Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | /* * include/asm-s390/system.h * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), * * Derived from "include/asm-i386/system.h" */ #ifndef __ASM_SYSTEM_H #define __ASM_SYSTEM_H #include <linux/config.h> #ifdef __KERNEL__ #include <asm/lowcore.h> #endif #include <linux/kernel.h> #define prepare_to_switch() do { } while(0) #define switch_to(prev,next,last) do { \ if (prev == next) \ break; \ save_fp_regs(&prev->thread.fp_regs); \ restore_fp_regs(&next->thread.fp_regs); \ last = resume(&prev->thread,&next->thread); \ } while (0) struct task_struct; #define nop() __asm__ __volatile__ ("nop") #define xchg(ptr,x) \ ((__typeof__(*(ptr)))__xchg((unsigned long)(x),(void *)(ptr),sizeof(*(ptr)))) extern void __misaligned_u16(void); extern void __misaligned_u32(void); extern void __misaligned_u64(void); static inline unsigned long __xchg(unsigned long x, void * ptr, int size) { switch (size) { case 1: asm volatile ( " lghi 1,3\n" " nr 1,%0\n" /* isolate last 2 bits */ " xr %0,1\n" /* align ptr */ " bras 2,0f\n" " icm 1,8,7(%1)\n" /* for ptr&3 == 0 */ " stcm 0,8,7(%1)\n" " icm 1,4,7(%1)\n" /* for ptr&3 == 1 */ " stcm 0,4,7(%1)\n" " icm 1,2,7(%1)\n" /* for ptr&3 == 2 */ " stcm 0,2,7(%1)\n" " icm 1,1,7(%1)\n" /* for ptr&3 == 3 */ " stcm 0,1,7(%1)\n" "0: sll 1,3\n" " la 2,0(1,2)\n" /* r2 points to an icm */ " l 0,0(%0)\n" /* get fullword */ "1: lr 1,0\n" /* cs loop */ " ex 0,0(2)\n" /* insert x */ " cs 0,1,0(%0)\n" " jl 1b\n" " ex 0,4(2)" /* store *ptr to x */ : "+&a" (ptr) : "a" (&x) : "memory", "0", "1", "2"); break; case 2: if(((addr_t)ptr)&1) __misaligned_u16(); asm volatile ( " lghi 1,2\n" " nr 1,%0\n" /* isolate bit 2^1 */ " xr %0,1\n" /* align ptr */ " bras 2,0f\n" " icm 1,12,6(%1)\n" /* for ptr&2 == 0 */ " stcm 0,12,6(%1)\n" " icm 1,3,2(%1)\n" /* for ptr&2 == 1 */ " stcm 0,3,2(%1)\n" "0: sll 1,2\n" " la 2,0(1,2)\n" /* r2 points to an icm */ " l 0,0(%0)\n" /* get fullword */ "1: lr 1,0\n" /* cs loop */ " ex 0,0(2)\n" /* insert x */ " cs 0,1,0(%0)\n" " jl 1b\n" " ex 0,4(2)" /* store *ptr to x */ : "+&a" (ptr) : "a" (&x) : "memory", "0", "1", "2"); break; case 4: if(((addr_t)ptr)&3) __misaligned_u32(); asm volatile ( " l 0,0(%1)\n" "0: cs 0,%0,0(%1)\n" " jl 0b\n" " lgfr %0,0\n" : "+d" (x) : "a" (ptr) : "memory", "0" ); break; case 8: if(((addr_t)ptr)&7) __misaligned_u64(); asm volatile ( " lg 0,0(%1)\n" "0: csg 0,%0,0(%1)\n" " jl 0b\n" " lgr %0,0\n" : "+d" (x) : "a" (ptr) : "memory", "0" ); break; default: abort(); } return x; } /* * Force strict CPU ordering. * And yes, this is required on UP too when we're talking * to devices. * * This is very similar to the ppc eieio/sync instruction in that is * does a checkpoint syncronisation & makes sure that * all memory ops have completed wrt other CPU's ( see 7-15 POP DJB ). */ #define eieio() __asm__ __volatile__ ("BCR 15,0") # define SYNC_OTHER_CORES(x) eieio() #define mb() eieio() #define rmb() eieio() #define wmb() eieio() #define smp_mb() mb() #define smp_rmb() rmb() #define smp_wmb() wmb() #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() #define set_mb(var, value) do { var = value; mb(); } while (0) #define set_wmb(var, value) do { var = value; wmb(); } while (0) /* interrupt control.. */ #define __sti() ({ \ unsigned long dummy; \ __asm__ __volatile__ ( \ "stosm %0,0x03" : "=m" (dummy) : : "memory"); \ }) #define __cli() ({ \ unsigned long flags; \ __asm__ __volatile__ ( \ "stnsm %0,0xFC" : "=m" (flags) : : "memory"); \ flags; \ }) #define __save_flags(x) \ __asm__ __volatile__("stosm %0,0" : "=m" (x) : : "memory") #define __restore_flags(x) \ __asm__ __volatile__("ssm %0" : : "m" (x) : "memory") #define __load_psw(psw) \ __asm__ __volatile__("lpswe %0" : : "m" (psw)); #define __ctl_load(array, low, high) ({ \ __asm__ __volatile__ ( \ " la 1,%0\n" \ " bras 2,0f\n" \ " lctlg 0,0,0(1)\n" \ "0: ex %1,0(2)" \ : : "m" (array), "a" (((low)<<4)+(high)) : "1", "2" ); \ }) #define __ctl_store(array, low, high) ({ \ __asm__ __volatile__ ( \ " la 1,%0\n" \ " bras 2,0f\n" \ " stctg 0,0,0(1)\n" \ "0: ex %1,0(2)" \ : "=m" (array) : "a" (((low)<<4)+(high)): "1", "2" ); \ }) #define __ctl_set_bit(cr, bit) ({ \ __u8 dummy[24]; \ __asm__ __volatile__ ( \ " la 1,%0\n" /* align to 8 byte */ \ " aghi 1,7\n" \ " nill 1,0xfff8\n" \ " bras 2,0f\n" /* skip indirect insns */ \ " stctg 0,0,0(1)\n" \ " lctlg 0,0,0(1)\n" \ "0: ex %1,0(2)\n" /* execute stctl */ \ " lg 0,0(1)\n" \ " ogr 0,%2\n" /* set the bit */ \ " stg 0,0(1)\n" \ "1: ex %1,6(2)" /* execute lctl */ \ : "=m" (dummy) : "a" (cr*17), "a" (1L<<(bit)) \ : "0", "1", "2"); \ }) #define __ctl_clear_bit(cr, bit) ({ \ __u8 dummy[24]; \ __asm__ __volatile__ ( \ " la 1,%0\n" /* align to 8 byte */ \ " aghi 1,7\n" \ " nill 1,0xfff8\n" \ " bras 2,0f\n" /* skip indirect insns */ \ " stctg 0,0,0(1)\n" \ " lctlg 0,0,0(1)\n" \ "0: ex %1,0(2)\n" /* execute stctl */ \ " lg 0,0(1)\n" \ " ngr 0,%2\n" /* set the bit */ \ " stg 0,0(1)\n" \ "1: ex %1,6(2)" /* execute lctl */ \ : "=m" (dummy) : "a" (cr*17), "a" (~(1L<<(bit))) \ : "0", "1", "2"); \ }) /* For spinlocks etc */ #define local_irq_save(x) ((x) = __cli()) #define local_irq_restore(x) __restore_flags(x) #define local_irq_disable() __cli() #define local_irq_enable() __sti() #ifdef CONFIG_SMP extern void __global_cli(void); extern void __global_sti(void); extern unsigned long __global_save_flags(void); extern void __global_restore_flags(unsigned long); #define cli() __global_cli() #define sti() __global_sti() #define save_flags(x) ((x)=__global_save_flags()) #define restore_flags(x) __global_restore_flags(x) extern void smp_ctl_set_bit(int cr, int bit); extern void smp_ctl_clear_bit(int cr, int bit); #define ctl_set_bit(cr, bit) smp_ctl_set_bit(cr, bit) #define ctl_clear_bit(cr, bit) smp_ctl_clear_bit(cr, bit) #else #define cli() __cli() #define sti() __sti() #define save_flags(x) __save_flags(x) #define restore_flags(x) __restore_flags(x) #define ctl_set_bit(cr, bit) __ctl_set_bit(cr, bit) #define ctl_clear_bit(cr, bit) __ctl_clear_bit(cr, bit) #endif #ifdef __KERNEL__ extern struct task_struct *resume(void *,void *); extern int save_fp_regs1(s390_fp_regs *fpregs); extern void save_fp_regs(s390_fp_regs *fpregs); extern int restore_fp_regs1(s390_fp_regs *fpregs); extern void restore_fp_regs(s390_fp_regs *fpregs); #endif #endif |