Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | /* * JFFS -- Journaling Flash File System, Linux implementation. * * Copyright (C) 1999, 2000 Axis Communications AB. * * Created by Finn Hakansson <finn@axis.com>. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $ * * Ported to Linux 2.3.x and MTD: * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB * */ #define __NO_VERSION__ #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/jffs.h> #include "jffs_fm.h" #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset); #endif extern kmem_cache_t *fm_cache; extern kmem_cache_t *node_cache; /* This function creates a new shiny flash memory control structure. */ struct jffs_fmcontrol * jffs_build_begin(struct jffs_control *c, kdev_t dev) { struct jffs_fmcontrol *fmc; struct mtd_info *mtd; D3(printk("jffs_build_begin()\n")); fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol), GFP_KERNEL); if (!fmc) { D(printk("jffs_build_begin(): Allocation of " "struct jffs_fmcontrol failed!\n")); return (struct jffs_fmcontrol *)0; } DJM(no_jffs_fmcontrol++); mtd = get_mtd_device(NULL, MINOR(dev)); if (!mtd) { kfree(fmc); DJM(no_jffs_fmcontrol--); return NULL; } /* Retrieve the size of the flash memory. */ fmc->flash_size = mtd->size; D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size)); fmc->used_size = 0; fmc->dirty_size = 0; fmc->free_size = mtd->size; fmc->sector_size = mtd->erasesize; fmc->max_chunk_size = fmc->sector_size >> 1; /* min_free_size: 1 sector, obviously. + 1 x max_chunk_size, for when a nodes overlaps the end of a sector + 1 x max_chunk_size again, which ought to be enough to handle the case where a rename causes a name to grow, and GC has to write out larger nodes than the ones it's obsoleting. We should fix it so it doesn't have to write the name _every_ time. Later. + another 2 sectors because people keep getting GC stuck and we don't know why. This scares me - I want formal proof of correctness of whatever number we put here. dwmw2. */ fmc->min_free_size = fmc->sector_size << 2; fmc->mtd = mtd; fmc->c = c; fmc->head = 0; fmc->tail = 0; fmc->head_extra = 0; fmc->tail_extra = 0; init_MUTEX(&fmc->biglock); return fmc; } /* When the flash memory scan has completed, this function should be called before use of the control structure. */ void jffs_build_end(struct jffs_fmcontrol *fmc) { D3(printk("jffs_build_end()\n")); if (!fmc->head) { fmc->head = fmc->head_extra; fmc->tail = fmc->tail_extra; } else if (fmc->head_extra) { fmc->tail_extra->next = fmc->head; fmc->head->prev = fmc->tail_extra; fmc->head = fmc->head_extra; } fmc->head_extra = 0; /* These two instructions should be omitted. */ fmc->tail_extra = 0; D3(jffs_print_fmcontrol(fmc)); } /* Call this function when the file system is unmounted. This function frees all memory used by this module. */ void jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc) { if (fmc) { struct jffs_fm *cur; struct jffs_fm *next = fmc->head; while ((cur = next)) { next = next->next; jffs_free_fm(cur); } put_mtd_device(fmc->mtd); kfree(fmc); DJM(no_jffs_fmcontrol--); } } /* This function returns the size of the first chunk of free space on the flash memory. This function will return something nonzero if the flash memory contains any free space. */ __u32 jffs_free_size1(struct jffs_fmcontrol *fmc) { __u32 head; __u32 tail; __u32 end = fmc->flash_size; if (!fmc->head) { /* There is nothing on the flash. */ return fmc->flash_size; } /* Compute the beginning and ending of the contents of the flash. */ head = fmc->head->offset; tail = fmc->tail->offset + fmc->tail->size; if (tail == end) { tail = 0; } ASSERT(else if (tail > end) { printk(KERN_WARNING "jffs_free_size1(): tail > end\n"); tail = 0; }); if (head <= tail) { return end - tail; } else { return head - tail; } } /* This function will return something nonzero in case there are two free areas on the flash. Like this: +----------------+------------------+----------------+ | FREE 1 | USED / DIRTY | FREE 2 | +----------------+------------------+----------------+ fmc->head -----^ fmc->tail ------------------------^ The value returned, will be the size of the first empty area on the flash, in this case marked "FREE 1". */ __u32 jffs_free_size2(struct jffs_fmcontrol *fmc) { if (fmc->head) { __u32 head = fmc->head->offset; __u32 tail = fmc->tail->offset + fmc->tail->size; if (tail == fmc->flash_size) { tail = 0; } if (tail >= head) { return head; } } return 0; } /* Allocate a chunk of flash memory. If there is enough space on the device, a reference to the associated node is stored in the jffs_fm struct. */ int jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node, struct jffs_fm **result) { struct jffs_fm *fm; __u32 free_chunk_size1; __u32 free_chunk_size2; D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, " "node = 0x%p\n", fmc, size, node)); *result = 0; if (!(fm = jffs_alloc_fm())) { D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n")); return -ENOMEM; } free_chunk_size1 = jffs_free_size1(fmc); free_chunk_size2 = jffs_free_size2(fmc); if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) { printk(KERN_WARNING "Free size accounting screwed\n"); printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size); } D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, " "free_chunk_size2 = %u\n", free_chunk_size1, free_chunk_size2)); if (size <= free_chunk_size1) { if (!(fm->nodes = (struct jffs_node_ref *) kmalloc(sizeof(struct jffs_node_ref), GFP_KERNEL))) { D(printk("jffs_fmalloc(): kmalloc() failed! " "(node_ref)\n")); jffs_free_fm(fm); return -ENOMEM; } DJM(no_jffs_node_ref++); fm->nodes->node = node; fm->nodes->next = 0; if (fmc->tail) { fm->offset = fmc->tail->offset + fmc->tail->size; if (fm->offset == fmc->flash_size) { fm->offset = 0; } ASSERT(else if (fm->offset > fmc->flash_size) { printk(KERN_WARNING "jffs_fmalloc(): " "offset > flash_end\n"); fm->offset = 0; }); } else { /* There don't have to be files in the file system yet. */ fm->offset = 0; } fm->size = size; fmc->free_size -= size; fmc->used_size += size; } else if (size > free_chunk_size2) { printk(KERN_WARNING "JFFS: Tried to allocate a too " "large flash memory chunk. (size = %u)\n", size); jffs_free_fm(fm); return -ENOSPC; } else { fm->offset = fmc->tail->offset + fmc->tail->size; fm->size = free_chunk_size1; fm->nodes = 0; fmc->free_size -= fm->size; fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a bug that caused infinite garbage collection. It previously set fmc->dirty_size to size (which is the size of the requested chunk). */ } fm->next = 0; if (!fmc->head) { fm->prev = 0; fmc->head = fm; fmc->tail = fm; } else { fm->prev = fmc->tail; fmc->tail->next = fm; fmc->tail = fm; } D3(jffs_print_fmcontrol(fmc)); D3(jffs_print_fm(fm)); *result = fm; return 0; } /* The on-flash space is not needed anymore by the passed node. Remove the reference to the node from the node list. If the data chunk in the flash memory isn't used by any more nodes anymore (fm->nodes == 0), then mark that chunk as dirty. */ int jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node) { struct jffs_node_ref *ref; struct jffs_node_ref *prev; ASSERT(int del = 0); D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n", node->ino, node->version)); ASSERT(if (!fmc || !fm || !fm->nodes) { printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, " "fm->nodes: 0x%p\n", fmc, fm, (fm ? fm->nodes : 0)); return -1; }); /* Find the reference to the node that is going to be removed and remove it. */ for (ref = fm->nodes, prev = 0; ref; ref = ref->next) { if (ref->node == node) { if (prev) { prev->next = ref->next; } else { fm->nodes = ref->next; } kfree(ref); DJM(no_jffs_node_ref--); ASSERT(del = 1); break; } prev = ref; } /* If the data chunk in the flash memory isn't used anymore just mark it as obsolete. */ if (!fm->nodes) { /* No node uses this chunk so let's remove it. */ fmc->used_size -= fm->size; fmc->dirty_size += fm->size; #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE if (jffs_mark_obsolete(fmc, fm->offset) < 0) { D1(printk("jffs_fmfree(): Failed to mark an on-flash " "node obsolete!\n")); return -1; } #endif } ASSERT(if (!del) { printk(KERN_WARNING "***jffs_fmfree(): " "Didn't delete any node reference!\n"); }); return 0; } /* This allocation function is used during the initialization of the file system. */ struct jffs_fm * jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size, struct jffs_node *node) { struct jffs_fm *fm; D3(printk("jffs_fmalloced()\n")); if (!(fm = jffs_alloc_fm())) { D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n", fmc, offset, size, node)); return 0; } fm->offset = offset; fm->size = size; fm->prev = 0; fm->next = 0; fm->nodes = 0; if (node) { /* `node' exists and it should be associated with the jffs_fm structure `fm'. */ if (!(fm->nodes = (struct jffs_node_ref *) kmalloc(sizeof(struct jffs_node_ref), GFP_KERNEL))) { D(printk("jffs_fmalloced(): !fm->nodes\n")); jffs_free_fm(fm); return 0; } DJM(no_jffs_node_ref++); fm->nodes->node = node; fm->nodes->next = 0; fmc->used_size += size; fmc->free_size -= size; } else { /* If there is no node, then this is just a chunk of dirt. */ fmc->dirty_size += size; fmc->free_size -= size; } if (fmc->head_extra) { fm->prev = fmc->tail_extra; fmc->tail_extra->next = fm; fmc->tail_extra = fm; } else if (!fmc->head) { fmc->head = fm; fmc->tail = fm; } else if (fmc->tail->offset + fmc->tail->size < offset) { fmc->head_extra = fm; fmc->tail_extra = fm; } else { fm->prev = fmc->tail; fmc->tail->next = fm; fmc->tail = fm; } D3(jffs_print_fmcontrol(fmc)); D3(jffs_print_fm(fm)); return fm; } /* Add a new node to an already existing jffs_fm struct. */ int jffs_add_node(struct jffs_node *node) { struct jffs_node_ref *ref; D3(printk("jffs_add_node(): ino = %u\n", node->ino)); ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref), GFP_KERNEL); if (!ref) return -ENOMEM; DJM(no_jffs_node_ref++); ref->node = node; ref->next = node->fm->nodes; node->fm->nodes = ref; return 0; } /* Free a part of some allocated space. */ void jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size) { D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, " "fm->nodes->node->ino = %u, size = %u\n", fm, (fm ? fm->nodes : 0), (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size)); if (fm->nodes) { kfree(fm->nodes); DJM(no_jffs_node_ref--); fm->nodes = 0; } fmc->used_size -= fm->size; if (fm == fmc->tail) { fm->size -= size; fmc->free_size += size; } fmc->dirty_size += fm->size; } /* Find the jffs_fm struct that contains the end of the data chunk that begins at the logical beginning of the flash memory and spans `size' bytes. If we want to erase a sector of the flash memory, we use this function to find where the sector limit cuts a chunk of data. */ struct jffs_fm * jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size) { struct jffs_fm *fm; __u32 pos = 0; if (size == 0) { return 0; } ASSERT(if (!fmc) { printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n"); return 0; }); fm = fmc->head; while (fm) { pos += fm->size; if (pos < size) { fm = fm->next; } else if (pos > size) { break; } else { fm = 0; break; } } return fm; } /* Move the head of the fmc structures and delete the obsolete parts. */ void jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size) { struct jffs_fm *fm; struct jffs_fm *del; ASSERT(if (!fmc) { printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n"); return; }); fmc->dirty_size -= erased_size; fmc->free_size += erased_size; for (fm = fmc->head; fm && (erased_size > 0);) { if (erased_size >= fm->size) { erased_size -= fm->size; del = fm; fm = fm->next; fm->prev = 0; fmc->head = fm; jffs_free_fm(del); } else { fm->size -= erased_size; fm->offset += erased_size; break; } } } /* Return the oldest used node in the flash memory. */ struct jffs_node * jffs_get_oldest_node(struct jffs_fmcontrol *fmc) { struct jffs_fm *fm; struct jffs_node_ref *nref; struct jffs_node *node = 0; ASSERT(if (!fmc) { printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n"); return 0; }); for (fm = fmc->head; fm && !fm->nodes; fm = fm->next); if (!fm) { return 0; } /* The oldest node is the last one in the reference list. This list shouldn't be too long; just one or perhaps two elements. */ for (nref = fm->nodes; nref; nref = nref->next) { node = nref->node; } D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n", (node ? node->ino : 0), (node ? node->version : 0))); return node; } #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE /* Mark an on-flash node as obsolete. Note that this is just an optimization that isn't necessary for the filesystem to work. */ static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset) { /* The `accurate_pos' holds the position of the accurate byte in the jffs_raw_inode structure that we are going to mark as obsolete. */ __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET; unsigned char zero = 0x00; size_t len; D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos)); ASSERT(if (!fmc) { printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n"); return -1; }); /* Write 0x00 to the raw inode's accurate member. Don't care about the return value. */ MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero); return 0; } #endif /* JFFS_MARK_OBSOLETE */ /* check if it's possible to erase the wanted range, and if not, return * the range that IS erasable, or a negative error code. */ long jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size) { u_long ssize; /* assume that sector size for a partition is constant even * if it spans more than one chip (you usually put the same * type of chips in a system) */ ssize = mtd->erasesize; if (offset % ssize) { printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize); /* The offset is not sector size aligned. */ return -1; } else if (offset > mtd->size) { printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size); return -2; } else if (offset + size > mtd->size) { printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size); return -3; } return (size / ssize) * ssize; } /* How much dirty flash memory is possible to erase at the moment? */ long jffs_erasable_size(struct jffs_fmcontrol *fmc) { struct jffs_fm *fm; __u32 size = 0; long ret; ASSERT(if (!fmc) { printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n"); return -1; }); if (!fmc->head) { /* The flash memory is totally empty. No nodes. No dirt. Just return. */ return 0; } /* Calculate how much space that is dirty. */ for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) { if (size && fm->offset == 0) { /* We have reached the beginning of the flash. */ break; } size += fm->size; } /* Someone's signature contained this: There's a fine line between fishing and just standing on the shore like an idiot... */ ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size); ASSERT(if (ret < 0) { printk("jffs_erasable_size: flash_erasable_size() " "returned something less than zero (%ld).\n", ret); printk("jffs_erasable_size: offset = 0x%08x\n", fmc->head->offset); }); /* If there is dirt on the flash (which is the reason to why this function was called in the first place) but no space is possible to erase right now, the initial part of the list of jffs_fm structs, that hold place for dirty space, could perhaps be shortened. The list's initial "dirty" elements are merged into just one large dirty jffs_fm struct. This operation must only be performed if nothing is possible to erase. Otherwise, jffs_clear_end_of_node() won't work as expected. */ if (ret == 0) { struct jffs_fm *head = fmc->head; struct jffs_fm *del; /* While there are two dirty nodes beside each other.*/ while (head->nodes == 0 && head->next && head->next->nodes == 0) { del = head->next; head->size += del->size; head->next = del->next; if (del->next) { del->next->prev = head; } jffs_free_fm(del); } } return (ret >= 0 ? ret : 0); } struct jffs_fm *jffs_alloc_fm(void) { struct jffs_fm *fm; fm = kmem_cache_alloc(fm_cache,GFP_KERNEL); DJM(if (fm) no_jffs_fm++;); return fm; } void jffs_free_fm(struct jffs_fm *n) { kmem_cache_free(fm_cache,n); DJM(no_jffs_fm--); } struct jffs_node *jffs_alloc_node(void) { struct jffs_node *n; n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL); if(n != NULL) no_jffs_node++; return n; } void jffs_free_node(struct jffs_node *n) { kmem_cache_free(node_cache,n); no_jffs_node--; } int jffs_get_node_inuse(void) { return no_jffs_node; } void jffs_print_fmcontrol(struct jffs_fmcontrol *fmc) { D(printk("struct jffs_fmcontrol: 0x%p\n", fmc)); D(printk("{\n")); D(printk(" %u, /* flash_size */\n", fmc->flash_size)); D(printk(" %u, /* used_size */\n", fmc->used_size)); D(printk(" %u, /* dirty_size */\n", fmc->dirty_size)); D(printk(" %u, /* free_size */\n", fmc->free_size)); D(printk(" %u, /* sector_size */\n", fmc->sector_size)); D(printk(" %u, /* min_free_size */\n", fmc->min_free_size)); D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size)); D(printk(" 0x%p, /* mtd */\n", fmc->mtd)); D(printk(" 0x%p, /* head */ " "(head->offset = 0x%08x)\n", fmc->head, (fmc->head ? fmc->head->offset : 0))); D(printk(" 0x%p, /* tail */ " "(tail->offset + tail->size = 0x%08x)\n", fmc->tail, (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0))); D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra)); D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra)); D(printk("}\n")); } void jffs_print_fm(struct jffs_fm *fm) { D(printk("struct jffs_fm: 0x%p\n", fm)); D(printk("{\n")); D(printk(" 0x%08x, /* offset */\n", fm->offset)); D(printk(" %u, /* size */\n", fm->size)); D(printk(" 0x%p, /* prev */\n", fm->prev)); D(printk(" 0x%p, /* next */\n", fm->next)); D(printk(" 0x%p, /* nodes */\n", fm->nodes)); D(printk("}\n")); } void jffs_print_node_ref(struct jffs_node_ref *ref) { D(printk("struct jffs_node_ref: 0x%p\n", ref)); D(printk("{\n")); D(printk(" 0x%p, /* node */\n", ref->node)); D(printk(" 0x%p, /* next */\n", ref->next)); D(printk("}\n")); } |