Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | /* $Id: chmc.c,v 1.3 2001/04/03 12:49:47 davem Exp $ * memctrlr.c: Driver for UltraSPARC-III memory controller. * * Copyright (C) 2001 David S. Miller (davem@redhat.com) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/init.h> #include <asm/spitfire.h> #include <asm/chmctrl.h> #include <asm/oplib.h> #include <asm/io.h> #define CHMCTRL_NDGRPS 2 #define CHMCTRL_NDIMMS 4 #define DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS) /* OBP memory-layout property format. */ struct obp_map { unsigned char dimm_map[144]; unsigned char pin_map[576]; }; #define DIMM_LABEL_SZ 8 struct obp_mem_layout { /* One max 8-byte string label per DIMM. Usually * this matches the label on the motherboard where * that DIMM resides. */ char dimm_labels[DIMMS_PER_MC][DIMM_LABEL_SZ]; /* If symmetric use map[0], else it is * asymmetric and map[1] should be used. */ char symmetric; struct obp_map map[2]; }; #define CHMCTRL_NBANKS 4 struct bank_info { struct mctrl_info *mp; int bank_id; u64 raw_reg; int valid; int uk; int um; int lk; int lm; int interleave; unsigned long base; unsigned long size; }; struct mctrl_info { struct list_head list; int portid; int index; struct obp_mem_layout layout_prop; int layout_size; void *regs; u64 timing_control1; u64 timing_control2; u64 timing_control3; u64 timing_control4; u64 memaddr_control; struct bank_info logical_banks[CHMCTRL_NBANKS]; }; static LIST_HEAD(mctrl_list); /* Does BANK decode PHYS_ADDR? */ static int bank_match(struct bank_info *bp, unsigned long phys_addr) { unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT; unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT; /* Bank must be enabled to match. */ if (bp->valid == 0) return 0; /* Would BANK match upper bits? */ upper_bits ^= bp->um; /* What bits are different? */ upper_bits = ~upper_bits; /* Invert. */ upper_bits |= bp->uk; /* What bits don't matter for matching? */ upper_bits = ~upper_bits; /* Invert. */ if (upper_bits) return 0; /* Would BANK match lower bits? */ lower_bits ^= bp->lm; /* What bits are different? */ lower_bits = ~lower_bits; /* Invert. */ lower_bits |= bp->lk; /* What bits don't matter for matching? */ lower_bits = ~lower_bits; /* Invert. */ if (lower_bits) return 0; /* I always knew you'd be the one. */ return 1; } /* Given PHYS_ADDR, search memory controller banks for a match. */ static struct bank_info *find_bank(unsigned long phys_addr) { struct list_head *mctrl_head = &mctrl_list; struct list_head *mctrl_entry = mctrl_head->next; for (;;) { struct mctrl_info *mp = list_entry(mctrl_entry, struct mctrl_info, list); int bank_no; if (mctrl_entry == mctrl_head) break; mctrl_entry = mctrl_entry->next; for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) { struct bank_info *bp; bp = &mp->logical_banks[bank_no]; if (bank_match(bp, phys_addr)) return bp; } } return NULL; } /* This is the main purpose of this driver. */ #define SYNDROME_MIN -1 #define SYNDROME_MAX 144 int chmc_getunumber(int syndrome_code, unsigned long phys_addr, char *buf, int buflen) { struct bank_info *bp; struct obp_mem_layout *prop; int bank_in_controller, first_dimm; bp = find_bank(phys_addr); if (bp == NULL || syndrome_code < SYNDROME_MIN || syndrome_code > SYNDROME_MAX) { buf[0] = '?'; buf[1] = '?'; buf[2] = '?'; buf[3] = '\0'; return 0; } prop = &bp->mp->layout_prop; bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1); first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1)); first_dimm *= CHMCTRL_NDIMMS; if (syndrome_code != SYNDROME_MIN) { struct obp_map *map; int qword, where_in_line, where, map_index, map_offset; unsigned int map_val; /* Yaay, single bit error so we can figure out * the exact dimm. */ if (prop->symmetric) map = &prop->map[0]; else map = &prop->map[1]; /* Covert syndrome code into the way the bits are * positioned on the bus. */ if (syndrome_code < 144 - 16) syndrome_code += 16; else if (syndrome_code < 144) syndrome_code -= (144 - 7); else if (syndrome_code < (144 + 3)) syndrome_code -= (144 + 3 - 4); else syndrome_code -= 144 + 3; /* All this magic has to do with how a cache line * comes over the wire on Safari. A 64-bit line * comes over in 4 quadword cycles, each of which * transmit ECC/MTAG info as well as the actual * data. 144 bits per quadword, 576 total. */ #define LINE_SIZE 64 #define LINE_ADDR_MSK (LINE_SIZE - 1) #define QW_PER_LINE 4 #define QW_BYTES (LINE_SIZE / QW_PER_LINE) #define QW_BITS 144 #define LAST_BIT (576 - 1) qword = (phys_addr & LINE_ADDR_MSK) / QW_BYTES; where_in_line = ((3 - qword) * QW_BITS) + syndrome_code; where = (LAST_BIT - where_in_line); map_index = where >> 2; map_offset = where & 0x3; map_val = map->dimm_map[map_index]; map_val = ((map_val >> ((3 - map_offset) << 1)) & (2 - 1)); sprintf(buf, "%s, pin %3d", prop->dimm_labels[first_dimm + map_val], map->pin_map[where_in_line]); } else { int dimm; /* Multi-bit error, we just dump out all the * dimm labels assosciated with this bank. */ for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) { sprintf(buf, "%s ", prop->dimm_labels[first_dimm + dimm]); buf += strlen(buf); } } return 0; } /* Accessing the registers is slightly complicated. If you want * to get at the memory controller which is on the same processor * the code is executing, you must use special ASI load/store else * you go through the global mapping. */ static u64 read_mcreg(struct mctrl_info *mp, unsigned long offset) { unsigned long ret; if (mp->portid == smp_processor_id()) { __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (ret) : "r" (offset), "i" (ASI_MCU_CTRL_REG)); } else { __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (ret) : "r" (mp->regs + offset), "i" (ASI_PHYS_BYPASS_EC_E)); } return ret; } #if 0 /* currently unused */ static void write_mcreg(struct mctrl_info *mp, unsigned long offset, u64 val) { if (mp->portid == smp_processor_id()) { __asm__ __volatile__("stxa %0, [%1] %2" : : "r" (val), "r" (offset), "i" (ASI_MCU_CTRL_REG)); } else { __asm__ __volatile__("ldxa %0, [%1] %2" : : "r" (val), "r" (mp->regs + offset), "i" (ASI_PHYS_BYPASS_EC_E)); } } #endif static void interpret_one_decode_reg(struct mctrl_info *mp, int which_bank, u64 val) { struct bank_info *p = &mp->logical_banks[which_bank]; p->mp = mp; p->bank_id = (CHMCTRL_NBANKS * mp->portid) + which_bank; p->raw_reg = val; p->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT; p->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT; p->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT; p->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT; p->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT; p->base = (p->um); p->base &= ~(p->uk); p->base <<= PA_UPPER_BITS_SHIFT; switch(p->lk) { case 0xf: default: p->interleave = 1; break; case 0xe: p->interleave = 2; break; case 0xc: p->interleave = 4; break; case 0x8: p->interleave = 8; break; case 0x0: p->interleave = 16; break; }; /* UK[10] is reserved, and UK[11] is not set for the SDRAM * bank size definition. */ p->size = (((unsigned long)p->uk & ((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT; p->size /= p->interleave; } static void fetch_decode_regs(struct mctrl_info *mp) { if (mp->layout_size == 0) return; interpret_one_decode_reg(mp, 0, read_mcreg(mp, CHMCTRL_DECODE1)); interpret_one_decode_reg(mp, 1, read_mcreg(mp, CHMCTRL_DECODE2)); interpret_one_decode_reg(mp, 2, read_mcreg(mp, CHMCTRL_DECODE3)); interpret_one_decode_reg(mp, 3, read_mcreg(mp, CHMCTRL_DECODE4)); } static int init_one_mctrl(int node, int index) { struct mctrl_info *mp = kmalloc(sizeof(*mp), GFP_KERNEL); int portid = prom_getintdefault(node, "portid", -1); struct linux_prom64_registers p_reg_prop; int t; if (!mp) return -1; memset(mp, 0, sizeof(*mp)); if (portid == -1) goto fail; mp->portid = portid; mp->layout_size = prom_getproplen(node, "memory-layout"); if (mp->layout_size < 0) mp->layout_size = 0; if (mp->layout_size > sizeof(mp->layout_prop)) goto fail; if (mp->layout_size > 0) prom_getproperty(node, "memory-layout", (char *) &mp->layout_prop, mp->layout_size); t = prom_getproperty(node, "reg", (char *) &p_reg_prop, sizeof(p_reg_prop)); if (t < 0 || p_reg_prop.reg_size != 0x48) goto fail; mp->regs = ioremap(p_reg_prop.phys_addr, p_reg_prop.reg_size); if (mp->regs == NULL) goto fail; if (mp->layout_size != 0UL) { mp->timing_control1 = read_mcreg(mp, CHMCTRL_TCTRL1); mp->timing_control2 = read_mcreg(mp, CHMCTRL_TCTRL2); mp->timing_control3 = read_mcreg(mp, CHMCTRL_TCTRL3); mp->timing_control4 = read_mcreg(mp, CHMCTRL_TCTRL4); mp->memaddr_control = read_mcreg(mp, CHMCTRL_MACTRL); } fetch_decode_regs(mp); mp->index = index; list_add(&mp->list, &mctrl_list); /* Report the device. */ printk(KERN_INFO "chmc%d: US3 memory controller at %p [%s]\n", mp->index, mp->regs, (mp->layout_size ? "ACTIVE" : "INACTIVE")); return 0; fail: if (mp) { if (mp->regs != NULL) iounmap(mp->regs); kfree(mp); } return -1; } static int __init probe_for_string(char *name, int index) { int node = prom_getchild(prom_root_node); while ((node = prom_searchsiblings(node, name)) != 0) { int ret = init_one_mctrl(node, index); if (!ret) index++; node = prom_getsibling(node); if (!node) break; } return index; } static int __init chmc_init(void) { int index; /* This driver is only for cheetah platforms. */ if (tlb_type != cheetah) return -ENODEV; index = probe_for_string("memory-controller", 0); index = probe_for_string("mc-us3", index); return 0; } static void __exit chmc_cleanup(void) { struct list_head *head = &mctrl_list; struct list_head *tmp = head->next; for (;;) { struct mctrl_info *p = list_entry(tmp, struct mctrl_info, list); if (tmp == head) break; tmp = tmp->next; list_del(&p->list); iounmap(p->regs); kfree(p); } } module_init(chmc_init); module_exit(chmc_cleanup); |