Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | /* * linux/fs/open.c * * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes * * Manage the dynamic fd arrays in the process files_struct. */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <asm/bitops.h> /* * Allocate an fd array, using kmalloc or vmalloc. * Note: the array isn't cleared at allocation time. */ struct file ** alloc_fd_array(int num) { struct file **new_fds; int size = num * sizeof(struct file *); if (size <= PAGE_SIZE) new_fds = (struct file **) kmalloc(size, GFP_KERNEL); else new_fds = (struct file **) vmalloc(size); return new_fds; } void free_fd_array(struct file **array, int num) { int size = num * sizeof(struct file *); if (!array) { printk (KERN_ERR __FUNCTION__ "array = 0 (num = %d)\n", num); return; } if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */ return; else if (size <= PAGE_SIZE) kfree(array); else vfree(array); } /* * Expand the fd array in the files_struct. Called with the files * spinlock held for write. */ int expand_fd_array(struct files_struct *files, int nr) { struct file **new_fds; int error, nfds; error = -EMFILE; if (files->max_fds >= NR_OPEN || nr >= NR_OPEN) goto out; nfds = files->max_fds; write_unlock(&files->file_lock); /* * Expand to the max in easy steps, and keep expanding it until * we have enough for the requested fd array size. */ do { #if NR_OPEN_DEFAULT < 256 if (nfds < 256) nfds = 256; else #endif if (nfds < (PAGE_SIZE / sizeof(struct file *))) nfds = PAGE_SIZE / sizeof(struct file *); else { nfds = nfds * 2; if (nfds > NR_OPEN) nfds = NR_OPEN; } } while (nfds <= nr); error = -ENOMEM; new_fds = alloc_fd_array(nfds); write_lock(&files->file_lock); if (!new_fds) goto out; /* Copy the existing array and install the new pointer */ if (nfds > files->max_fds) { struct file **old_fds; int i; old_fds = xchg(&files->fd, new_fds); i = xchg(&files->max_fds, nfds); /* Don't copy/clear the array if we are creating a new fd array for fork() */ if (i) { memcpy(new_fds, old_fds, i * sizeof(struct file *)); /* clear the remainder of the array */ memset(&new_fds[i], 0, (nfds-i) * sizeof(struct file *)); write_unlock(&files->file_lock); free_fd_array(old_fds, i); write_lock(&files->file_lock); } } else { /* Somebody expanded the array while we slept ... */ write_unlock(&files->file_lock); free_fd_array(new_fds, nfds); write_lock(&files->file_lock); } error = 0; out: return error; } /* * Allocate an fdset array, using kmalloc or vmalloc. * Note: the array isn't cleared at allocation time. */ fd_set * alloc_fdset(int num) { fd_set *new_fdset; int size = num / 8; if (size <= PAGE_SIZE) new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL); else new_fdset = (fd_set *) vmalloc(size); return new_fdset; } void free_fdset(fd_set *array, int num) { int size = num / 8; if (!array) { printk (KERN_ERR __FUNCTION__ "array = 0 (num = %d)\n", num); return; } if (num <= __FD_SETSIZE) /* Don't free an embedded fdset */ return; else if (size <= PAGE_SIZE) kfree(array); else vfree(array); } /* * Expand the fdset in the files_struct. Called with the files spinlock * held for write. */ int expand_fdset(struct files_struct *files, int nr) { fd_set *new_openset = 0, *new_execset = 0; int error, nfds = 0; error = -EMFILE; if (files->max_fdset >= NR_OPEN || nr >= NR_OPEN) goto out; nfds = files->max_fdset; write_unlock(&files->file_lock); /* Expand to the max in easy steps */ do { if (nfds < (PAGE_SIZE * 8)) nfds = PAGE_SIZE * 8; else { nfds = nfds * 2; if (nfds > NR_OPEN) nfds = NR_OPEN; } } while (nfds <= nr); error = -ENOMEM; new_openset = alloc_fdset(nfds); new_execset = alloc_fdset(nfds); write_lock(&files->file_lock); if (!new_openset || !new_execset) goto out; error = 0; /* Copy the existing tables and install the new pointers */ if (nfds > files->max_fdset) { int i = files->max_fdset / (sizeof(unsigned long) * 8); int count = (nfds - files->max_fdset) / 8; /* * Don't copy the entire array if the current fdset is * not yet initialised. */ if (i) { memcpy (new_openset, files->open_fds, files->max_fdset/8); memcpy (new_execset, files->close_on_exec, files->max_fdset/8); memset (&new_openset->fds_bits[i], 0, count); memset (&new_execset->fds_bits[i], 0, count); } nfds = xchg(&files->max_fdset, nfds); new_openset = xchg(&files->open_fds, new_openset); new_execset = xchg(&files->close_on_exec, new_execset); write_unlock(&files->file_lock); free_fdset (new_openset, nfds); free_fdset (new_execset, nfds); write_lock(&files->file_lock); return 0; } /* Somebody expanded the array while we slept ... */ out: write_unlock(&files->file_lock); if (new_openset) free_fdset(new_openset, nfds); if (new_execset) free_fdset(new_execset, nfds); write_lock(&files->file_lock); return error; } |