Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | | | satan.sa 3.3 12/19/90 | | The entry point satan computes the arctangent of an | input value. satand does the same except the input value is a | denormalized number. | | Input: Double-extended value in memory location pointed to by address | register a0. | | Output: Arctan(X) returned in floating-point register Fp0. | | Accuracy and Monotonicity: The returned result is within 2 ulps in | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | result is subsequently rounded to double precision. The | result is provably monotonic in double precision. | | Speed: The program satan takes approximately 160 cycles for input | argument X such that 1/16 < |X| < 16. For the other arguments, | the program will run no worse than 10% slower. | | Algorithm: | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. | | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. | Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits | of X with a bit-1 attached at the 6-th bit position. Define u | to be u = (X-F) / (1 + X*F). | | Step 3. Approximate arctan(u) by a polynomial poly. | | Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values | calculated beforehand. Exit. | | Step 5. If |X| >= 16, go to Step 7. | | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. | | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'. | Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. | | Copyright (C) Motorola, Inc. 1990 | All Rights Reserved | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | The copyright notice above does not evidence any | actual or intended publication of such source code. |satan idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 .include "fpsp.h" BOUNDS1: .long 0x3FFB8000,0x4002FFFF ONE: .long 0x3F800000 .long 0x00000000 ATANA3: .long 0xBFF6687E,0x314987D8 ATANA2: .long 0x4002AC69,0x34A26DB3 ATANA1: .long 0xBFC2476F,0x4E1DA28E ATANB6: .long 0x3FB34444,0x7F876989 ATANB5: .long 0xBFB744EE,0x7FAF45DB ATANB4: .long 0x3FBC71C6,0x46940220 ATANB3: .long 0xBFC24924,0x921872F9 ATANB2: .long 0x3FC99999,0x99998FA9 ATANB1: .long 0xBFD55555,0x55555555 ATANC5: .long 0xBFB70BF3,0x98539E6A ATANC4: .long 0x3FBC7187,0x962D1D7D ATANC3: .long 0xBFC24924,0x827107B8 ATANC2: .long 0x3FC99999,0x9996263E ATANC1: .long 0xBFD55555,0x55555536 PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000 NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000 ATANTBL: .long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 .long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 .long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 .long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 .long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 .long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 .long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 .long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 .long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 .long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 .long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 .long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 .long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 .long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 .long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 .long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 .long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 .long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 .long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 .long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 .long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 .long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 .long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 .long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 .long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 .long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 .long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 .long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 .long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 .long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 .long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 .long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 .long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 .long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 .long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 .long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 .long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 .long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 .long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 .long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 .long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 .long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 .long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 .long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 .long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 .long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 .long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 .long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 .long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 .long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 .long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 .long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 .long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 .long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 .long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 .long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 .long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 .long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 .long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 .long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 .long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 .long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 .long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 .long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 .long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 .long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 .long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 .long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 .long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 .long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 .long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 .long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 .long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 .long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 .long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 .long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 .long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 .long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 .long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 .long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 .long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 .long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 .long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 .long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 .long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 .long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 .long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 .long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 .long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 .long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 .long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 .long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 .long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 .long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 .long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 .long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 .long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 .long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 .long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 .long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 .long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 .long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 .long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 .long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 .long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 .long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 .long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 .long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 .long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 .long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 .long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 .long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 .long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 .long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 .long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 .long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 .long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 .long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 .long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 .long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 .long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 .long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 .long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 .long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 .long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 .long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 .long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 .long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 .set X,FP_SCR1 .set XDCARE,X+2 .set XFRAC,X+4 .set XFRACLO,X+8 .set ATANF,FP_SCR2 .set ATANFHI,ATANF+4 .set ATANFLO,ATANF+8 | xref t_frcinx |xref t_extdnrm .global satand satand: |--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT bra t_extdnrm .global satan satan: |--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S fmovex (%a0),%fp0 | ...LOAD INPUT movel (%a0),%d0 movew 4(%a0),%d0 fmovex %fp0,X(%a6) andil #0x7FFFFFFF,%d0 cmpil #0x3FFB8000,%d0 | ...|X| >= 1/16? bges ATANOK1 bra ATANSM ATANOK1: cmpil #0x4002FFFF,%d0 | ...|X| < 16 ? bles ATANMAIN bra ATANBIG |--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE |--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). |--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN |--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE |--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS |--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR |--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO |--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE |--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL |--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE |--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION |--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION |--WILL INVOLVE A VERY LONG POLYNOMIAL. |--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS |--WE CHOSE F TO BE +-2^K * 1.BBBB1 |--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE |--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE |--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS |-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). ATANMAIN: movew #0x0000,XDCARE(%a6) | ...CLEAN UP X JUST IN CASE andil #0xF8000000,XFRAC(%a6) | ...FIRST 5 BITS oril #0x04000000,XFRAC(%a6) | ...SET 6-TH BIT TO 1 movel #0x00000000,XFRACLO(%a6) | ...LOCATION OF X IS NOW F fmovex %fp0,%fp1 | ...FP1 IS X fmulx X(%a6),%fp1 | ...FP1 IS X*F, NOTE THAT X*F > 0 fsubx X(%a6),%fp0 | ...FP0 IS X-F fadds #0x3F800000,%fp1 | ...FP1 IS 1 + X*F fdivx %fp1,%fp0 | ...FP0 IS U = (X-F)/(1+X*F) |--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) |--CREATE ATAN(F) AND STORE IT IN ATANF, AND |--SAVE REGISTERS FP2. movel %d2,-(%a7) | ...SAVE d2 TEMPORARILY movel %d0,%d2 | ...THE EXPO AND 16 BITS OF X andil #0x00007800,%d0 | ...4 VARYING BITS OF F'S FRACTION andil #0x7FFF0000,%d2 | ...EXPONENT OF F subil #0x3FFB0000,%d2 | ...K+4 asrl #1,%d2 addl %d2,%d0 | ...THE 7 BITS IDENTIFYING F asrl #7,%d0 | ...INDEX INTO TBL OF ATAN(|F|) lea ATANTBL,%a1 addal %d0,%a1 | ...ADDRESS OF ATAN(|F|) movel (%a1)+,ATANF(%a6) movel (%a1)+,ATANFHI(%a6) movel (%a1)+,ATANFLO(%a6) | ...ATANF IS NOW ATAN(|F|) movel X(%a6),%d0 | ...LOAD SIGN AND EXPO. AGAIN andil #0x80000000,%d0 | ...SIGN(F) orl %d0,ATANF(%a6) | ...ATANF IS NOW SIGN(F)*ATAN(|F|) movel (%a7)+,%d2 | ...RESTORE d2 |--THAT'S ALL I HAVE TO DO FOR NOW, |--BUT ALAS, THE DIVIDE IS STILL CRANKING! |--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS |--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U |--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. |--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) |--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. |--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT |--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED fmovex %fp0,%fp1 fmulx %fp1,%fp1 fmoved ATANA3,%fp2 faddx %fp1,%fp2 | ...A3+V fmulx %fp1,%fp2 | ...V*(A3+V) fmulx %fp0,%fp1 | ...U*V faddd ATANA2,%fp2 | ...A2+V*(A3+V) fmuld ATANA1,%fp1 | ...A1*U*V fmulx %fp2,%fp1 | ...A1*U*V*(A2+V*(A3+V)) faddx %fp1,%fp0 | ...ATAN(U), FP1 RELEASED fmovel %d1,%FPCR |restore users exceptions faddx ATANF(%a6),%fp0 | ...ATAN(X) bra t_frcinx ATANBORS: |--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. |--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. cmpil #0x3FFF8000,%d0 bgt ATANBIG | ...I.E. |X| >= 16 ATANSM: |--|X| <= 1/16 |--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE |--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) |--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) |--WHERE Y = X*X, AND Z = Y*Y. cmpil #0x3FD78000,%d0 blt ATANTINY |--COMPUTE POLYNOMIAL fmulx %fp0,%fp0 | ...FP0 IS Y = X*X movew #0x0000,XDCARE(%a6) fmovex %fp0,%fp1 fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y fmoved ATANB6,%fp2 fmoved ATANB5,%fp3 fmulx %fp1,%fp2 | ...Z*B6 fmulx %fp1,%fp3 | ...Z*B5 faddd ATANB4,%fp2 | ...B4+Z*B6 faddd ATANB3,%fp3 | ...B3+Z*B5 fmulx %fp1,%fp2 | ...Z*(B4+Z*B6) fmulx %fp3,%fp1 | ...Z*(B3+Z*B5) faddd ATANB2,%fp2 | ...B2+Z*(B4+Z*B6) faddd ATANB1,%fp1 | ...B1+Z*(B3+Z*B5) fmulx %fp0,%fp2 | ...Y*(B2+Z*(B4+Z*B6)) fmulx X(%a6),%fp0 | ...X*Y faddx %fp2,%fp1 | ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] fmulx %fp1,%fp0 | ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) fmovel %d1,%FPCR |restore users exceptions faddx X(%a6),%fp0 bra t_frcinx ATANTINY: |--|X| < 2^(-40), ATAN(X) = X movew #0x0000,XDCARE(%a6) fmovel %d1,%FPCR |restore users exceptions fmovex X(%a6),%fp0 |last inst - possible exception set bra t_frcinx ATANBIG: |--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, |--RETURN SIGN(X)*PI/2 + ATAN(-1/X). cmpil #0x40638000,%d0 bgt ATANHUGE |--APPROXIMATE ATAN(-1/X) BY |--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' |--THIS CAN BE RE-WRITTEN AS |--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. fmoves #0xBF800000,%fp1 | ...LOAD -1 fdivx %fp0,%fp1 | ...FP1 IS -1/X |--DIVIDE IS STILL CRANKING fmovex %fp1,%fp0 | ...FP0 IS X' fmulx %fp0,%fp0 | ...FP0 IS Y = X'*X' fmovex %fp1,X(%a6) | ...X IS REALLY X' fmovex %fp0,%fp1 fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y fmoved ATANC5,%fp3 fmoved ATANC4,%fp2 fmulx %fp1,%fp3 | ...Z*C5 fmulx %fp1,%fp2 | ...Z*B4 faddd ATANC3,%fp3 | ...C3+Z*C5 faddd ATANC2,%fp2 | ...C2+Z*C4 fmulx %fp3,%fp1 | ...Z*(C3+Z*C5), FP3 RELEASED fmulx %fp0,%fp2 | ...Y*(C2+Z*C4) faddd ATANC1,%fp1 | ...C1+Z*(C3+Z*C5) fmulx X(%a6),%fp0 | ...X'*Y faddx %fp2,%fp1 | ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] fmulx %fp1,%fp0 | ...X'*Y*([B1+Z*(B3+Z*B5)] | ... +[Y*(B2+Z*(B4+Z*B6))]) faddx X(%a6),%fp0 fmovel %d1,%FPCR |restore users exceptions btstb #7,(%a0) beqs pos_big neg_big: faddx NPIBY2,%fp0 bra t_frcinx pos_big: faddx PPIBY2,%fp0 bra t_frcinx ATANHUGE: |--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY btstb #7,(%a0) beqs pos_huge neg_huge: fmovex NPIBY2,%fp0 fmovel %d1,%fpcr fsubx NTINY,%fp0 bra t_frcinx pos_huge: fmovex PPIBY2,%fp0 fmovel %d1,%fpcr fsubx PTINY,%fp0 bra t_frcinx |end |