Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/*
 * Resizable simple shmem filesystem for Linux.
 *
 * Copyright (C) 2000 Linus Torvalds.
 *		 2000 Transmeta Corp.
 *		 2000 Christoph Rohland
 * 
 * This file is released under the GPL.
 */

/*
 * This shared memory handling is heavily based on the ramfs. It
 * extends the ramfs by the ability to use swap which would makes it a
 * completely usable filesystem.
 *
 * But read and write are not supported (yet)
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/string.h>
#include <linux/locks.h>
#include <asm/smplock.h>

#include <asm/uaccess.h>

#define SHMEM_MAGIC	0x01021994

#define ENTRIES_PER_PAGE (PAGE_SIZE/sizeof(unsigned long))
#define NR_SINGLE (ENTRIES_PER_PAGE + SHMEM_NR_DIRECT)

static struct super_operations shmem_ops;
static struct address_space_operations shmem_aops;
static struct file_operations shmem_file_operations;
static struct inode_operations shmem_inode_operations;
static struct file_operations shmem_dir_operations;
static struct inode_operations shmem_dir_inode_operations;
static struct vm_operations_struct shmem_shared_vm_ops;
static struct vm_operations_struct shmem_private_vm_ops;

LIST_HEAD (shmem_inodes);
static spinlock_t shmem_ilock = SPIN_LOCK_UNLOCKED;

static swp_entry_t * shmem_swp_entry (struct shmem_inode_info *info, unsigned long index) 
{
	if (index < SHMEM_NR_DIRECT)
		return info->i_direct+index;

	index -= SHMEM_NR_DIRECT;
	if (index >= ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
		return NULL;

	if (!info->i_indirect) {
		info->i_indirect = (swp_entry_t **) get_zeroed_page(GFP_USER);
		if (!info->i_indirect)
			return NULL;
	}
	if(!(info->i_indirect[index/ENTRIES_PER_PAGE])) {
		info->i_indirect[index/ENTRIES_PER_PAGE] = (swp_entry_t *) get_zeroed_page(GFP_USER);
		if (!info->i_indirect[index/ENTRIES_PER_PAGE])
			return NULL;
	}
	
	return info->i_indirect[index/ENTRIES_PER_PAGE]+index%ENTRIES_PER_PAGE;
}

static int shmem_free_swp(swp_entry_t *dir, unsigned int count)
{
	swp_entry_t *ptr, entry;
	struct page * page;
	int freed = 0;

	for (ptr = dir; ptr < dir + count; ptr++) {
		if (!ptr->val)
			continue;
		entry = *ptr;
		swap_free (entry);
		*ptr = (swp_entry_t){0};
		freed++;
		if (!(page = lookup_swap_cache(entry)))
			continue;
		delete_from_swap_cache(page);
		page_cache_release(page);
	}
	return freed;
}

/*
 * shmem_truncate_part - free a bunch of swap entries
 *
 * @dir:	pointer to swp_entries 
 * @size:	number of entries in dir
 * @start:	offset to start from
 * @inode:	inode for statistics
 * @freed:	counter for freed pages
 *
 * It frees the swap entries from dir+start til dir+size
 *
 * returns 0 if it truncated something, else (offset-size)
 */

static unsigned long 
shmem_truncate_part (swp_entry_t * dir, unsigned long size, 
		     unsigned long start, struct inode * inode, unsigned long *freed) {
	if (start > size)
		return start - size;
	if (dir)
		*freed += shmem_free_swp (dir+start, size-start);
	
	return 0;
}

/*
 * shmem_recalc_inode - recalculate the size of an inode
 *
 * @inode: inode to recalc
 *
 * We have to calculate the free blocks since the mm can drop pages
 * behind our back
 *
 * But we know that normally
 * inodes->i_blocks == inode->i_mapping->nrpages + info->swapped
 *
 * So the mm freed 
 * inodes->i_blocks - (inode->i_mapping->nrpages + info->swapped)
 *
 * It has to be called with the spinlock held.
 */

static void shmem_recalc_inode(struct inode * inode)
{
	unsigned long freed;

	freed = inode->i_blocks -
		(inode->i_mapping->nrpages + inode->u.shmem_i.swapped);
	if (freed){
		struct shmem_sb_info * info = &inode->i_sb->u.shmem_sb;
		inode->i_blocks -= freed;
		spin_lock (&info->stat_lock);
		info->free_blocks += freed;
		spin_unlock (&info->stat_lock);
	}
}

static void shmem_truncate (struct inode * inode)
{
	int clear_base;
	unsigned long start;
	unsigned long freed = 0;
	swp_entry_t **base, **ptr;
	struct shmem_inode_info * info = &inode->u.shmem_i;

	spin_lock (&info->lock);
	start = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

	start = shmem_truncate_part (info->i_direct, SHMEM_NR_DIRECT, start, inode, &freed);

	if (!(base = info->i_indirect))
		goto out;;

	clear_base = 1;
	for (ptr = base; ptr < base + ENTRIES_PER_PAGE; ptr++) {
		if (!start) {
			if (!*ptr)
				continue;
			freed += shmem_free_swp (*ptr, ENTRIES_PER_PAGE);
			free_page ((unsigned long) *ptr);
			*ptr = 0;
			continue;
		}
		clear_base = 0;
		start = shmem_truncate_part (*ptr, ENTRIES_PER_PAGE, start, inode, &freed);
	}

	if (!clear_base) 
		goto out;

	free_page ((unsigned long)base);
	info->i_indirect = 0;

out:
	info->swapped -= freed;
	shmem_recalc_inode(inode);
	spin_unlock (&info->lock);
}

static void shmem_delete_inode(struct inode * inode)
{
	struct shmem_sb_info *info = &inode->i_sb->u.shmem_sb;

	spin_lock (&shmem_ilock);
	list_del (&inode->u.shmem_i.list);
	spin_unlock (&shmem_ilock);
	inode->i_size = 0;
	shmem_truncate (inode);
	spin_lock (&info->stat_lock);
	info->free_inodes++;
	spin_unlock (&info->stat_lock);
	clear_inode(inode);
}

/*
 * Move the page from the page cache to the swap cache
 */
static int shmem_writepage(struct page * page)
{
	int error;
	struct shmem_inode_info *info;
	swp_entry_t *entry, swap;

	info = &page->mapping->host->u.shmem_i;
	swap = __get_swap_page(2);
	if (!swap.val) {
		set_page_dirty(page);
		UnlockPage(page);
		return -ENOMEM;
	}

	spin_lock(&info->lock);
	shmem_recalc_inode(page->mapping->host);
	entry = shmem_swp_entry (info, page->index);
	if (!entry)	/* this had been allocted on page allocation */
		BUG();
	error = -EAGAIN;
	if (entry->val) {
                __swap_free(swap, 2);
		goto out;
        }

        *entry = swap;
	error = 0;
	/* Remove the from the page cache */
	lru_cache_del(page);
	remove_inode_page(page);

	/* Add it to the swap cache */
	add_to_swap_cache(page, swap);
	page_cache_release(page);
	set_page_dirty(page);
	info->swapped++;
out:
	spin_unlock(&info->lock);
	UnlockPage(page);
	return error;
}

/*
 * shmem_nopage - either get the page from swap or allocate a new one
 *
 * If we allocate a new one we do not mark it dirty. That's up to the
 * vm. If we swap it in we mark it dirty since we also free the swap
 * entry since a page cannot live in both the swap and page cache
 */
struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int no_share)
{
	unsigned long size;
	struct page * page;
	unsigned int idx;
	swp_entry_t *entry;
	struct inode * inode = vma->vm_file->f_dentry->d_inode;
	struct address_space * mapping = inode->i_mapping;
	struct shmem_inode_info *info;

	idx = (address - vma->vm_start) >> PAGE_SHIFT;
	idx += vma->vm_pgoff;

	down (&inode->i_sem);
	size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	page = NOPAGE_SIGBUS;
	if ((idx >= size) && (vma->vm_mm == current->mm))
		goto out;

	/* retry, we may have slept */
	page = __find_lock_page(mapping, idx, page_hash (mapping, idx));
	if (page)
		goto cached_page;

	info = &inode->u.shmem_i;
	entry = shmem_swp_entry (info, idx);
	if (!entry)
		goto oom;
	spin_lock (&info->lock);
	shmem_recalc_inode(inode);
	spin_unlock (&info->lock);
	if (entry->val) {
		unsigned long flags;

		/* Look it up and read it in.. */
		page = lookup_swap_cache(*entry);
		if (!page) {
			lock_kernel();
			swapin_readahead(*entry);
			page = read_swap_cache(*entry);
			unlock_kernel();
			if (!page) 
				goto oom;
		}

		/* We have to this with page locked to prevent races */
		spin_lock (&info->lock);
		swap_free(*entry);
		lock_page(page);
		delete_from_swap_cache_nolock(page);
		*entry = (swp_entry_t) {0};
		flags = page->flags & ~((1 << PG_uptodate) | (1 << PG_error) | (1 << PG_referenced) | (1 << PG_arch_1));
		page->flags = flags | (1 << PG_dirty);
		add_to_page_cache_locked(page, mapping, idx);
		info->swapped--;
		spin_unlock (&info->lock);
	} else {
		spin_lock (&inode->i_sb->u.shmem_sb.stat_lock);
		if (inode->i_sb->u.shmem_sb.free_blocks == 0)
			goto no_space;
		inode->i_sb->u.shmem_sb.free_blocks--;
		spin_unlock (&inode->i_sb->u.shmem_sb.stat_lock);
		/* Ok, get a new page */
		page = page_cache_alloc(mapping);
		if (!page)
			goto oom;
		clear_user_highpage(page, address);
		inode->i_blocks++;
		add_to_page_cache (page, mapping, idx);
	}
	/* We have the page */
	SetPageUptodate (page);
	if (info->locked)
		page_cache_get(page);

cached_page:
	UnlockPage (page);
	up(&inode->i_sem);

	if (no_share) {
		struct page *new_page = page_cache_alloc(inode->i_mapping);

		if (new_page) {
			copy_user_highpage(new_page, page, address);
			flush_page_to_ram(new_page);
		} else
			new_page = NOPAGE_OOM;
		page_cache_release(page);
		return new_page;
	}

	flush_page_to_ram (page);
	return(page);
no_space:
	spin_unlock (&inode->i_sb->u.shmem_sb.stat_lock);
oom:
	page = NOPAGE_OOM;
out:
	up(&inode->i_sem);
	return page;
}

struct inode *shmem_get_inode(struct super_block *sb, int mode, int dev)
{
	struct inode * inode;

	spin_lock (&sb->u.shmem_sb.stat_lock);
	if (!sb->u.shmem_sb.free_inodes) {
		spin_unlock (&sb->u.shmem_sb.stat_lock);
		return NULL;
	}
	sb->u.shmem_sb.free_inodes--;
	spin_unlock (&sb->u.shmem_sb.stat_lock);

	inode = new_inode(sb);
	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blksize = PAGE_CACHE_SIZE;
		inode->i_blocks = 0;
		inode->i_rdev = to_kdev_t(dev);
		inode->i_mapping->a_ops = &shmem_aops;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		spin_lock_init (&inode->u.shmem_i.lock);
		switch (mode & S_IFMT) {
		default:
			init_special_inode(inode, mode, dev);
			break;
		case S_IFREG:
			inode->i_op = &shmem_inode_operations;
			inode->i_fop = &shmem_file_operations;
			break;
		case S_IFDIR:
			inode->i_op = &shmem_dir_inode_operations;
			inode->i_fop = &shmem_dir_operations;
			break;
		case S_IFLNK:
			BUG();
		}
		spin_lock (&shmem_ilock);
		list_add (&inode->u.shmem_i.list, &shmem_inodes);
		spin_unlock (&shmem_ilock);
	}
	return inode;
}

static int shmem_statfs(struct super_block *sb, struct statfs *buf)
{
	buf->f_type = SHMEM_MAGIC;
	buf->f_bsize = PAGE_CACHE_SIZE;
	spin_lock (&sb->u.shmem_sb.stat_lock);
	if (sb->u.shmem_sb.max_blocks != ULONG_MAX || 
	    sb->u.shmem_sb.max_inodes != ULONG_MAX) {
		buf->f_blocks = sb->u.shmem_sb.max_blocks;
		buf->f_bavail = buf->f_bfree = sb->u.shmem_sb.free_blocks;
		buf->f_files = sb->u.shmem_sb.max_inodes;
		buf->f_ffree = sb->u.shmem_sb.free_inodes;
	}
	spin_unlock (&sb->u.shmem_sb.stat_lock);
	buf->f_namelen = 255;
	return 0;
}

void shmem_lock(struct file * file, int lock)
{
	struct inode * inode = file->f_dentry->d_inode;
	struct shmem_inode_info * info = &inode->u.shmem_i;
	struct page * page;
	unsigned long idx, size;

	if (info->locked == lock)
		return;
	down(&inode->i_sem);
	info->locked = lock;
	size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	for (idx = 0; idx < size; idx++) {
		page = find_lock_page(inode->i_mapping, idx);
		if (!page)
			continue;
		if (!lock) {
			/* release the extra count and our reference */
			page_cache_release(page);
			page_cache_release(page);
		}
		UnlockPage(page);
	}
	up(&inode->i_sem);
}

/*
 * Lookup the data. This is trivial - if the dentry didn't already
 * exist, we know it is negative.
 */
static struct dentry * shmem_lookup(struct inode *dir, struct dentry *dentry)
{
	d_add(dentry, NULL);
	return NULL;
}

/*
 * File creation. Allocate an inode, and we're done..
 */
static int shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, int dev)
{
	struct inode * inode = shmem_get_inode(dir->i_sb, mode, dev);
	int error = -ENOSPC;

	if (inode) {
		d_instantiate(dentry, inode);
		dget(dentry); /* Extra count - pin the dentry in core */
		error = 0;
	}
	return error;
}

static int shmem_mkdir(struct inode * dir, struct dentry * dentry, int mode)
{
	return shmem_mknod(dir, dentry, mode | S_IFDIR, 0);
}

static int shmem_create(struct inode *dir, struct dentry *dentry, int mode)
{
	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
}

/*
 * Link a file..
 */
static int shmem_link(struct dentry *old_dentry, struct inode * dir, struct dentry * dentry)
{
	struct inode *inode = old_dentry->d_inode;

	if (S_ISDIR(inode->i_mode))
		return -EPERM;

	inode->i_nlink++;
	atomic_inc(&inode->i_count);	/* New dentry reference */
	dget(dentry);		/* Extra pinning count for the created dentry */
	d_instantiate(dentry, inode);
	return 0;
}

static inline int shmem_positive(struct dentry *dentry)
{
	return dentry->d_inode && !d_unhashed(dentry);
}

/*
 * Check that a directory is empty (this works
 * for regular files too, they'll just always be
 * considered empty..).
 *
 * Note that an empty directory can still have
 * children, they just all have to be negative..
 */
static int shmem_empty(struct dentry *dentry)
{
	struct list_head *list;

	spin_lock(&dcache_lock);
	list = dentry->d_subdirs.next;

	while (list != &dentry->d_subdirs) {
		struct dentry *de = list_entry(list, struct dentry, d_child);

		if (shmem_positive(de)) {
			spin_unlock(&dcache_lock);
			return 0;
		}
		list = list->next;
	}
	spin_unlock(&dcache_lock);
	return 1;
}

/*
 * This works for both directories and regular files.
 * (non-directories will always have empty subdirs)
 */
static int shmem_unlink(struct inode * dir, struct dentry *dentry)
{
	int retval = -ENOTEMPTY;

	if (shmem_empty(dentry)) {
		struct inode *inode = dentry->d_inode;

		inode->i_nlink--;
		dput(dentry);	/* Undo the count from "create" - this does all the work */
		retval = 0;
	}
	return retval;
}

#define shmem_rmdir shmem_unlink

/*
 * The VFS layer already does all the dentry stuff for rename,
 * we just have to decrement the usage count for the target if
 * it exists so that the VFS layer correctly free's it when it
 * gets overwritten.
 */
static int shmem_rename(struct inode * old_dir, struct dentry *old_dentry, struct inode * new_dir,struct dentry *new_dentry)
{
	int error = -ENOTEMPTY;

	if (shmem_empty(new_dentry)) {
		struct inode *inode = new_dentry->d_inode;
		if (inode) {
			inode->i_nlink--;
			dput(new_dentry);
		}
		error = 0;
	}
	return error;
}

static int shmem_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct vm_operations_struct * ops;
	struct inode *inode = file->f_dentry->d_inode;

	ops = &shmem_private_vm_ops;
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		ops = &shmem_shared_vm_ops;
	if (!inode->i_sb || !S_ISREG(inode->i_mode))
		return -EACCES;
	UPDATE_ATIME(inode);
	vma->vm_ops = ops;
	return 0;
}

static int shmem_parse_options(char *options, int *mode, unsigned long * blocks, unsigned long *inodes)
{
	char *this_char, *value;

	this_char = NULL;
	if ( options )
		this_char = strtok(options,",");
	for ( ; this_char; this_char = strtok(NULL,",")) {
		if ((value = strchr(this_char,'=')) != NULL)
			*value++ = 0;
		if (!strcmp(this_char,"nr_blocks")) {
			if (!value || !*value || !blocks)
				return 1;
			*blocks = simple_strtoul(value,&value,0);
			if (*value)
				return 1;
		} else if (!strcmp(this_char,"nr_inodes")) {
			if (!value || !*value || !inodes)
				return 1;
			*inodes = simple_strtoul(value,&value,0);
			if (*value)
				return 1;
		} else if (!strcmp(this_char,"mode")) {
			if (!value || !*value || !mode)
				return 1;
			*mode = simple_strtoul(value,&value,8);
			if (*value)
				return 1;
		}
		else
			return 1;
	}

	return 0;
}

static struct super_block *shmem_read_super(struct super_block * sb, void * data, int silent)
{
	struct inode * inode;
	struct dentry * root;
	unsigned long blocks = ULONG_MAX;	/* unlimited */
	unsigned long inodes = ULONG_MAX;	/* unlimited */
	int mode   = S_IRWXUGO | S_ISVTX;

	if (shmem_parse_options (data, &mode, &blocks, &inodes)) {
		printk(KERN_ERR "shmem fs invalid option\n");
		return NULL;
	}

	spin_lock_init (&sb->u.shmem_sb.stat_lock);
	sb->u.shmem_sb.max_blocks = blocks;
	sb->u.shmem_sb.free_blocks = blocks;
	sb->u.shmem_sb.max_inodes = inodes;
	sb->u.shmem_sb.free_inodes = inodes;
	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = SHMEM_MAGIC;
	sb->s_op = &shmem_ops;
	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
	if (!inode)
		return NULL;

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return NULL;
	}
	sb->s_root = root;
	return sb;
}

static int shmem_remount_fs (struct super_block *sb, int *flags, char *data)
{
	int error;
	unsigned long max_blocks, blocks;
	unsigned long max_inodes, inodes;
	struct shmem_sb_info *info = &sb->u.shmem_sb;

	if (shmem_parse_options (data, NULL, &max_blocks, &max_inodes))
		return -EINVAL;

	spin_lock(&info->stat_lock);
	blocks = info->max_blocks - info->free_blocks;
	inodes = info->max_inodes - info->free_inodes;
	error = -EINVAL;
	if (max_blocks < blocks)
		goto out;
	if (max_inodes < inodes)
		goto out;
	error = 0;
	info->max_blocks  = max_blocks;
	info->free_blocks = max_blocks - blocks;
	info->max_inodes  = max_inodes;
	info->free_inodes = max_inodes - inodes;
out:
	spin_unlock(&info->stat_lock);
	return error;
}

static struct address_space_operations shmem_aops = {
	writepage: shmem_writepage
};

static struct file_operations shmem_file_operations = {
	mmap:		shmem_mmap
};

static struct inode_operations shmem_inode_operations = {
	truncate:	shmem_truncate,
};

static struct file_operations shmem_dir_operations = {
	read:		generic_read_dir,
	readdir:	dcache_readdir,
};

static struct inode_operations shmem_dir_inode_operations = {
	create:		shmem_create,
	lookup:		shmem_lookup,
	link:		shmem_link,
	unlink:		shmem_unlink,
	mkdir:		shmem_mkdir,
	rmdir:		shmem_rmdir,
	mknod:		shmem_mknod,
	rename:		shmem_rename,
};

static struct super_operations shmem_ops = {
	statfs:		shmem_statfs,
	remount_fs:	shmem_remount_fs,
	delete_inode:	shmem_delete_inode,
	put_inode:	force_delete,	
};

static struct vm_operations_struct shmem_private_vm_ops = {
	nopage:	shmem_nopage,
};

static struct vm_operations_struct shmem_shared_vm_ops = {
	nopage:	shmem_nopage,
};

static DECLARE_FSTYPE(shmem_fs_type, "shm", shmem_read_super, FS_LITTER);

static int __init init_shmem_fs(void)
{
	int error;
	struct vfsmount * res;

	if ((error = register_filesystem(&shmem_fs_type))) {
		printk (KERN_ERR "Could not register shmem fs\n");
		return error;
	}

	res = kern_mount(&shmem_fs_type);
	if (IS_ERR (res)) {
		printk (KERN_ERR "could not kern_mount shmem fs\n");
		unregister_filesystem(&shmem_fs_type);
		return PTR_ERR(res);
	}

	devfs_mk_dir (NULL, "shm", NULL);
	return 0;
}

static void __exit exit_shmem_fs(void)
{
	unregister_filesystem(&shmem_fs_type);
}

module_init(init_shmem_fs)
module_exit(exit_shmem_fs)

static int shmem_clear_swp (swp_entry_t entry, swp_entry_t *ptr, int size) {
	swp_entry_t *test;

	for (test = ptr; test < ptr + size; test++) {
		if (test->val == entry.val) {
			swap_free (entry);
			*test = (swp_entry_t) {0};
			return test - ptr;
		}
	}
	return -1;
}

static int shmem_unuse_inode (struct inode *inode, swp_entry_t entry, struct page *page)
{
	swp_entry_t **base, **ptr;
	unsigned long idx;
	int offset;
	struct shmem_inode_info *info = &inode->u.shmem_i;
	
	idx = 0;
	spin_lock (&info->lock);
	if ((offset = shmem_clear_swp (entry,info->i_direct, SHMEM_NR_DIRECT)) >= 0)
		goto found;

	idx = SHMEM_NR_DIRECT;
	if (!(base = info->i_indirect))
		goto out;

	for (ptr = base; ptr < base + ENTRIES_PER_PAGE; ptr++) {
		if (*ptr &&
		    (offset = shmem_clear_swp (entry, *ptr, ENTRIES_PER_PAGE)) >= 0)
			goto found;
		idx += ENTRIES_PER_PAGE;
	}
out:
	spin_unlock (&info->lock);
	return 0;
found:
	add_to_page_cache(page, inode->i_mapping, offset + idx);
	set_page_dirty(page);
	SetPageUptodate(page);
	UnlockPage(page);
	info->swapped--;
	spin_unlock(&info->lock);
	return 1;
}

/*
 * unuse_shmem() search for an eventually swapped out shmem page.
 */
void shmem_unuse(swp_entry_t entry, struct page *page)
{
	struct list_head *p;
	struct inode * inode;

	spin_lock (&shmem_ilock);
	list_for_each(p, &shmem_inodes) {
		inode = list_entry(p, struct inode, u.shmem_i.list);

		if (shmem_unuse_inode(inode, entry, page))
			break;
	}
	spin_unlock (&shmem_ilock);
}


/*
 * shmem_file_setup - get an unlinked file living in shmem fs
 *
 * @name: name for dentry (to be seen in /proc/<pid>/maps
 * @size: size to be set for the file
 *
 */
struct file *shmem_file_setup(char * name, loff_t size)
{
	int error;
	struct file *file;
	struct inode * inode;
	struct dentry *dentry, *root;
	struct qstr this;
	int vm_enough_memory(long pages);

	error = -ENOMEM;
	if (!vm_enough_memory((size) >> PAGE_SHIFT))
		goto out;

	this.name = name;
	this.len = strlen(name);
	this.hash = 0; /* will go */
	root = shmem_fs_type.kern_mnt->mnt_root;
	dentry = d_alloc(root, &this);
	if (!dentry)
		goto out;

	error = -ENFILE;
	file = get_empty_filp();
	if (!file)
		goto put_dentry;

	error = -ENOSPC;
	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
	if (!inode) 
		goto close_file;

	d_instantiate(dentry, inode);
	dentry->d_inode->i_size = size;
	file->f_vfsmnt = mntget(shmem_fs_type.kern_mnt);
	file->f_dentry = dentry;
	file->f_op = &shmem_file_operations;
	file->f_mode = FMODE_WRITE | FMODE_READ;
	inode->i_nlink = 0;	/* It is unlinked */
	return(file);

close_file:
	put_filp(file);
put_dentry:
	dput (dentry);
out:
	return ERR_PTR(error);	
}
/*
 * shmem_zero_setup - setup a shared anonymous mapping
 *
 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
 */
int shmem_zero_setup(struct vm_area_struct *vma)
{
	struct file *file;
	loff_t size = vma->vm_end - vma->vm_start;
	
	file = shmem_file_setup("dev/zero", size);
	if (IS_ERR(file))
		return PTR_ERR(file);

	if (vma->vm_file)
		fput (vma->vm_file);
	vma->vm_file = file;
	vma->vm_ops = &shmem_shared_vm_ops;
	return 0;
}