Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 | /* * linux/arch/alpha/kernel/smp.c * * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com) * Renamed modified smp_call_function to smp_call_function_on_cpu() * Created an function that conforms to the old calling convention * of smp_call_function(). * * This is helpful for DCPI. * */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/irq.h> #include <asm/hwrpb.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/bitops.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/hardirq.h> #include <asm/softirq.h> #include <asm/mmu_context.h> #define __KERNEL_SYSCALLS__ #include <asm/unistd.h> #include "proto.h" #include "irq_impl.h" #define DEBUG_SMP 0 #if DEBUG_SMP #define DBGS(args) printk args #else #define DBGS(args) #endif /* A collection of per-processor data. */ struct cpuinfo_alpha cpu_data[NR_CPUS]; /* A collection of single bit ipi messages. */ static struct { unsigned long bits ____cacheline_aligned; } ipi_data[NR_CPUS] __cacheline_aligned; enum ipi_message_type { IPI_RESCHEDULE, IPI_CALL_FUNC, IPI_CPU_STOP, }; spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED; /* Set to a secondary's cpuid when it comes online. */ static unsigned long smp_secondary_alive; /* Which cpus ids came online. */ unsigned long cpu_present_mask; /* cpus reported in the hwrpb */ static unsigned long hwrpb_cpu_present_mask __initdata = 0; static int max_cpus = -1; /* Command-line limitation. */ int smp_num_probed; /* Internal processor count */ int smp_num_cpus = 1; /* Number that came online. */ int smp_threads_ready; /* True once the per process idle is forked. */ cycles_t cacheflush_time; int __cpu_number_map[NR_CPUS]; int __cpu_logical_map[NR_CPUS]; extern void calibrate_delay(void); extern asmlinkage void entInt(void); static int __init nosmp(char *str) { max_cpus = 0; return 1; } __setup("nosmp", nosmp); static int __init maxcpus(char *str) { get_option(&str, &max_cpus); return 1; } __setup("maxcpus", maxcpus); /* * Called by both boot and secondaries to move global data into * per-processor storage. */ static inline void __init smp_store_cpu_info(int cpuid) { cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy; cpu_data[cpuid].last_asn = ASN_FIRST_VERSION; cpu_data[cpuid].need_new_asn = 0; cpu_data[cpuid].asn_lock = 0; local_irq_count(cpuid) = 0; local_bh_count(cpuid) = 0; } /* * Ideally sets up per-cpu profiling hooks. Doesn't do much now... */ static inline void __init smp_setup_percpu_timer(int cpuid) { cpu_data[cpuid].prof_counter = 1; cpu_data[cpuid].prof_multiplier = 1; } static void __init wait_boot_cpu_to_stop(int cpuid) { long stop = jiffies + 10*HZ; while (time_before(jiffies, stop)) { if (!smp_secondary_alive) return; barrier(); } printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid); for (;;) barrier(); } /* * Where secondaries begin a life of C. */ void __init smp_callin(void) { int cpuid = hard_smp_processor_id(); if (current != init_tasks[cpu_number_map(cpuid)]) { printk("BUG: smp_calling: cpu %d current %p init_tasks[cpu_number_map(cpuid)] %p\n", cpuid, current, init_tasks[cpu_number_map(cpuid)]); } DBGS(("CALLIN %d state 0x%lx\n", cpuid, current->state)); /* Turn on machine checks. */ wrmces(7); /* Set trap vectors. */ trap_init(); /* Set interrupt vector. */ wrent(entInt, 0); /* Get our local ticker going. */ smp_setup_percpu_timer(cpuid); /* Must have completely accurate bogos. */ __sti(); /* * Wait boot CPU to stop with irq enabled before * running calibrate_delay(). */ wait_boot_cpu_to_stop(cpuid); mb(); calibrate_delay(); smp_store_cpu_info(cpuid); /* * Allow master to continue only after we written * the loops_per_jiffy. */ wmb(); smp_secondary_alive = 1; /* Wait for the go code. */ while (!smp_threads_ready) barrier(); DBGS(("smp_callin: commencing CPU %d current %p\n", cpuid, current)); /* Setup the scheduler for this processor. */ init_idle(); /* ??? This should be in init_idle. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Do nothing. */ cpu_idle(); } /* * Rough estimation for SMP scheduling, this is the number of cycles it * takes for a fully memory-limited process to flush the SMP-local cache. * * We are not told how much cache there is, so we have to guess. */ static void __init smp_tune_scheduling (int cpuid) { struct percpu_struct *cpu; unsigned long on_chip_cache; unsigned long freq; cpu = (struct percpu_struct*)((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); switch (cpu->type) { case EV45_CPU: on_chip_cache = 16 + 16; break; case EV5_CPU: case EV56_CPU: on_chip_cache = 8 + 8 + 96; break; case PCA56_CPU: on_chip_cache = 16 + 8; break; case EV6_CPU: case EV67_CPU: on_chip_cache = 64 + 64; break; default: on_chip_cache = 8 + 8; break; } freq = hwrpb->cycle_freq ? : est_cycle_freq; #if 0 /* Magic estimation stolen from x86 port. */ cacheflush_time = freq / 1024L * on_chip_cache / 5000L; printk("Using heuristic of %d cycles.\n", cacheflush_time); #else /* Magic value to force potential preemption of other CPUs. */ cacheflush_time = INT_MAX; printk("Using heuristic of %d cycles.\n", cacheflush_time); #endif } /* * Send a message to a secondary's console. "START" is one such * interesting message. ;-) */ static void send_secondary_console_msg(char *str, int cpuid) { struct percpu_struct *cpu; register char *cp1, *cp2; unsigned long cpumask; size_t len; long timeout; cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); cpumask = (1UL << cpuid); if (hwrpb->txrdy & cpumask) goto delay1; ready1: cp2 = str; len = strlen(cp2); *(unsigned int *)&cpu->ipc_buffer[0] = len; cp1 = (char *) &cpu->ipc_buffer[1]; memcpy(cp1, cp2, len); /* atomic test and set */ wmb(); set_bit(cpuid, &hwrpb->rxrdy); if (hwrpb->txrdy & cpumask) goto delay2; ready2: return; delay1: /* Wait 10 seconds. Note that jiffies aren't ticking yet. */ for (timeout = 1000000; timeout > 0; --timeout) { if (!(hwrpb->txrdy & cpumask)) goto ready1; udelay(10); barrier(); } goto timeout; delay2: /* Wait 10 seconds. */ for (timeout = 1000000; timeout > 0; --timeout) { if (!(hwrpb->txrdy & cpumask)) goto ready2; udelay(10); barrier(); } goto timeout; timeout: printk("Processor %x not ready\n", cpuid); return; } /* * A secondary console wants to send a message. Receive it. */ static void recv_secondary_console_msg(void) { int mycpu, i, cnt; unsigned long txrdy = hwrpb->txrdy; char *cp1, *cp2, buf[80]; struct percpu_struct *cpu; DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy)); mycpu = hard_smp_processor_id(); for (i = 0; i < NR_CPUS; i++) { if (!(txrdy & (1UL << i))) continue; DBGS(("recv_secondary_console_msg: " "TXRDY contains CPU %d.\n", i)); cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + i * hwrpb->processor_size); DBGS(("recv_secondary_console_msg: on %d from %d" " HALT_REASON 0x%lx FLAGS 0x%lx\n", mycpu, i, cpu->halt_reason, cpu->flags)); cnt = cpu->ipc_buffer[0] >> 32; if (cnt <= 0 || cnt >= 80) strcpy(buf, "<<< BOGUS MSG >>>"); else { cp1 = (char *) &cpu->ipc_buffer[11]; cp2 = buf; strcpy(cp2, cp1); while ((cp2 = strchr(cp2, '\r')) != 0) { *cp2 = ' '; if (cp2[1] == '\n') cp2[1] = ' '; } } DBGS((KERN_INFO "recv_secondary_console_msg: on %d " "message is '%s'\n", mycpu, buf)); } hwrpb->txrdy = 0; } /* * Convince the console to have a secondary cpu begin execution. */ static int __init secondary_cpu_start(int cpuid, struct task_struct *idle) { struct percpu_struct *cpu; struct pcb_struct *hwpcb; long timeout; cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset + cpuid * hwrpb->processor_size); hwpcb = (struct pcb_struct *) cpu->hwpcb; /* Initialize the CPU's HWPCB to something just good enough for us to get started. Immediately after starting, we'll swpctx to the target idle task's ptb. Reuse the stack in the mean time. Precalculate the target PCBB. */ hwpcb->ksp = (unsigned long) idle + sizeof(union task_union) - 16; hwpcb->usp = 0; hwpcb->ptbr = idle->thread.ptbr; hwpcb->pcc = 0; hwpcb->asn = 0; hwpcb->unique = virt_to_phys(&idle->thread); hwpcb->flags = idle->thread.pal_flags; hwpcb->res1 = hwpcb->res2 = 0; #if 0 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n", hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique)); #endif DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n", cpuid, idle->state, idle->thread.pal_flags)); /* Setup HWRPB fields that SRM uses to activate secondary CPU */ hwrpb->CPU_restart = __smp_callin; hwrpb->CPU_restart_data = (unsigned long) __smp_callin; /* Recalculate and update the HWRPB checksum */ hwrpb_update_checksum(hwrpb); /* * Send a "start" command to the specified processor. */ /* SRM III 3.4.1.3 */ cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */ cpu->flags &= ~1; /* turn off Bootstrap In Progress */ wmb(); send_secondary_console_msg("START\r\n", cpuid); /* Wait 10 seconds for an ACK from the console. Note that jiffies aren't ticking yet. */ for (timeout = 1000000; timeout > 0; timeout--) { if (cpu->flags & 1) goto started; udelay(10); barrier(); } printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid); return -1; started: DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid)); return 0; } static int __init fork_by_hand(void) { struct pt_regs regs; /* * don't care about the regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); } /* * Bring one cpu online. */ static int __init smp_boot_one_cpu(int cpuid, int cpunum) { struct task_struct *idle; long timeout; /* Cook up an idler for this guy. Note that the address we give to kernel_thread is irrelevant -- it's going to start where HWRPB.CPU_restart says to start. But this gets all the other task-y sort of data structures set up like we wish. */ /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpuid); idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpuid); if (idle == &init_task) panic("idle process is init_task for CPU %d", cpuid); idle->processor = cpuid; __cpu_logical_map[cpunum] = cpuid; __cpu_number_map[cpuid] = cpunum; idle->has_cpu = 1; /* we schedule the first task manually */ del_from_runqueue(idle); unhash_process(idle); init_tasks[cpunum] = idle; DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n", cpuid, idle->state, idle->flags)); /* The secondary will change this once it is happy. Note that secondary_cpu_start contains the necessary memory barrier. */ smp_secondary_alive = -1; /* Whirrr, whirrr, whirrrrrrrrr... */ if (secondary_cpu_start(cpuid, idle)) return -1; mb(); /* Notify the secondary CPU it can run calibrate_delay() */ smp_secondary_alive = 0; /* We've been acked by the console; wait one second for the task to start up for real. Note that jiffies aren't ticking yet. */ for (timeout = 0; timeout < 1000000; timeout++) { if (smp_secondary_alive == 1) goto alive; udelay(10); barrier(); } /* we must invalidate our stuff as we failed to boot the CPU */ __cpu_logical_map[cpunum] = -1; __cpu_number_map[cpuid] = -1; /* the idle task is local to us so free it as we don't use it */ free_task_struct(idle); printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid); return -1; alive: /* Another "Red Snapper". */ return 0; } /* * Called from setup_arch. Detect an SMP system and which processors * are present. */ void __init setup_smp(void) { struct percpu_struct *cpubase, *cpu; int i; if (boot_cpuid != 0) { printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n", boot_cpuid); } if (hwrpb->nr_processors > 1) { int boot_cpu_palrev; DBGS(("setup_smp: nr_processors %ld\n", hwrpb->nr_processors)); cpubase = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset); boot_cpu_palrev = cpubase->pal_revision; for (i = 0; i < hwrpb->nr_processors; i++ ) { cpu = (struct percpu_struct *) ((char *)cpubase + i*hwrpb->processor_size); if ((cpu->flags & 0x1cc) == 0x1cc) { smp_num_probed++; /* Assume here that "whami" == index */ hwrpb_cpu_present_mask |= (1UL << i); cpu->pal_revision = boot_cpu_palrev; } DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n", i, cpu->flags, cpu->type)); DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n", i, cpu->pal_revision)); } } else { smp_num_probed = 1; hwrpb_cpu_present_mask = (1UL << boot_cpuid); } cpu_present_mask = 1UL << boot_cpuid; printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n", smp_num_probed, hwrpb_cpu_present_mask); } /* * Called by smp_init bring all the secondaries online and hold them. */ void __init smp_boot_cpus(void) { int cpu_count, i; unsigned long bogosum; /* Take care of some initial bookkeeping. */ memset(__cpu_number_map, -1, sizeof(__cpu_number_map)); memset(__cpu_logical_map, -1, sizeof(__cpu_logical_map)); memset(ipi_data, 0, sizeof(ipi_data)); __cpu_number_map[boot_cpuid] = 0; __cpu_logical_map[0] = boot_cpuid; current->processor = boot_cpuid; smp_store_cpu_info(boot_cpuid); smp_tune_scheduling(boot_cpuid); smp_setup_percpu_timer(boot_cpuid); init_idle(); /* ??? This should be in init_idle. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Nothing to do on a UP box, or when told not to. */ if (smp_num_probed == 1 || max_cpus == 0) { printk(KERN_INFO "SMP mode deactivated.\n"); return; } printk(KERN_INFO "SMP starting up secondaries.\n"); cpu_count = 1; for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpuid) continue; if (((hwrpb_cpu_present_mask >> i) & 1) == 0) continue; if (smp_boot_one_cpu(i, cpu_count)) continue; cpu_present_mask |= 1UL << i; cpu_count++; } if (cpu_count == 1) { printk(KERN_ERR "SMP: Only one lonely processor alive.\n"); return; } bogosum = 0; for (i = 0; i < NR_CPUS; i++) { if (cpu_present_mask & (1UL << i)) bogosum += cpu_data[i].loops_per_jiffy; } printk(KERN_INFO "SMP: Total of %d processors activated " "(%lu.%02lu BogoMIPS).\n", cpu_count, (bogosum + 2500) / (500000/HZ), ((bogosum + 2500) / (5000/HZ)) % 100); smp_num_cpus = cpu_count; } /* * Called by smp_init to release the blocking online cpus once they * are all started. */ void __init smp_commence(void) { /* smp_init sets smp_threads_ready -- that's enough. */ mb(); } void smp_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); unsigned long user = user_mode(regs); struct cpuinfo_alpha *data = &cpu_data[cpu]; /* Record kernel PC. */ if (!user) alpha_do_profile(regs->pc); if (!--data->prof_counter) { /* We need to make like a normal interrupt -- otherwise timer interrupts ignore the global interrupt lock, which would be a Bad Thing. */ irq_enter(cpu, RTC_IRQ); update_process_times(user); data->prof_counter = data->prof_multiplier; irq_exit(cpu, RTC_IRQ); if (softirq_pending(cpu)) do_softirq(); } } int __init setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } static void send_ipi_message(unsigned long to_whom, enum ipi_message_type operation) { long i, j; /* Reduce the number of memory barriers by doing two loops, one to set the bits, one to invoke the interrupts. */ mb(); /* Order out-of-band data and bit setting. */ for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) { if (to_whom & j) set_bit(operation, &ipi_data[i].bits); } mb(); /* Order bit setting and interrupt. */ for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) { if (to_whom & j) wripir(i); } } /* Structure and data for smp_call_function. This is designed to minimize static memory requirements. Plus it looks cleaner. */ struct smp_call_struct { void (*func) (void *info); void *info; long wait; atomic_t unstarted_count; atomic_t unfinished_count; }; static struct smp_call_struct *smp_call_function_data; /* Atomicly drop data into a shared pointer. The pointer is free if it is initially locked. If retry, spin until free. */ static inline int pointer_lock (void *lock, void *data, int retry) { void *old, *tmp; mb(); again: /* Compare and swap with zero. */ asm volatile ( "1: ldq_l %0,%1\n" " mov %3,%2\n" " bne %0,2f\n" " stq_c %2,%1\n" " beq %2,1b\n" "2:" : "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp) : "r"(data) : "memory"); if (old == 0) return 0; if (! retry) return -EBUSY; while (*(void **)lock) barrier(); goto again; } void handle_ipi(struct pt_regs *regs) { int this_cpu = smp_processor_id(); unsigned long *pending_ipis = &ipi_data[this_cpu].bits; unsigned long ops; #if 0 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n", this_cpu, *pending_ipis, regs->pc)); #endif mb(); /* Order interrupt and bit testing. */ while ((ops = xchg(pending_ipis, 0)) != 0) { mb(); /* Order bit clearing and data access. */ do { unsigned long which; which = ops & -ops; ops &= ~which; which = ffz(~which); if (which == IPI_RESCHEDULE) { /* Reschedule callback. Everything to be done is done by the interrupt return path. */ } else if (which == IPI_CALL_FUNC) { struct smp_call_struct *data; void (*func)(void *info); void *info; int wait; data = smp_call_function_data; func = data->func; info = data->info; wait = data->wait; /* Notify the sending CPU that the data has been received, and execution is about to begin. */ mb(); atomic_dec (&data->unstarted_count); /* At this point the structure may be gone unless wait is true. */ (*func)(info); /* Notify the sending CPU that the task is done. */ mb(); if (wait) atomic_dec (&data->unfinished_count); } else if (which == IPI_CPU_STOP) { halt(); } else { printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", this_cpu, which); } } while (ops); mb(); /* Order data access and bit testing. */ } cpu_data[this_cpu].ipi_count++; if (hwrpb->txrdy) recv_secondary_console_msg(); } void smp_send_reschedule(int cpu) { #if DEBUG_IPI_MSG if (cpu == hard_smp_processor_id()) printk(KERN_WARNING "smp_send_reschedule: Sending IPI to self.\n"); #endif send_ipi_message(1UL << cpu, IPI_RESCHEDULE); } void smp_send_stop(void) { unsigned long to_whom = cpu_present_mask ^ (1UL << smp_processor_id()); #if DEBUG_IPI_MSG if (hard_smp_processor_id() != boot_cpu_id) printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n"); #endif send_ipi_message(to_whom, IPI_CPU_STOP); } /* * Run a function on all other CPUs. * <func> The function to run. This must be fast and non-blocking. * <info> An arbitrary pointer to pass to the function. * <retry> If true, keep retrying until ready. * <wait> If true, wait until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute <func> * or are or have executed. */ int smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry, int wait, unsigned long to_whom) { struct smp_call_struct data; long timeout; int num_cpus_to_call; long i,j; data.func = func; data.info = info; data.wait = wait; to_whom &= ~(1L << smp_processor_id()); for (i = 0, j = 1, num_cpus_to_call = 0; i < NR_CPUS; ++i, j <<= 1) if (to_whom & j) num_cpus_to_call++; atomic_set(&data.unstarted_count, num_cpus_to_call); atomic_set(&data.unfinished_count, num_cpus_to_call); /* Acquire the smp_call_function_data mutex. */ if (pointer_lock(&smp_call_function_data, &data, retry)) return -EBUSY; /* Send a message to the requested CPUs. */ send_ipi_message(to_whom, IPI_CALL_FUNC); /* Wait for a minimal response. */ timeout = jiffies + HZ; while (atomic_read (&data.unstarted_count) > 0 && time_before (jiffies, timeout)) barrier(); /* We either got one or timed out -- clear the lock. */ mb(); smp_call_function_data = 0; if (atomic_read (&data.unstarted_count) > 0) return -ETIMEDOUT; /* Wait for a complete response, if needed. */ if (wait) { while (atomic_read (&data.unfinished_count) > 0) barrier(); } return 0; } int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { return smp_call_function_on_cpu (func, info, retry, wait, cpu_present_mask); } static void ipi_imb(void *ignored) { imb(); } void smp_imb(void) { /* Must wait other processors to flush their icache before continue. */ if (smp_call_function(ipi_imb, NULL, 1, 1)) printk(KERN_CRIT "smp_imb: timed out\n"); imb(); } static void ipi_flush_tlb_all(void *ignored) { tbia(); } void flush_tlb_all(void) { /* Although we don't have any data to pass, we do want to synchronize with the other processors. */ if (smp_call_function(ipi_flush_tlb_all, NULL, 1, 1)) { printk(KERN_CRIT "flush_tlb_all: timed out\n"); } tbia(); } #define asn_locked() (cpu_data[smp_processor_id()].asn_lock) static void ipi_flush_tlb_mm(void *x) { struct mm_struct *mm = (struct mm_struct *) x; if (mm == current->active_mm && !asn_locked()) flush_tlb_current(mm); else flush_tlb_other(mm); } void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->active_mm) { flush_tlb_current(mm); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) { printk(KERN_CRIT "flush_tlb_mm: timed out\n"); } } struct flush_tlb_page_struct { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long addr; }; static void ipi_flush_tlb_page(void *x) { struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x; struct mm_struct * mm = data->mm; if (mm == current->active_mm && !asn_locked()) flush_tlb_current_page(mm, data->vma, data->addr); else flush_tlb_other(mm); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { struct flush_tlb_page_struct data; struct mm_struct *mm = vma->vm_mm; if (mm == current->active_mm) { flush_tlb_current_page(mm, vma, addr); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } data.vma = vma; data.mm = mm; data.addr = addr; if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) { printk(KERN_CRIT "flush_tlb_page: timed out\n"); } } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { /* On the Alpha we always flush the whole user tlb. */ flush_tlb_mm(mm); } static void ipi_flush_icache_page(void *x) { struct mm_struct *mm = (struct mm_struct *) x; if (mm == current->active_mm && !asn_locked()) __load_new_mm_context(mm); else flush_tlb_other(mm); } void flush_icache_page(struct vm_area_struct *vma, struct page *page) { struct mm_struct *mm = vma->vm_mm; if ((vma->vm_flags & VM_EXEC) == 0) return; if (mm == current->active_mm) { __load_new_mm_context(mm); if (atomic_read(&mm->mm_users) <= 1) { int i, cpu, this_cpu = smp_processor_id(); for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (cpu == this_cpu) continue; if (mm->context[cpu]) mm->context[cpu] = 0; } return; } } if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) { printk(KERN_CRIT "flush_icache_page: timed out\n"); } } int smp_info(char *buffer) { return sprintf(buffer, "cpus active\t\t: %d\n" "cpu active mask\t\t: %016lx\n", smp_num_cpus, cpu_present_mask); } #if DEBUG_SPINLOCK void spin_unlock(spinlock_t * lock) { mb(); lock->lock = 0; lock->on_cpu = -1; lock->previous = NULL; lock->task = NULL; lock->base_file = "none"; lock->line_no = 0; } void debug_spin_lock(spinlock_t * lock, const char *base_file, int line_no) { long tmp; long stuck; void *inline_pc = __builtin_return_address(0); unsigned long started = jiffies; int printed = 0; int cpu = smp_processor_id(); stuck = 1L << 30; try_again: /* Use sub-sections to put the actual loop at the end of this object file's text section so as to perfect branch prediction. */ __asm__ __volatile__( "1: ldl_l %0,%1\n" " subq %2,1,%2\n" " blbs %0,2f\n" " or %0,1,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" "4: mb\n" ".subsection 2\n" "2: ldl %0,%1\n" " subq %2,1,%2\n" "3: blt %2,4b\n" " blbs %0,2b\n" " br 1b\n" ".previous" : "=r" (tmp), "=m" (lock->lock), "=r" (stuck) : "1" (lock->lock), "2" (stuck) : "memory"); if (stuck < 0) { printk(KERN_WARNING "%s:%d spinlock stuck in %s at %p(%d)" " owner %s at %p(%d) %s:%d\n", base_file, line_no, current->comm, inline_pc, cpu, lock->task->comm, lock->previous, lock->on_cpu, lock->base_file, lock->line_no); stuck = 1L << 36; printed = 1; goto try_again; } /* Exiting. Got the lock. */ lock->on_cpu = cpu; lock->previous = inline_pc; lock->task = current; lock->base_file = base_file; lock->line_no = line_no; if (printed) { printk(KERN_WARNING "%s:%d spinlock grabbed in %s at %p(%d) %ld ticks\n", base_file, line_no, current->comm, inline_pc, cpu, jiffies - started); } } int debug_spin_trylock(spinlock_t * lock, const char *base_file, int line_no) { int ret; if ((ret = !test_and_set_bit(0, lock))) { lock->on_cpu = smp_processor_id(); lock->previous = __builtin_return_address(0); lock->task = current; } else { lock->base_file = base_file; lock->line_no = line_no; } return ret; } #endif /* DEBUG_SPINLOCK */ #if DEBUG_RWLOCK void write_lock(rwlock_t * lock) { long regx, regy; int stuck_lock, stuck_reader; void *inline_pc = __builtin_return_address(0); try_again: stuck_lock = 1<<30; stuck_reader = 1<<30; __asm__ __volatile__( "1: ldl_l %1,%0\n" " blbs %1,6f\n" " blt %1,8f\n" " mov 1,%1\n" " stl_c %1,%0\n" " beq %1,6f\n" "4: mb\n" ".subsection 2\n" "6: blt %3,4b # debug\n" " subl %3,1,%3 # debug\n" " ldl %1,%0\n" " blbs %1,6b\n" "8: blt %4,4b # debug\n" " subl %4,1,%4 # debug\n" " ldl %1,%0\n" " blt %1,8b\n" " br 1b\n" ".previous" : "=m" (*(volatile int *)lock), "=&r" (regx), "=&r" (regy), "=&r" (stuck_lock), "=&r" (stuck_reader) : "0" (*(volatile int *)lock), "3" (stuck_lock), "4" (stuck_reader) : "memory"); if (stuck_lock < 0) { printk(KERN_WARNING "write_lock stuck at %p\n", inline_pc); goto try_again; } if (stuck_reader < 0) { printk(KERN_WARNING "write_lock stuck on readers at %p\n", inline_pc); goto try_again; } } void read_lock(rwlock_t * lock) { long regx; int stuck_lock; void *inline_pc = __builtin_return_address(0); try_again: stuck_lock = 1<<30; __asm__ __volatile__( "1: ldl_l %1,%0;" " blbs %1,6f;" " subl %1,2,%1;" " stl_c %1,%0;" " beq %1,6f;" "4: mb\n" ".subsection 2\n" "6: ldl %1,%0;" " blt %2,4b # debug\n" " subl %2,1,%2 # debug\n" " blbs %1,6b;" " br 1b\n" ".previous" : "=m" (*(volatile int *)lock), "=&r" (regx), "=&r" (stuck_lock) : "0" (*(volatile int *)lock), "2" (stuck_lock) : "memory"); if (stuck_lock < 0) { printk(KERN_WARNING "read_lock stuck at %p\n", inline_pc); goto try_again; } } #endif /* DEBUG_RWLOCK */ |