
		printk("fmv18x: register_netdev() returned non-zero.\n");
		return -EIO;
	}
	return 0;
}

void
cleanup_module(void)
{
	unregister_netdev(&dev_fmv18x);
	kfree(dev_fmv18x.priv);
	dev_fmv18x.priv = NULL;

	/* If we don't do this, we can't re-insmod it later. */
	free_irq(dev_fmv18x.irq, &dev_fmv18x);
	release_region(dev_fmv18x.base_addr, FMV18X_IO_EXTENT);
}
#endif /* MODULE */

/*
 * Local variables:
 *  compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -m486 -c fmv18x.c"
 *  version-control: t
 *  kept-new-versions: 5
 *  tab-width: 4
 *  c-indent-level: 4
 * End:
 */