Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
/*
 * BRIEF MODULE DESCRIPTION
 * Galileo Evaluation Boards PCI support.
 *
 * The general-purpose functions to read/write and configure the GT64120A's
 * PCI registers (function names start with pci0 or pci1) are either direct
 * copies of functions written by Galileo Technology, or are modifications
 * of their functions to work with Linux 2.4 vs Linux 2.2.  These functions
 * are Copyright - Galileo Technology.
 *
 * Other functions are derived from other MIPS PCI implementations, or were
 * written by RidgeRun, Inc,  Copyright (C) 2000 RidgeRun, Inc.
 *   glonnon@ridgerun.com, skranz@ridgerun.com, stevej@ridgerun.com
 *
 * Copyright 2001 MontaVista Software Inc.
 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the  GNU General Public License along
 *  with this program; if not, write  to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <linux/config.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/version.h>
#include <asm/pci.h>
#include <asm/io.h>
#include <asm/gt64120/gt64120.h>

#include <linux/init.h>

#ifdef CONFIG_PCI

#define SELF 0

/*
 * These functions and structures provide the BIOS scan and mapping of the PCI
 * devices.
 */

#define MAX_PCI_DEVS 10

struct pci_device {
	u32 slot;
	u32 BARtype[6];
	u32 BARsize[6];
};

static void __init scan_and_initialize_pci(void);
static u32 __init scan_pci_bus(struct pci_device *pci_devices);
static void __init allocate_pci_space(struct pci_device *pci_devices);

/*
 * The functions that actually read and write to the controller.
 *
 *  Copied from or modified from Galileo Technology code.
 */
static unsigned int pci0ReadConfigReg(int offset, struct pci_dev *device);
static void pci0WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data);
static unsigned int pci1ReadConfigReg(int offset, struct pci_dev *device);
static void pci1WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data);

static void pci0MapIOspace(unsigned int pci0IoBase,
			   unsigned int pci0IoLength);
static void pci1MapIOspace(unsigned int pci1IoBase,
			   unsigned int pci1IoLength);
static void pci0MapMemory0space(unsigned int pci0Mem0Base,
				unsigned int pci0Mem0Length);
static void pci1MapMemory0space(unsigned int pci1Mem0Base,
				unsigned int pci1Mem0Length);
static void pci0MapMemory1space(unsigned int pci0Mem1Base,
				unsigned int pci0Mem1Length);
static void pci1MapMemory1space(unsigned int pci1Mem1Base,
				unsigned int pci1Mem1Length);
static unsigned int pci0GetIOspaceBase(void);
static unsigned int pci0GetIOspaceSize(void);
static unsigned int pci0GetMemory0Base(void);
static unsigned int pci0GetMemory0Size(void);
static unsigned int pci0GetMemory1Base(void);
static unsigned int pci0GetMemory1Size(void);
static unsigned int pci1GetIOspaceBase(void);
static unsigned int pci1GetIOspaceSize(void);
static unsigned int pci1GetMemory0Base(void);
static unsigned int pci1GetMemory0Size(void);
static unsigned int pci1GetMemory1Base(void);
static unsigned int pci1GetMemory1Size(void);


/*  Functions to implement "pci ops"  */
static int galileo_pcibios_read_config_word(struct pci_dev *dev,
					    int offset, u16 * val);
static int galileo_pcibios_read_config_byte(struct pci_dev *dev,
					    int offset, u8 * val);
static int galileo_pcibios_read_config_dword(struct pci_dev *dev,
					     int offset, u32 * val);
static int galileo_pcibios_write_config_byte(struct pci_dev *dev,
					     int offset, u8 val);
static int galileo_pcibios_write_config_word(struct pci_dev *dev,
					     int offset, u16 val);
static int galileo_pcibios_write_config_dword(struct pci_dev *dev,
					      int offset, u32 val);
static void galileo_pcibios_set_master(struct pci_dev *dev);

/*
 *  General-purpose PCI functions.
 */

/*
 * pci0MapIOspace - Maps PCI0 IO space for the master.
 * Inputs: base and length of pci0Io
 */

static void pci0MapIOspace(unsigned int pci0IoBase,
			   unsigned int pci0IoLength)
{
	unsigned int pci0IoTop =
	    (unsigned int) (pci0IoBase + pci0IoLength);

	if (pci0IoLength == 0)
		pci0IoTop++;

	pci0IoBase = (unsigned int) (pci0IoBase >> 21);
	pci0IoTop = (unsigned int) (((pci0IoTop - 1) & 0x0fffffff) >> 21);
	GT_WRITE(GT_PCI0IOLD_OFS, pci0IoBase);
	GT_WRITE(GT_PCI0IOHD_OFS, pci0IoTop);
}

/*
 * pci1MapIOspace - Maps PCI1 IO space for the master.
 * Inputs: base and length of pci1Io
 */

static void pci1MapIOspace(unsigned int pci1IoBase,
			   unsigned int pci1IoLength)
{
	unsigned int pci1IoTop =
	    (unsigned int) (pci1IoBase + pci1IoLength);

	if (pci1IoLength == 0)
		pci1IoTop++;

	pci1IoBase = (unsigned int) (pci1IoBase >> 21);
	pci1IoTop = (unsigned int) (((pci1IoTop - 1) & 0x0fffffff) >> 21);
	GT_WRITE(GT_PCI1IOLD_OFS, pci1IoBase);
	GT_WRITE(GT_PCI1IOHD_OFS, pci1IoTop);
}

/*
 * pci0MapMemory0space - Maps PCI0 memory0 space for the master.
 * Inputs: base and length of pci0Mem0
 */

static void pci0MapMemory0space(unsigned int pci0Mem0Base,
				unsigned int pci0Mem0Length)
{
	unsigned int pci0Mem0Top = pci0Mem0Base + pci0Mem0Length;

	if (pci0Mem0Length == 0)
		pci0Mem0Top++;

	pci0Mem0Base = pci0Mem0Base >> 21;
	pci0Mem0Top = ((pci0Mem0Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI0M0LD_OFS, pci0Mem0Base);
	GT_WRITE(GT_PCI0M0HD_OFS, pci0Mem0Top);
}

/*
 * pci1MapMemory0space - Maps PCI1 memory0 space for the master.
 * Inputs: base and length of pci1Mem0
 */

static void pci1MapMemory0space(unsigned int pci1Mem0Base,
				unsigned int pci1Mem0Length)
{
	unsigned int pci1Mem0Top = pci1Mem0Base + pci1Mem0Length;

	if (pci1Mem0Length == 0)
		pci1Mem0Top++;

	pci1Mem0Base = pci1Mem0Base >> 21;
	pci1Mem0Top = ((pci1Mem0Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI1M0LD_OFS, pci1Mem0Base);
	GT_WRITE(GT_PCI1M0HD_OFS, pci1Mem0Top);
}

/*
 * pci0MapMemory1space - Maps PCI0 memory1 space for the master.
 * Inputs: base and length of pci0Mem1
 */

static void pci0MapMemory1space(unsigned int pci0Mem1Base,
				unsigned int pci0Mem1Length)
{
	unsigned int pci0Mem1Top = pci0Mem1Base + pci0Mem1Length;

	if (pci0Mem1Length == 0)
		pci0Mem1Top++;

	pci0Mem1Base = pci0Mem1Base >> 21;
	pci0Mem1Top = ((pci0Mem1Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI0M1LD_OFS, pci0Mem1Base);
	GT_WRITE(GT_PCI0M1HD_OFS, pci0Mem1Top);

}

/*
 * pci1MapMemory1space - Maps PCI1 memory1 space for the master.
 * Inputs: base and length of pci1Mem1
 */

static void pci1MapMemory1space(unsigned int pci1Mem1Base,
				unsigned int pci1Mem1Length)
{
	unsigned int pci1Mem1Top = pci1Mem1Base + pci1Mem1Length;

	if (pci1Mem1Length == 0)
		pci1Mem1Top++;

	pci1Mem1Base = pci1Mem1Base >> 21;
	pci1Mem1Top = ((pci1Mem1Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI1M1LD_OFS, pci1Mem1Base);
	GT_WRITE(GT_PCI1M1HD_OFS, pci1Mem1Top);
}

/*
 * pci0GetIOspaceBase - Return PCI0 IO Base Address.
 * Inputs: N/A
 * Returns: PCI0 IO Base Address.
 */

static unsigned int pci0GetIOspaceBase(void)
{
	unsigned int base;
	GT_READ(GT_PCI0IOLD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetIOspaceSize - Return PCI0 IO Bar Size.
 * Inputs: N/A
 * Returns: PCI0 IO Bar Size.
 */

static unsigned int pci0GetIOspaceSize(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0IOLD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0IOHD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci0GetMemory0Base - Return PCI0 Memory 0 Base Address.
 * Inputs: N/A
 * Returns: PCI0 Memory 0 Base Address.
 */

static unsigned int pci0GetMemory0Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI0M0LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetMemory0Size - Return PCI0 Memory 0 Bar Size.
 * Inputs: N/A
 * Returns: PCI0 Memory 0 Bar Size.
 */

static unsigned int pci0GetMemory0Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0M0LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0M0HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci0GetMemory1Base - Return PCI0 Memory 1 Base Address.
 * Inputs: N/A
 * Returns: PCI0 Memory 1 Base Address.
 */

static unsigned int pci0GetMemory1Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI0M1LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetMemory1Size - Return PCI0 Memory 1 Bar Size.
 * Inputs: N/A
 * Returns: PCI0 Memory 1 Bar Size.
 */

static unsigned int pci0GetMemory1Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetIOspaceBase - Return PCI1 IO Base Address.
 * Inputs: N/A
 * Returns: PCI1 IO Base Address.
 */

static unsigned int pci1GetIOspaceBase(void)
{
	unsigned int base;
	GT_READ(GT_PCI1IOLD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetIOspaceSize - Return PCI1 IO Bar Size.
 * Inputs: N/A
 * Returns: PCI1 IO Bar Size.
 */

static unsigned int pci1GetIOspaceSize(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1IOLD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1IOHD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetMemory0Base - Return PCI1 Memory 0 Base Address.
 * Inputs: N/A
 * Returns: PCI1 Memory 0 Base Address.
 */

static unsigned int pci1GetMemory0Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI1M0LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetMemory0Size - Return PCI1 Memory 0 Bar Size.
 * Inputs: N/A
 * Returns: PCI1 Memory 0 Bar Size.
 */

static unsigned int pci1GetMemory0Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetMemory1Base - Return PCI1 Memory 1 Base Address.
 * Inputs: N/A
 * Returns: PCI1 Memory 1 Base Address.
 */

static unsigned int pci1GetMemory1Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetMemory1Size - Return PCI1 Memory 1 Bar Size.
 * Inputs: N/A
 * Returns: PCI1 Memory 1 Bar Size.
 */

static unsigned int pci1GetMemory1Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}



/*
 * pci_range_ck -
 *
 * Check if the pci device that are trying to access does really exists
 * on the evaluation board.  
 *
 * Inputs :
 * bus - bus number (0 for PCI 0 ; 1 for PCI 1)
 * dev - number of device on the specific pci bus
 *
 * Outpus :
 * 0 - if OK , 1 - if failure
 */
static __inline__ int pci_range_ck(unsigned char bus, unsigned char dev)
{
	/*
	 * We don't even pretend to handle other busses than bus 0 correctly.
	 * Accessing device 31 crashes the CP7000 for some reason.
	 */
	if ((bus == 0) && (dev != 31))
		return 0;
	return -1;
}

/*
 * pciXReadConfigReg  - Read from a PCI configuration register
 *                    - Make sure the GT is configured as a master before 
 *                      reading from another device on the PCI.
 *                   - The function takes care of Big/Little endian conversion.
 * INPUTS:   regOffset: The register offset as it apears in the GT spec (or PCI
 *                        spec)
 *           pciDevNum: The device number needs to be addressed.                
 * RETURNS: data , if the data == 0xffffffff check the master abort bit in the 
 *                 cause register to make sure the data is valid
 *
 *  Configuration Address 0xCF8:
 *
 *       31 30    24 23  16 15  11 10     8 7      2  0     <=bit Number
 *  |congif|Reserved|  Bus |Device|Function|Register|00|
 *  |Enable|        |Number|Number| Number | Number |  |    <=field Name
 *
 */
static unsigned int pci0ReadConfigReg(int offset, struct pci_dev *device)
{
	unsigned int DataForRegCf8;
	unsigned int data;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);

	/*
	 * The casual observer might wonder why the READ is duplicated here,
	 * rather than immediately following the WRITE, and just have the swap
	 * in the "if".  That's because there is a latency problem with trying
	 * to read immediately after setting up the address register.  The "if"
	 * check gives enough time for the address to stabilize, so the READ
	 * can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return data;
	} else { /* The PCI is working in LE Mode so swap the Data. */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return cpu_to_le32(data);
	}
}

static unsigned int pci1ReadConfigReg(int offset, struct pci_dev *device)
{
	unsigned int DataForRegCf8;
	unsigned int data;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	/*
	 * The casual observer might wonder why the READ is duplicated here,
	 * rather than immediately following the WRITE, and just have the
	 * swap in the "if".  That's because there is a latency problem
	 * with trying to read immediately after setting up the address
	 * register.  The "if" check gives enough time for the address
	 * to stabilize, so the READ can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		/* when configurating our own PCI 1 L-unit the access is through  
		   the PCI 0 interface with reg number = reg number + 0x80 */
		DataForRegCf8 |= 0x80;
		GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	} else {		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, DataForRegCf8);
	}
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return data;
	} else {
		GT_READ(GT_PCI1_CFGDATA_OFS, &data);
		return cpu_to_le32(data);
	}
}



/*
 * pciXWriteConfigReg - Write to a PCI configuration register
 *                    - Make sure the GT is configured as a master before 
 *                      writingto another device on the PCI.
 *                    - The function takes care of Big/Little endian conversion.
 * Inputs:   unsigned int regOffset: The register offset as it apears in the
 *           GT spec 
 *                   (or any other PCI device spec)
 *           pciDevNum: The device number needs to be addressed.                
 *
 *  Configuration Address 0xCF8:
 *
 *       31 30    24 23  16 15  11 10     8 7      2  0     <=bit Number
 *  |congif|Reserved|  Bus |Device|Function|Register|00|
 *  |Enable|        |Number|Number| Number | Number |  |    <=field Name
 *
 */
static void pci0WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data)
{
	unsigned int DataForRegCf8;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, data);
	} else {		/* configuration Transaction over the pci. */
		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, le32_to_cpu(data));
	}
}

static void pci1WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data)
{
	unsigned int DataForRegCf8;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	/*
	 * There is a latency problem
	 * with trying to read immediately after setting up the address
	 * register.  The "if" check gives enough time for the address
	 * to stabilize, so the WRITE can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		/*
		 * when configurating our own PCI 1 L-unit the access is through
		 * the PCI 0 interface with reg number = reg number + 0x80
		 */
		DataForRegCf8 |= 0x80;
		GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	} else {	/* configuration Transaction over the pci. */
		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, DataForRegCf8);
	}
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, data);
	} else {		/* configuration Transaction over the pci. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, le32_to_cpu(data));
	}
}


/*
 * galileo_pcibios_(read/write)_config_(dword/word/byte) -
 *
 * reads/write a dword/word/byte register from the configuration space
 * of a device.
 *
 * Inputs :
 * bus - bus number
 * dev - device number
 * offset - register offset in the configuration space
 * val - value to be written / read
 *
 * Outputs :
 * PCIBIOS_SUCCESSFUL when operation was succesfull
 * PCIBIOS_DEVICE_NOT_FOUND when the bus or dev is errorneous
 * PCIBIOS_BAD_REGISTER_NUMBER when accessing non aligned
 */

static int galileo_pcibios_read_config_dword(struct pci_dev *device,
					     int offset, u32 * val)
{
	int dev, bus;
	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xffffffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}
	if (offset & 0x3)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		*val = pci0ReadConfigReg(offset, device);

	/*  This is so that the upper PCI layer will get the correct return value if
	   we're not attached to anything.  */
	if ((offset == 0) && (*val == 0xffffffff)) {
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_read_config_word(struct pci_dev *device,
					    int offset, u16 * val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}
	if (offset & 0x1)
		return PCIBIOS_BAD_REGISTER_NUMBER;

	if (bus == 0)
		*val =
		    (unsigned short) (pci0ReadConfigReg(offset, device) >>
				      ((offset & ~0x3) * 8));

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_read_config_byte(struct pci_dev *device,
					    int offset, u8 * val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	if (bus == 0)
		*val =
		    (unsigned char) (pci0ReadConfigReg(offset, device) >>
				     ((offset & ~0x3) * 8));

	/*
	 *  This is so that the upper PCI layer will get the correct return
	 * value if we're not attached to anything.
	 */
	if ((offset == 0xe) && (*val == 0xff)) {
		u32 MasterAbort;
		GT_READ(GT_INTRCAUSE_OFS, &MasterAbort);
		if (MasterAbort & 0x40000) {
			GT_WRITE(GT_INTRCAUSE_OFS,
				 (MasterAbort & 0xfffbffff));
			return PCIBIOS_DEVICE_NOT_FOUND;
		}
	}

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_write_config_dword(struct pci_dev *device,
					      int offset, u32 val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (offset & 0x3)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		pci0WriteConfigReg(offset, device, val);
//  if (bus == 1) pci1WriteConfigReg (offset,device,val);

	return PCIBIOS_SUCCESSFUL;
}


static int galileo_pcibios_write_config_word(struct pci_dev *device,
					     int offset, u16 val)
{
	int dev, bus;
	unsigned long tmp;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (offset & 0x1)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		tmp = pci0ReadConfigReg(offset, device);
//  if (bus == 1) tmp = pci1ReadConfigReg (offset,device);

	if ((offset % 4) == 0)
		tmp = (tmp & 0xffff0000) | (val & 0xffff);
	if ((offset % 4) == 2)
		tmp = (tmp & 0x0000ffff) | ((val & 0xffff) << 16);

	if (bus == 0)
		pci0WriteConfigReg(offset, device, tmp);
//  if (bus == 1) pci1WriteConfigReg (offset,device,tmp);
	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_write_config_byte(struct pci_dev *device,
					     int offset, u8 val)
{
	int dev, bus;
	unsigned long tmp;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (bus == 0)
		tmp = pci0ReadConfigReg(offset, device);
//  if (bus == 1) tmp = pci1ReadConfigReg (offset,device);

	if ((offset % 4) == 0)
		tmp = (tmp & 0xffffff00) | (val & 0xff);
	if ((offset % 4) == 1)
		tmp = (tmp & 0xffff00ff) | ((val & 0xff) << 8);
	if ((offset % 4) == 2)
		tmp = (tmp & 0xff00ffff) | ((val & 0xff) << 16);
	if ((offset % 4) == 3)
		tmp = (tmp & 0x00ffffff) | ((val & 0xff) << 24);

	if (bus == 0)
		pci0WriteConfigReg(offset, device, tmp);
//  if (bus == 1) pci1WriteConfigReg (offset,device,tmp);

	return PCIBIOS_SUCCESSFUL;
}

static void galileo_pcibios_set_master(struct pci_dev *dev)
{
	u16 cmd;

	galileo_pcibios_read_config_word(dev, PCI_COMMAND, &cmd);
	cmd |= PCI_COMMAND_MASTER;
	galileo_pcibios_write_config_word(dev, PCI_COMMAND, cmd);
}

/*  Externally-expected functions.  Do not change function names  */

int pcibios_enable_resources(struct pci_dev *dev)
{
	u16 cmd, old_cmd;
	u8 tmp1;
	int idx;
	struct resource *r;

	galileo_pcibios_read_config_word(dev, PCI_COMMAND, &cmd);
	old_cmd = cmd;
	for (idx = 0; idx < 6; idx++) {
		r = &dev->resource[idx];
		if (!r->start && r->end) {
			printk(KERN_ERR
			       "PCI: Device %s not available because of "
			       "resource collisions\n", dev->slot_name);
			return -EINVAL;
		}
		if (r->flags & IORESOURCE_IO)
			cmd |= PCI_COMMAND_IO;
		if (r->flags & IORESOURCE_MEM)
			cmd |= PCI_COMMAND_MEMORY;
	}
	if (cmd != old_cmd) {
		galileo_pcibios_write_config_word(dev, PCI_COMMAND, cmd);
	}

	/*
	 * Let's fix up the latency timer and cache line size here.  Cache
	 * line size = 32 bytes / sizeof dword (4) = 8.
	 * Latency timer must be > 8.  32 is random but appears to work.
	 */
	galileo_pcibios_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &tmp1);
	if (tmp1 != 8) {
		printk(KERN_WARNING "PCI setting cache line size to 8 from "
		       "%d\n", tmp1);
		galileo_pcibios_write_config_byte(dev, PCI_CACHE_LINE_SIZE,
						  8);
	}
	galileo_pcibios_read_config_byte(dev, PCI_LATENCY_TIMER, &tmp1);
	if (tmp1 < 32) {
		printk(KERN_WARNING "PCI setting latency timer to 32 from %d\n",
		       tmp1);
		galileo_pcibios_write_config_byte(dev, PCI_LATENCY_TIMER,
						  32);
	}

	return 0;
}

int pcibios_enable_device(struct pci_dev *dev)
{
	return pcibios_enable_resources(dev);
}

void pcibios_update_resource(struct pci_dev *dev, struct resource *root,
			     struct resource *res, int resource)
{
	u32 new, check;
	int reg;

	return;

	new = res->start | (res->flags & PCI_REGION_FLAG_MASK);
	if (resource < 6) {
		reg = PCI_BASE_ADDRESS_0 + 4 * resource;
	} else if (resource == PCI_ROM_RESOURCE) {
		res->flags |= PCI_ROM_ADDRESS_ENABLE;
		reg = dev->rom_base_reg;
	} else {
		/*
		 * Somebody might have asked allocation of a non-standard
		 * resource
		 */
		return;
	}

	pci_write_config_dword(dev, reg, new);
	pci_read_config_dword(dev, reg, &check);
	if ((new ^ check) &
	    ((new & PCI_BASE_ADDRESS_SPACE_IO) ? PCI_BASE_ADDRESS_IO_MASK :
	     PCI_BASE_ADDRESS_MEM_MASK)) {
		printk(KERN_ERR "PCI: Error while updating region "
		       "%s/%d (%08x != %08x)\n", dev->slot_name, resource,
		       new, check);
	}
}

void pcibios_align_resource(void *data, struct resource *res,
			    unsigned long size)
{
	struct pci_dev *dev = data;

	if (res->flags & IORESOURCE_IO) {
		unsigned long start = res->start;

		/* We need to avoid collisions with `mirrored' VGA ports
		   and other strange ISA hardware, so we always want the
		   addresses kilobyte aligned.  */
		if (size > 0x100) {
			printk(KERN_ERR "PCI: I/O Region %s/%d too large"
			       " (%ld bytes)\n", dev->slot_name,
			        dev->resource - res, size);
		}

		start = (start + 1024 - 1) & ~(1024 - 1);
		res->start = start;
	}
}

struct pci_ops galileo_pci_ops = {
	galileo_pcibios_read_config_byte,
	galileo_pcibios_read_config_word,
	galileo_pcibios_read_config_dword,
	galileo_pcibios_write_config_byte,
	galileo_pcibios_write_config_word,
	galileo_pcibios_write_config_dword
};

struct pci_fixup pcibios_fixups[] = {
	{0}
};

void __init pcibios_fixup_bus(struct pci_bus *c)
{
	gt64120_board_pcibios_fixup_bus(c);
}

/*
 * This code was derived from Galileo Technology's example
 * and significantly reworked.
 *
 * This is very simple.  It does not scan multiple function devices.  It does
 * not scan behind bridges.  Those would be simple to implement, but we don't
 * currently need this.
 */

static void __init scan_and_initialize_pci(void)
{
	struct pci_device pci_devices[MAX_PCI_DEVS];

	if (scan_pci_bus(pci_devices)) {
		allocate_pci_space(pci_devices);
	}
}

/*
 * This is your basic PCI scan.  It goes through each slot and checks to
 * see if there's something that responds.  If so, then get the size and
 * type of each of the responding BARs.  Save them for later.
 */

static u32 __init scan_pci_bus(struct pci_device *pci_devices)
{
	u32 arrayCounter = 0;
	u32 memType;
	u32 memSize;
	u32 pci_slot, bar;
	u32 id;
	u32 c18RegValue;
	struct pci_dev device;

	/*
	 * According to PCI REV 2.1 MAX agents on the bus are 21.
	 * We don't bother scanning ourselves (slot 0).
	 */
	for (pci_slot = 1; pci_slot < 22; pci_slot++) {

		device.devfn = PCI_DEVFN(pci_slot, 0);
		id = pci0ReadConfigReg(PCI_VENDOR_ID, &device);

		/*
		 *  Check for a PCI Master Abort (nothing responds in the
		 * slot)
		 */
		GT_READ(GT_INTRCAUSE_OFS, &c18RegValue);
		/*
		 * Clearing bit 18 of in the Cause Register 0xc18 by
		 * writting 0.
		 */
		GT_WRITE(GT_INTRCAUSE_OFS, (c18RegValue & 0xfffbffff));
		if ((id != 0xffffffff) && !(c18RegValue & 0x40000)) {
			pci_devices[arrayCounter].slot = pci_slot;
			for (bar = 0; bar < 6; bar++) {
				memType =
				    pci0ReadConfigReg(PCI_BASE_ADDRESS_0 +
						      (bar * 4), &device);
				pci_devices[arrayCounter].BARtype[bar] =
				    memType & 1;
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (bar * 4), &device,
						   0xffffffff);
				memSize =
				    pci0ReadConfigReg(PCI_BASE_ADDRESS_0 +
						      (bar * 4), &device);
				if (memType & 1) {	/*  IO space  */
					pci_devices[arrayCounter].
					    BARsize[bar] =
					    ~(memSize & 0xfffffffc) + 1;
				} else {	/*  memory space */
					pci_devices[arrayCounter].
					    BARsize[bar] =
					    ~(memSize & 0xfffffff0) + 1;
				}
			}	/*  BAR counter  */

			arrayCounter++;
		}
		/*  found a device  */
	} /*  slot counter  */

	if (arrayCounter < MAX_PCI_DEVS)
		pci_devices[arrayCounter].slot = -1;

	return arrayCounter;
}

#define ALIGN(val,align)        (((val) + ((align) - 1)) & ~((align) - 1))
#define MAX(val1, val2) ((val1) > (val2) ? (val1) : (val2))

/*
 * This function goes through the list of devices and allocates the BARs in
 * either IO or MEM space.  It does it in order of size, which will limit the
 * amount of fragmentation we have in the IO and MEM spaces.
 */

static void __init allocate_pci_space(struct pci_device *pci_devices)
{
	u32 count, maxcount, bar;
	u32 maxSize, maxDevice, maxBAR;
	u32 alignto;
	u32 base;
	u32 pci0_mem_base = pci0GetMemory0Base();
	u32 pci0_io_base = pci0GetIOspaceBase();
	struct pci_dev device;

	/*  How many PCI devices do we have?  */
	maxcount = MAX_PCI_DEVS;
	for (count = 0; count < MAX_PCI_DEVS; count++) {
		if (pci_devices[count].slot == -1) {
			maxcount = count;
			break;
		}
	}

	do {
		/*  Find the largest size BAR we need to allocate  */
		maxSize = 0;
		for (count = 0; count < maxcount; count++) {
			for (bar = 0; bar < 6; bar++) {
				if (pci_devices[count].BARsize[bar] >
				    maxSize) {
					maxSize =
					    pci_devices[count].
					    BARsize[bar];
					maxDevice = count;
					maxBAR = bar;
				}
			}
		}

		/*
		 * We've found the largest BAR.  Allocate it into IO or
		 * mem space.  We don't idiot check the bases to make
		 * sure they haven't overflowed the current size for that
		 * aperture.  
		 * Don't bother to enable the device's IO or MEM space here.
		 * That will be done in pci_enable_resources if the device is
		 * activated by a driver.
		 */
		if (maxSize) {
			device.devfn =
			    PCI_DEVFN(pci_devices[maxDevice].slot, 0);
			if (pci_devices[maxDevice].BARtype[maxBAR] == 1) {
				alignto = MAX(0x1000, maxSize);
				base = ALIGN(pci0_io_base, alignto);
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (maxBAR * 4), &device,
						   base | 0x1);
				pci0_io_base = base + alignto;
			} else {
				alignto = MAX(0x1000, maxSize);
				base = ALIGN(pci0_mem_base, alignto);
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (maxBAR * 4), &device,
						   base);
				pci0_mem_base = base + alignto;
			}
			/*
			 * This entry is finished.  Remove it from the list
			 * we'll scan.
			 */
			pci_devices[maxDevice].BARsize[maxBAR] = 0;
		}
	} while (maxSize);
}

void __init pcibios_init(void)
{
	u32 tmp;
	struct pci_dev controller;

	controller.devfn = SELF;

	GT_READ(GT_PCI0_CMD_OFS, &tmp);
	GT_READ(GT_PCI0_BARE_OFS, &tmp);

	/*
	 * You have to enable bus mastering to configure any other
	 * card on the bus.
	 */
	tmp = pci0ReadConfigReg(PCI_COMMAND, &controller);
	tmp |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_SERR;
	pci0WriteConfigReg(PCI_COMMAND, &controller, tmp);

	/*  This scans the PCI bus and sets up initial values.  */
	scan_and_initialize_pci();

	/*
	 *  Reset PCI I/O and PCI MEM values to ones supported by EVM.
	 */
	ioport_resource.start = GT_PCI_IO_BASE;
	ioport_resource.end   = GT_PCI_IO_BASE + GT_PCI_IO_SIZE - 1;
	iomem_resource.start  = GT_PCI_MEM_BASE;
	iomem_resource.end    = GT_PCI_MEM_BASE + GT_PCI_MEM_BASE - 1;

	pci_scan_bus(0, &galileo_pci_ops, NULL);
}

/*
 * for parsing "pci=" kernel boot arguments.
 */
char *pcibios_setup(char *str)
{
        printk(KERN_INFO "rr: pcibios_setup\n");
        /* Nothing to do for now.  */

        return str;
}

unsigned __init int pcibios_assign_all_busses(void)
{
	return 1;
}

#endif	/* CONFIG_PCI */