Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 | /* * linux/mm/swapfile.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie */ #include <linux/slab.h> #include <linux/smp_lock.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/blkdev.h> /* for blk_size */ #include <linux/vmalloc.h> #include <linux/pagemap.h> #include <linux/shm.h> #include <linux/compiler.h> #include <asm/pgtable.h> spinlock_t swaplock = SPIN_LOCK_UNLOCKED; unsigned int nr_swapfiles; int total_swap_pages; static int swap_overflow; static const char Bad_file[] = "Bad swap file entry "; static const char Unused_file[] = "Unused swap file entry "; static const char Bad_offset[] = "Bad swap offset entry "; static const char Unused_offset[] = "Unused swap offset entry "; struct swap_list_t swap_list = {-1, -1}; struct swap_info_struct swap_info[MAX_SWAPFILES]; #define SWAPFILE_CLUSTER 256 static inline int scan_swap_map(struct swap_info_struct *si) { unsigned long offset; /* * We try to cluster swap pages by allocating them * sequentially in swap. Once we've allocated * SWAPFILE_CLUSTER pages this way, however, we resort to * first-free allocation, starting a new cluster. This * prevents us from scattering swap pages all over the entire * swap partition, so that we reduce overall disk seek times * between swap pages. -- sct */ if (si->cluster_nr) { while (si->cluster_next <= si->highest_bit) { offset = si->cluster_next++; if (si->swap_map[offset]) continue; si->cluster_nr--; goto got_page; } } si->cluster_nr = SWAPFILE_CLUSTER; /* try to find an empty (even not aligned) cluster. */ offset = si->lowest_bit; check_next_cluster: if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit) { int nr; for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++) if (si->swap_map[nr]) { offset = nr+1; goto check_next_cluster; } /* We found a completly empty cluster, so start * using it. */ goto got_page; } /* No luck, so now go finegrined as usual. -Andrea */ for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) { if (si->swap_map[offset]) continue; si->lowest_bit = offset+1; got_page: if (offset == si->lowest_bit) si->lowest_bit++; if (offset == si->highest_bit) si->highest_bit--; if (si->lowest_bit > si->highest_bit) { si->lowest_bit = si->max; si->highest_bit = 0; } si->swap_map[offset] = 1; nr_swap_pages--; si->cluster_next = offset+1; return offset; } si->lowest_bit = si->max; si->highest_bit = 0; return 0; } swp_entry_t get_swap_page(void) { struct swap_info_struct * p; unsigned long offset; swp_entry_t entry; int type, wrapped = 0; entry.val = 0; /* Out of memory */ swap_list_lock(); type = swap_list.next; if (type < 0) goto out; if (nr_swap_pages <= 0) goto out; while (1) { p = &swap_info[type]; if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) { swap_device_lock(p); offset = scan_swap_map(p); swap_device_unlock(p); if (offset) { entry = SWP_ENTRY(type,offset); type = swap_info[type].next; if (type < 0 || p->prio != swap_info[type].prio) { swap_list.next = swap_list.head; } else { swap_list.next = type; } goto out; } } type = p->next; if (!wrapped) { if (type < 0 || p->prio != swap_info[type].prio) { type = swap_list.head; wrapped = 1; } } else if (type < 0) goto out; /* out of swap space */ } out: swap_list_unlock(); return entry; } static struct swap_info_struct * swap_info_get(swp_entry_t entry) { struct swap_info_struct * p; unsigned long offset, type; if (!entry.val) goto out; type = SWP_TYPE(entry); if (type >= nr_swapfiles) goto bad_nofile; p = & swap_info[type]; if (!(p->flags & SWP_USED)) goto bad_device; offset = SWP_OFFSET(entry); if (offset >= p->max) goto bad_offset; if (!p->swap_map[offset]) goto bad_free; swap_list_lock(); if (p->prio > swap_info[swap_list.next].prio) swap_list.next = type; swap_device_lock(p); return p; bad_free: printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); goto out; bad_offset: printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); goto out; bad_device: printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); goto out; bad_nofile: printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); out: return NULL; } static void swap_info_put(struct swap_info_struct * p) { swap_device_unlock(p); swap_list_unlock(); } static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) { int count = p->swap_map[offset]; if (count < SWAP_MAP_MAX) { count--; p->swap_map[offset] = count; if (!count) { if (offset < p->lowest_bit) p->lowest_bit = offset; if (offset > p->highest_bit) p->highest_bit = offset; nr_swap_pages++; } } return count; } /* * Caller has made sure that the swapdevice corresponding to entry * is still around or has not been recycled. */ void swap_free(swp_entry_t entry) { struct swap_info_struct * p; p = swap_info_get(entry); if (p) { swap_entry_free(p, SWP_OFFSET(entry)); swap_info_put(p); } } /* * Check if we're the only user of a swap page, * when the page is locked. */ static int exclusive_swap_page(struct page *page) { int retval = 0; struct swap_info_struct * p; swp_entry_t entry; entry.val = page->index; p = swap_info_get(entry); if (p) { /* Is the only swap cache user the cache itself? */ if (p->swap_map[SWP_OFFSET(entry)] == 1) { /* Recheck the page count with the pagecache lock held.. */ spin_lock(&pagecache_lock); if (page_count(page) - !!page->buffers == 2) retval = 1; spin_unlock(&pagecache_lock); } swap_info_put(p); } return retval; } /* * We can use this swap cache entry directly * if there are no other references to it. * * Here "exclusive_swap_page()" does the real * work, but we opportunistically check whether * we need to get all the locks first.. */ int can_share_swap_page(struct page *page) { int retval = 0; if (!PageLocked(page)) BUG(); switch (page_count(page)) { case 3: if (!page->buffers) break; /* Fallthrough */ case 2: if (!PageSwapCache(page)) break; retval = exclusive_swap_page(page); break; case 1: if (PageReserved(page)) break; retval = 1; } return retval; } /* * Work out if there are any other processes sharing this * swap cache page. Free it if you can. Return success. */ int remove_exclusive_swap_page(struct page *page) { int retval; struct swap_info_struct * p; swp_entry_t entry; if (!PageLocked(page)) BUG(); if (!PageSwapCache(page)) return 0; if (page_count(page) - !!page->buffers != 2) /* 2: us + cache */ return 0; entry.val = page->index; p = swap_info_get(entry); if (!p) return 0; /* Is the only swap cache user the cache itself? */ retval = 0; if (p->swap_map[SWP_OFFSET(entry)] == 1) { /* Recheck the page count with the pagecache lock held.. */ spin_lock(&pagecache_lock); if (page_count(page) - !!page->buffers == 2) { __delete_from_swap_cache(page); SetPageDirty(page); retval = 1; } spin_unlock(&pagecache_lock); } swap_info_put(p); if (retval) { block_flushpage(page, 0); swap_free(entry); page_cache_release(page); } return retval; } /* * Free the swap entry like above, but also try to * free the page cache entry if it is the last user. */ void free_swap_and_cache(swp_entry_t entry) { struct swap_info_struct * p; struct page *page = NULL; p = swap_info_get(entry); if (p) { if (swap_entry_free(p, SWP_OFFSET(entry)) == 1) page = find_trylock_page(&swapper_space, entry.val); swap_info_put(p); } if (page) { page_cache_get(page); /* Only cache user (+us), or swap space full? Free it! */ if (page_count(page) == 2 || vm_swap_full()) { delete_from_swap_cache(page); SetPageDirty(page); } UnlockPage(page); page_cache_release(page); } } /* * The swap entry has been read in advance, and we return 1 to indicate * that the page has been used or is no longer needed. * * Always set the resulting pte to be nowrite (the same as COW pages * after one process has exited). We don't know just how many PTEs will * share this swap entry, so be cautious and let do_wp_page work out * what to do if a write is requested later. */ /* mmlist_lock and vma->vm_mm->page_table_lock are held */ static inline void unuse_pte(struct vm_area_struct * vma, unsigned long address, pte_t *dir, swp_entry_t entry, struct page* page) { pte_t pte = *dir; if (likely(pte_to_swp_entry(pte).val != entry.val)) return; if (unlikely(pte_none(pte) || pte_present(pte))) return; get_page(page); set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot))); swap_free(entry); ++vma->vm_mm->rss; } /* mmlist_lock and vma->vm_mm->page_table_lock are held */ static inline void unuse_pmd(struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long size, unsigned long offset, swp_entry_t entry, struct page* page) { pte_t * pte; unsigned long end; if (pmd_none(*dir)) return; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return; } pte = pte_offset(dir, address); offset += address & PMD_MASK; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { unuse_pte(vma, offset+address-vma->vm_start, pte, entry, page); address += PAGE_SIZE; pte++; } while (address && (address < end)); } /* mmlist_lock and vma->vm_mm->page_table_lock are held */ static inline void unuse_pgd(struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long size, swp_entry_t entry, struct page* page) { pmd_t * pmd; unsigned long offset, end; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, address); offset = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; if (address >= end) BUG(); do { unuse_pmd(vma, pmd, address, end - address, offset, entry, page); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); } /* mmlist_lock and vma->vm_mm->page_table_lock are held */ static void unuse_vma(struct vm_area_struct * vma, pgd_t *pgdir, swp_entry_t entry, struct page* page) { unsigned long start = vma->vm_start, end = vma->vm_end; if (start >= end) BUG(); do { unuse_pgd(vma, pgdir, start, end - start, entry, page); start = (start + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } while (start && (start < end)); } static void unuse_process(struct mm_struct * mm, swp_entry_t entry, struct page* page) { struct vm_area_struct* vma; /* * Go through process' page directory. */ spin_lock(&mm->page_table_lock); for (vma = mm->mmap; vma; vma = vma->vm_next) { pgd_t * pgd = pgd_offset(mm, vma->vm_start); unuse_vma(vma, pgd, entry, page); } spin_unlock(&mm->page_table_lock); return; } /* * Scan swap_map from current position to next entry still in use. * Recycle to start on reaching the end, returning 0 when empty. */ static int find_next_to_unuse(struct swap_info_struct *si, int prev) { int max = si->max; int i = prev; int count; /* * No need for swap_device_lock(si) here: we're just looking * for whether an entry is in use, not modifying it; false * hits are okay, and sys_swapoff() has already prevented new * allocations from this area (while holding swap_list_lock()). */ for (;;) { if (++i >= max) { if (!prev) { i = 0; break; } /* * No entries in use at top of swap_map, * loop back to start and recheck there. */ max = prev + 1; prev = 0; i = 1; } count = si->swap_map[i]; if (count && count != SWAP_MAP_BAD) break; } return i; } /* * We completely avoid races by reading each swap page in advance, * and then search for the process using it. All the necessary * page table adjustments can then be made atomically. */ static int try_to_unuse(unsigned int type) { struct swap_info_struct * si = &swap_info[type]; struct mm_struct *start_mm; unsigned short *swap_map; unsigned short swcount; struct page *page; swp_entry_t entry; int i = 0; int retval = 0; int reset_overflow = 0; /* * When searching mms for an entry, a good strategy is to * start at the first mm we freed the previous entry from * (though actually we don't notice whether we or coincidence * freed the entry). Initialize this start_mm with a hold. * * A simpler strategy would be to start at the last mm we * freed the previous entry from; but that would take less * advantage of mmlist ordering (now preserved by swap_out()), * which clusters forked address spaces together, most recent * child immediately after parent. If we race with dup_mmap(), * we very much want to resolve parent before child, otherwise * we may miss some entries: using last mm would invert that. */ start_mm = &init_mm; atomic_inc(&init_mm.mm_users); /* * Keep on scanning until all entries have gone. Usually, * one pass through swap_map is enough, but not necessarily: * mmput() removes mm from mmlist before exit_mmap() and its * zap_page_range(). That's not too bad, those entries are * on their way out, and handled faster there than here. * do_munmap() behaves similarly, taking the range out of mm's * vma list before zap_page_range(). But unfortunately, when * unmapping a part of a vma, it takes the whole out first, * then reinserts what's left after (might even reschedule if * open() method called) - so swap entries may be invisible * to swapoff for a while, then reappear - but that is rare. */ while ((i = find_next_to_unuse(si, i))) { /* * Get a page for the entry, using the existing swap * cache page if there is one. Otherwise, get a clean * page and read the swap into it. */ swap_map = &si->swap_map[i]; entry = SWP_ENTRY(type, i); page = read_swap_cache_async(entry); if (!page) { /* * Either swap_duplicate() failed because entry * has been freed independently, and will not be * reused since sys_swapoff() already disabled * allocation from here, or alloc_page() failed. */ if (!*swap_map) continue; retval = -ENOMEM; break; } /* * Don't hold on to start_mm if it looks like exiting. */ if (atomic_read(&start_mm->mm_users) == 1) { mmput(start_mm); start_mm = &init_mm; atomic_inc(&init_mm.mm_users); } /* * Wait for and lock page. When do_swap_page races with * try_to_unuse, do_swap_page can handle the fault much * faster than try_to_unuse can locate the entry. This * apparently redundant "wait_on_page" lets try_to_unuse * defer to do_swap_page in such a case - in some tests, * do_swap_page and try_to_unuse repeatedly compete. */ wait_on_page(page); lock_page(page); /* * Remove all references to entry, without blocking. * Whenever we reach init_mm, there's no address space * to search, but use it as a reminder to search shmem. */ swcount = *swap_map; if (swcount > 1) { flush_page_to_ram(page); if (start_mm == &init_mm) shmem_unuse(entry, page); else unuse_process(start_mm, entry, page); } if (*swap_map > 1) { int set_start_mm = (*swap_map >= swcount); struct list_head *p = &start_mm->mmlist; struct mm_struct *new_start_mm = start_mm; struct mm_struct *mm; spin_lock(&mmlist_lock); while (*swap_map > 1 && (p = p->next) != &start_mm->mmlist) { mm = list_entry(p, struct mm_struct, mmlist); swcount = *swap_map; if (mm == &init_mm) { set_start_mm = 1; shmem_unuse(entry, page); } else unuse_process(mm, entry, page); if (set_start_mm && *swap_map < swcount) { new_start_mm = mm; set_start_mm = 0; } } atomic_inc(&new_start_mm->mm_users); spin_unlock(&mmlist_lock); mmput(start_mm); start_mm = new_start_mm; } /* * How could swap count reach 0x7fff when the maximum * pid is 0x7fff, and there's no way to repeat a swap * page within an mm (except in shmem, where it's the * shared object which takes the reference count)? * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. * * If that's wrong, then we should worry more about * exit_mmap() and do_munmap() cases described above: * we might be resetting SWAP_MAP_MAX too early here. * We know "Undead"s can happen, they're okay, so don't * report them; but do report if we reset SWAP_MAP_MAX. */ if (*swap_map == SWAP_MAP_MAX) { swap_list_lock(); swap_device_lock(si); nr_swap_pages++; *swap_map = 1; swap_device_unlock(si); swap_list_unlock(); reset_overflow = 1; } /* * If a reference remains (rare), we would like to leave * the page in the swap cache; but try_to_swap_out could * then re-duplicate the entry once we drop page lock, * so we might loop indefinitely; also, that page could * not be swapped out to other storage meanwhile. So: * delete from cache even if there's another reference, * after ensuring that the data has been saved to disk - * since if the reference remains (rarer), it will be * read from disk into another page. Splitting into two * pages would be incorrect if swap supported "shared * private" pages, but they are handled by tmpfs files. * Note shmem_unuse already deleted its from swap cache. */ swcount = *swap_map; if ((swcount > 0) != PageSwapCache(page)) BUG(); if ((swcount > 1) && PageDirty(page)) { rw_swap_page(WRITE, page); lock_page(page); } if (PageSwapCache(page)) delete_from_swap_cache(page); /* * So we could skip searching mms once swap count went * to 1, we did not mark any present ptes as dirty: must * mark page dirty so try_to_swap_out will preserve it. */ SetPageDirty(page); UnlockPage(page); page_cache_release(page); /* * Make sure that we aren't completely killing * interactive performance. Interruptible check on * signal_pending() would be nice, but changes the spec? */ if (current->need_resched) schedule(); } mmput(start_mm); if (reset_overflow) { printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); swap_overflow = 0; } return retval; } asmlinkage long sys_swapoff(const char * specialfile) { struct swap_info_struct * p = NULL; unsigned short *swap_map; struct nameidata nd; int i, type, prev; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = user_path_walk(specialfile, &nd); if (err) goto out; lock_kernel(); prev = -1; swap_list_lock(); for (type = swap_list.head; type >= 0; type = swap_info[type].next) { p = swap_info + type; if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) { if (p->swap_file == nd.dentry) break; } prev = type; } err = -EINVAL; if (type < 0) { swap_list_unlock(); goto out_dput; } if (prev < 0) { swap_list.head = p->next; } else { swap_info[prev].next = p->next; } if (type == swap_list.next) { /* just pick something that's safe... */ swap_list.next = swap_list.head; } nr_swap_pages -= p->pages; total_swap_pages -= p->pages; p->flags = SWP_USED; swap_list_unlock(); unlock_kernel(); err = try_to_unuse(type); lock_kernel(); if (err) { /* re-insert swap space back into swap_list */ swap_list_lock(); for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) if (p->prio >= swap_info[i].prio) break; p->next = i; if (prev < 0) swap_list.head = swap_list.next = p - swap_info; else swap_info[prev].next = p - swap_info; nr_swap_pages += p->pages; total_swap_pages += p->pages; p->flags = SWP_WRITEOK; swap_list_unlock(); goto out_dput; } if (p->swap_device) blkdev_put(p->swap_file->d_inode->i_bdev, BDEV_SWAP); path_release(&nd); swap_list_lock(); swap_device_lock(p); nd.mnt = p->swap_vfsmnt; nd.dentry = p->swap_file; p->swap_vfsmnt = NULL; p->swap_file = NULL; p->swap_device = 0; p->max = 0; swap_map = p->swap_map; p->swap_map = NULL; p->flags = 0; swap_device_unlock(p); swap_list_unlock(); vfree(swap_map); err = 0; out_dput: unlock_kernel(); path_release(&nd); out: return err; } int get_swaparea_info(char *buf) { char * page = (char *) __get_free_page(GFP_KERNEL); struct swap_info_struct *ptr = swap_info; int i, j, len = 0, usedswap; if (!page) return -ENOMEM; len += sprintf(buf, "Filename\t\t\tType\t\tSize\tUsed\tPriority\n"); for (i = 0 ; i < nr_swapfiles ; i++, ptr++) { if ((ptr->flags & SWP_USED) && ptr->swap_map) { char * path = d_path(ptr->swap_file, ptr->swap_vfsmnt, page, PAGE_SIZE); len += sprintf(buf + len, "%-31s ", path); if (!ptr->swap_device) len += sprintf(buf + len, "file\t\t"); else len += sprintf(buf + len, "partition\t"); usedswap = 0; for (j = 0; j < ptr->max; ++j) switch (ptr->swap_map[j]) { case SWAP_MAP_BAD: case 0: continue; default: usedswap++; } len += sprintf(buf + len, "%d\t%d\t%d\n", ptr->pages << (PAGE_SHIFT - 10), usedswap << (PAGE_SHIFT - 10), ptr->prio); } } free_page((unsigned long) page); return len; } int is_swap_partition(kdev_t dev) { struct swap_info_struct *ptr = swap_info; int i; for (i = 0 ; i < nr_swapfiles ; i++, ptr++) { if (ptr->flags & SWP_USED) if (ptr->swap_device == dev) return 1; } return 0; } /* * Written 01/25/92 by Simmule Turner, heavily changed by Linus. * * The swapon system call */ asmlinkage long sys_swapon(const char * specialfile, int swap_flags) { struct swap_info_struct * p; struct nameidata nd; struct inode * swap_inode; unsigned int type; int i, j, prev; int error; static int least_priority = 0; union swap_header *swap_header = 0; int swap_header_version; int nr_good_pages = 0; unsigned long maxpages = 1; int swapfilesize; struct block_device *bdev = NULL; unsigned short *swap_map; if (!capable(CAP_SYS_ADMIN)) return -EPERM; lock_kernel(); swap_list_lock(); p = swap_info; for (type = 0 ; type < nr_swapfiles ; type++,p++) if (!(p->flags & SWP_USED)) break; error = -EPERM; if (type >= MAX_SWAPFILES) { swap_list_unlock(); goto out; } if (type >= nr_swapfiles) nr_swapfiles = type+1; p->flags = SWP_USED; p->swap_file = NULL; p->swap_vfsmnt = NULL; p->swap_device = 0; p->swap_map = NULL; p->lowest_bit = 0; p->highest_bit = 0; p->cluster_nr = 0; p->sdev_lock = SPIN_LOCK_UNLOCKED; p->next = -1; if (swap_flags & SWAP_FLAG_PREFER) { p->prio = (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; } else { p->prio = --least_priority; } swap_list_unlock(); error = user_path_walk(specialfile, &nd); if (error) goto bad_swap_2; p->swap_file = nd.dentry; p->swap_vfsmnt = nd.mnt; swap_inode = nd.dentry->d_inode; error = -EINVAL; if (S_ISBLK(swap_inode->i_mode)) { kdev_t dev = swap_inode->i_rdev; struct block_device_operations *bdops; p->swap_device = dev; set_blocksize(dev, PAGE_SIZE); bd_acquire(swap_inode); bdev = swap_inode->i_bdev; bdops = devfs_get_ops(devfs_get_handle_from_inode(swap_inode)); if (bdops) bdev->bd_op = bdops; error = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0, BDEV_SWAP); if (error) goto bad_swap_2; set_blocksize(dev, PAGE_SIZE); error = -ENODEV; if (!dev || (blk_size[MAJOR(dev)] && !blk_size[MAJOR(dev)][MINOR(dev)])) goto bad_swap; swapfilesize = 0; if (blk_size[MAJOR(dev)]) swapfilesize = blk_size[MAJOR(dev)][MINOR(dev)] >> (PAGE_SHIFT - 10); } else if (S_ISREG(swap_inode->i_mode)) swapfilesize = swap_inode->i_size >> PAGE_SHIFT; else goto bad_swap; error = -EBUSY; for (i = 0 ; i < nr_swapfiles ; i++) { struct swap_info_struct *q = &swap_info[i]; if (i == type || !q->swap_file) continue; if (swap_inode->i_mapping == q->swap_file->d_inode->i_mapping) goto bad_swap; } swap_header = (void *) __get_free_page(GFP_USER); if (!swap_header) { printk("Unable to start swapping: out of memory :-)\n"); error = -ENOMEM; goto bad_swap; } lock_page(virt_to_page(swap_header)); rw_swap_page_nolock(READ, SWP_ENTRY(type,0), (char *) swap_header); if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) swap_header_version = 1; else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) swap_header_version = 2; else { printk("Unable to find swap-space signature\n"); error = -EINVAL; goto bad_swap; } switch (swap_header_version) { case 1: memset(((char *) swap_header)+PAGE_SIZE-10,0,10); j = 0; p->lowest_bit = 0; p->highest_bit = 0; for (i = 1 ; i < 8*PAGE_SIZE ; i++) { if (test_bit(i,(char *) swap_header)) { if (!p->lowest_bit) p->lowest_bit = i; p->highest_bit = i; maxpages = i+1; j++; } } nr_good_pages = j; p->swap_map = vmalloc(maxpages * sizeof(short)); if (!p->swap_map) { error = -ENOMEM; goto bad_swap; } for (i = 1 ; i < maxpages ; i++) { if (test_bit(i,(char *) swap_header)) p->swap_map[i] = 0; else p->swap_map[i] = SWAP_MAP_BAD; } break; case 2: /* Check the swap header's sub-version and the size of the swap file and bad block lists */ if (swap_header->info.version != 1) { printk(KERN_WARNING "Unable to handle swap header version %d\n", swap_header->info.version); error = -EINVAL; goto bad_swap; } p->lowest_bit = 1; maxpages = SWP_OFFSET(SWP_ENTRY(0,~0UL)) - 1; if (maxpages > swap_header->info.last_page) maxpages = swap_header->info.last_page; p->highest_bit = maxpages - 1; error = -EINVAL; if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) goto bad_swap; /* OK, set up the swap map and apply the bad block list */ if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { error = -ENOMEM; goto bad_swap; } error = 0; memset(p->swap_map, 0, maxpages * sizeof(short)); for (i=0; i<swap_header->info.nr_badpages; i++) { int page = swap_header->info.badpages[i]; if (page <= 0 || page >= swap_header->info.last_page) error = -EINVAL; else p->swap_map[page] = SWAP_MAP_BAD; } nr_good_pages = swap_header->info.last_page - swap_header->info.nr_badpages - 1 /* header page */; if (error) goto bad_swap; } if (swapfilesize && maxpages > swapfilesize) { printk(KERN_WARNING "Swap area shorter than signature indicates\n"); error = -EINVAL; goto bad_swap; } if (!nr_good_pages) { printk(KERN_WARNING "Empty swap-file\n"); error = -EINVAL; goto bad_swap; } p->swap_map[0] = SWAP_MAP_BAD; swap_list_lock(); swap_device_lock(p); p->max = maxpages; p->flags = SWP_WRITEOK; p->pages = nr_good_pages; nr_swap_pages += nr_good_pages; total_swap_pages += nr_good_pages; printk(KERN_INFO "Adding Swap: %dk swap-space (priority %d)\n", nr_good_pages<<(PAGE_SHIFT-10), p->prio); /* insert swap space into swap_list: */ prev = -1; for (i = swap_list.head; i >= 0; i = swap_info[i].next) { if (p->prio >= swap_info[i].prio) { break; } prev = i; } p->next = i; if (prev < 0) { swap_list.head = swap_list.next = p - swap_info; } else { swap_info[prev].next = p - swap_info; } swap_device_unlock(p); swap_list_unlock(); error = 0; goto out; bad_swap: if (bdev) blkdev_put(bdev, BDEV_SWAP); bad_swap_2: swap_list_lock(); swap_map = p->swap_map; nd.mnt = p->swap_vfsmnt; nd.dentry = p->swap_file; p->swap_device = 0; p->swap_file = NULL; p->swap_vfsmnt = NULL; p->swap_map = NULL; p->flags = 0; if (!(swap_flags & SWAP_FLAG_PREFER)) ++least_priority; swap_list_unlock(); if (swap_map) vfree(swap_map); path_release(&nd); out: if (swap_header) free_page((long) swap_header); unlock_kernel(); return error; } void si_swapinfo(struct sysinfo *val) { unsigned int i; unsigned long nr_to_be_unused = 0; swap_list_lock(); for (i = 0; i < nr_swapfiles; i++) { unsigned int j; if (swap_info[i].flags != SWP_USED) continue; for (j = 0; j < swap_info[i].max; ++j) { switch (swap_info[i].swap_map[j]) { case 0: case SWAP_MAP_BAD: continue; default: nr_to_be_unused++; } } } val->freeswap = nr_swap_pages + nr_to_be_unused; val->totalswap = total_swap_pages + nr_to_be_unused; swap_list_unlock(); } /* * Verify that a swap entry is valid and increment its swap map count. * * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as * "permanent", but will be reclaimed by the next swapoff. */ int swap_duplicate(swp_entry_t entry) { struct swap_info_struct * p; unsigned long offset, type; int result = 0; type = SWP_TYPE(entry); if (type >= nr_swapfiles) goto bad_file; p = type + swap_info; offset = SWP_OFFSET(entry); swap_device_lock(p); if (offset < p->max && p->swap_map[offset]) { if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { p->swap_map[offset]++; result = 1; } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { if (swap_overflow++ < 5) printk(KERN_WARNING "swap_dup: swap entry overflow\n"); p->swap_map[offset] = SWAP_MAP_MAX; result = 1; } } swap_device_unlock(p); out: return result; bad_file: printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); goto out; } /* * Page lock needs to be held in all cases to prevent races with * swap file deletion. */ int swap_count(struct page *page) { struct swap_info_struct * p; unsigned long offset, type; swp_entry_t entry; int retval = 0; entry.val = page->index; if (!entry.val) goto bad_entry; type = SWP_TYPE(entry); if (type >= nr_swapfiles) goto bad_file; p = type + swap_info; offset = SWP_OFFSET(entry); if (offset >= p->max) goto bad_offset; if (!p->swap_map[offset]) goto bad_unused; retval = p->swap_map[offset]; out: return retval; bad_entry: printk(KERN_ERR "swap_count: null entry!\n"); goto out; bad_file: printk(KERN_ERR "swap_count: %s%08lx\n", Bad_file, entry.val); goto out; bad_offset: printk(KERN_ERR "swap_count: %s%08lx\n", Bad_offset, entry.val); goto out; bad_unused: printk(KERN_ERR "swap_count: %s%08lx\n", Unused_offset, entry.val); goto out; } /* * Prior swap_duplicate protects against swap device deletion. */ void get_swaphandle_info(swp_entry_t entry, unsigned long *offset, kdev_t *dev, struct inode **swapf) { unsigned long type; struct swap_info_struct *p; type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_file, entry.val); return; } p = &swap_info[type]; *offset = SWP_OFFSET(entry); if (*offset >= p->max && *offset != 0) { printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_offset, entry.val); return; } if (p->swap_map && !p->swap_map[*offset]) { printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_offset, entry.val); return; } if (!(p->flags & SWP_USED)) { printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_file, entry.val); return; } if (p->swap_device) { *dev = p->swap_device; } else if (p->swap_file) { *swapf = p->swap_file->d_inode; } else { printk(KERN_ERR "rw_swap_page: no swap file or device\n"); } return; } /* * swap_device_lock prevents swap_map being freed. Don't grab an extra * reference on the swaphandle, it doesn't matter if it becomes unused. */ int valid_swaphandles(swp_entry_t entry, unsigned long *offset) { int ret = 0, i = 1 << page_cluster; unsigned long toff; struct swap_info_struct *swapdev = SWP_TYPE(entry) + swap_info; if (!page_cluster) /* no readahead */ return 0; toff = (SWP_OFFSET(entry) >> page_cluster) << page_cluster; if (!toff) /* first page is swap header */ toff++, i--; *offset = toff; swap_device_lock(swapdev); do { /* Don't read-ahead past the end of the swap area */ if (toff >= swapdev->max) break; /* Don't read in free or bad pages */ if (!swapdev->swap_map[toff]) break; if (swapdev->swap_map[toff] == SWAP_MAP_BAD) break; toff++; ret++; } while (--i); swap_device_unlock(swapdev); return ret; } |