Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/*
 *  include/asm-s390/pgtable.h
 *
 *  S390 version
 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Hartmut Penner (hp@de.ibm.com)
 *               Ulrich Weigand (weigand@de.ibm.com)
 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
 *
 *  Derived from "include/asm-i386/pgtable.h"
 */

#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H

/*
 * The Linux memory management assumes a three-level page table setup. On
 * the S390, we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * S390 mmu expects.
 *
 * The "pgd_xxx()" functions are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 *
 * This file contains the functions and defines necessary to modify and use
 * the S390 page table tree.
 */
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/threads.h>

extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
extern void paging_init(void);

/* Caches aren't brain-dead on S390. */
#define flush_cache_all()                       do { } while (0)
#define flush_cache_mm(mm)                      do { } while (0)
#define flush_cache_range(mm, start, end)       do { } while (0)
#define flush_cache_page(vma, vmaddr)           do { } while (0)
#define flush_page_to_ram(page)                 do { } while (0)
#define flush_dcache_page(page)			do { } while (0)
#define flush_icache_range(start, end)          do { } while (0)
#define flush_icache_page(vma,pg)               do { } while (0)

/*
 * The S390 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
#define update_mmu_cache(vma, address, pte)     do { } while (0)

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern char empty_zero_page[PAGE_SIZE];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */

/*
 * PMD_SHIFT determines the size of the area a second-level page
 * table can map
 */
#define PMD_SHIFT       22
#define PMD_SIZE        (1UL << PMD_SHIFT)
#define PMD_MASK        (~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT     22
#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
#define PGDIR_MASK      (~(PGDIR_SIZE-1))

/*
 * entries per page directory level: the S390 is two-level, so
 * we don't really have any PMD directory physically.
 * for S390 segment-table entries are combined to one PGD
 * that leads to 1024 pte per pgd
 */
#define PTRS_PER_PTE    1024
#define PTRS_PER_PMD    1
#define PTRS_PER_PGD    512

/*
 * pgd entries used up by user/kernel:
 */
#define USER_PTRS_PER_PGD  512
#define USER_PGD_PTRS      512
#define KERNEL_PGD_PTRS    512
#define FIRST_USER_PGD_NR  0

#define pte_ERROR(e) \
	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))

#ifndef __ASSEMBLY__
/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET  (8*1024*1024)
#define VMALLOC_START   (((unsigned long) high_memory + VMALLOC_OFFSET) \
			 & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END     (0x7fffffffL)


/*
 * A pagetable entry of S390 has following format:
 *  |   PFRA          |    |  OS  |
 * 0                   0IP0
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * I Page-Invalid Bit:    Page is not available for address-translation
 * P Page-Protection Bit: Store access not possible for page
 *
 * A segmenttable entry of S390 has following format:
 *  |   P-table origin      |  |PTL
 * 0                         IC
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * I Segment-Invalid Bit:    Segment is not available for address-translation
 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 *
 * The segmenttable origin of S390 has following format:
 *
 *  |S-table origin   |     | STL |
 * X                   **GPS
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * X Space-Switch event:
 * G Segment-Invalid Bit:     *
 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 * S Storage-Alteration:
 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 *
 * A storage key has the following format:
 * | ACC |F|R|C|0|
 *  0   3 4 5 6 7
 * ACC: access key
 * F  : fetch protection bit
 * R  : referenced bit
 * C  : changed bit
 */

/* Bits in the page table entry */
#define _PAGE_PRESENT   0x001          /* Software                         */
#define _PAGE_MKCLEAR   0x002          /* Software                         */
#define _PAGE_RO        0x200          /* HW read-only                     */
#define _PAGE_INVALID   0x400          /* HW invalid                       */

/* Bits in the segment table entry */
#define _PAGE_TABLE_LEN 0xf            /* only full page-tables            */
#define _PAGE_TABLE_COM 0x10           /* common page-table                */
#define _PAGE_TABLE_INV 0x20           /* invalid page-table               */
#define _SEG_PRESENT    0x001          /* Software (overlap with PTL)      */

/* Bits int the storage key */
#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */

#define _USER_SEG_TABLE_LEN    0x7f    /* user-segment-table up to 2 GB    */
#define _KERNEL_SEG_TABLE_LEN  0x7f    /* kernel-segment-table up to 2 GB  */

/*
 * User and Kernel pagetables are identical
 */
#define _PAGE_TABLE     (_PAGE_TABLE_LEN )
#define _KERNPG_TABLE   (_PAGE_TABLE_LEN )

/*
 * The Kernel segment-tables includes the User segment-table
 */

#define _SEGMENT_TABLE  (_USER_SEG_TABLE_LEN|0x80000000|0x100)
#define _KERNSEG_TABLE  (_KERNEL_SEG_TABLE_LEN)

/*
 * No mapping available
 */
#define PAGE_INVALID  __pgprot(_PAGE_INVALID)
#define PAGE_NONE     __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
#define PAGE_COPY     __pgprot(_PAGE_PRESENT | _PAGE_RO)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RO)
#define PAGE_SHARED   __pgprot(_PAGE_PRESENT)
#define PAGE_KERNEL   __pgprot(_PAGE_PRESENT)

/*
 * The S390 can't do page protection for execute, and considers that the
 * same are read. Also, write permissions imply read permissions. This is
 * the closest we can get..
 */
         /*xwr*/
#define __P000  PAGE_NONE
#define __P001  PAGE_READONLY
#define __P010  PAGE_COPY
#define __P011  PAGE_COPY
#define __P100  PAGE_READONLY
#define __P101  PAGE_READONLY
#define __P110  PAGE_COPY
#define __P111  PAGE_COPY

#define __S000  PAGE_NONE
#define __S001  PAGE_READONLY
#define __S010  PAGE_SHARED
#define __S011  PAGE_SHARED
#define __S100  PAGE_READONLY
#define __S101  PAGE_READONLY
#define __S110  PAGE_SHARED
#define __S111  PAGE_SHARED

/*
 * Certain architectures need to do special things when PTEs
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
extern inline void set_pte(pte_t *pteptr, pte_t pteval)
{
	if ((pte_val(pteval) & (_PAGE_MKCLEAR|_PAGE_INVALID))
	    == _PAGE_MKCLEAR) 
	{
		pte_val(pteval) &= ~_PAGE_MKCLEAR;
               
		asm volatile ("sske %0,%1" 
				: : "d" (0), "a" (pte_val(pteval)));
	}

	*pteptr = pteval;
}

/*
 * Permanent address of a page.
 */
#define page_address(page) ((page)->virtual)
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))

/*
 * pgd/pmd/pte query functions
 */
extern inline int pgd_present(pgd_t pgd) { return 1; }
extern inline int pgd_none(pgd_t pgd)    { return 0; }
extern inline int pgd_bad(pgd_t pgd)     { return 0; }

extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
extern inline int pmd_none(pmd_t pmd)    { return pmd_val(pmd) & _PAGE_TABLE_INV; }
extern inline int pmd_bad(pmd_t pmd)
{
	return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE;
}

extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
extern inline int pte_none(pte_t pte)
{
	return ((pte_val(pte) & 
                (_PAGE_INVALID | _PAGE_RO | _PAGE_PRESENT)) == _PAGE_INVALID);
}

#define pte_same(a,b)	(pte_val(a) == pte_val(b))

/*
 * query functions pte_write/pte_dirty/pte_young only work if
 * pte_present() is true. Undefined behaviour if not..
 */
extern inline int pte_write(pte_t pte)
{
	return (pte_val(pte) & _PAGE_RO) == 0;
}

extern inline int pte_dirty(pte_t pte)
{
	int skey;

	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte)));
	return skey & _PAGE_CHANGED;
}

extern inline int pte_young(pte_t pte)
{
	int skey;

	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte)));
	return skey & _PAGE_REFERENCED;
}

/*
 * pgd/pmd/pte modification functions
 */
extern inline void pgd_clear(pgd_t * pgdp)      { }

extern inline void pmd_clear(pmd_t * pmdp)
{
	pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
}

extern inline void pte_clear(pte_t *ptep)
{
	pte_val(*ptep) = _PAGE_INVALID; 
}

#define PTE_INIT(x) pte_clear(x)

/*
 * The following pte modification functions only work if
 * pte_present() is true. Undefined behaviour if not..
 */
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	pte_val(pte) = (pte_val(pte) & PAGE_MASK) | pgprot_val(newprot);
	return pte;
}

extern inline pte_t pte_wrprotect(pte_t pte)
{
	pte_val(pte) |= _PAGE_RO;
	return pte;
}

extern inline pte_t pte_mkwrite(pte_t pte) 
{
	pte_val(pte) &= ~_PAGE_RO;
	return pte;
}

extern inline pte_t pte_mkclean(pte_t pte)
{
	/* The only user of pte_mkclean is the fork() code.
	   We must *not* clear the *physical* page dirty bit
	   just because fork() wants to clear the dirty bit in
	   *one* of the page's mappings.  So we just do nothing. */
	return pte;
}

extern inline pte_t pte_mkdirty(pte_t pte)
{
	/* We can't set the changed bit atomically. For now we
         * set (!) the page referenced bit. */
	asm volatile ("sske %0,%1" 
	              : : "d" (_PAGE_CHANGED|_PAGE_REFERENCED),
		          "a" (pte_val(pte)));

	pte_val(pte) &= ~_PAGE_MKCLEAR;
	return pte;
}

extern inline pte_t pte_mkold(pte_t pte)
{
	asm volatile ("rrbe 0,%0" : : "a" (pte_val(pte)) : "cc" );
	return pte;
}

extern inline pte_t pte_mkyoung(pte_t pte)
{
	/* To set the referenced bit we read the first word from the real
	 * page with a special instruction: load using real address (lura).
	 * Isn't S/390 a nice architecture ?! */
	asm volatile ("lura 0,%0" : : "a" (pte_val(pte) & PAGE_MASK) : "0" );
	return pte;
}

static inline int ptep_test_and_clear_young(pte_t *ptep)
{
	int ccode;

	asm volatile ("rrbe 0,%1\n\t"
		      "ipm  %0\n\t"
		      "srl  %0,28\n\t" 
                      : "=d" (ccode) : "a" (pte_val(*ptep)) : "cc" );
	return ccode & 2;
}

static inline int ptep_test_and_clear_dirty(pte_t *ptep)
{
	int skey;

	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (*ptep));
	if ((skey & _PAGE_CHANGED) == 0)
		return 0;
	/* We can't clear the changed bit atomically. For now we
         * clear (!) the page referenced bit. */
	asm volatile ("sske %0,%1" 
	              : : "d" (0), "a" (*ptep));
	return 1;
}

static inline pte_t ptep_get_and_clear(pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_clear(ptep);
	return pte;
}

static inline void ptep_set_wrprotect(pte_t *ptep)
{
	pte_t old_pte = *ptep;
	set_pte(ptep, pte_wrprotect(old_pte));
}

static inline void ptep_mkdirty(pte_t *ptep)
{
	pte_mkdirty(*ptep);
}

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
	pte_t __pte;
	pte_val(__pte) = physpage + pgprot_val(pgprot);
	return __pte;
}

#define mk_pte(pg, pgprot)                                                \
({                                                                        \
	struct page *__page = (pg);                                       \
	unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT);  \
	pte_t __pte = mk_pte_phys(__physpage, (pgprot));                  \
	                                                                  \
	if (__page != ZERO_PAGE(__physpage)) {                            \
		int __users = page_count(__page);                         \
		__users -= !!__page->buffers + !!__page->mapping;         \
	                                                                  \
		if (__users == 1)                                         \
			pte_val(__pte) |= _PAGE_MKCLEAR;                  \
        }                                                                 \
	                                                                  \
	__pte;                                                            \
})

#define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))

#define pmd_page(pmd) \
        ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))

/* to find an entry in a page-table-directory */
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
        return (pmd_t *) dir;
}

/* Find an entry in the third-level page table.. */
#define pte_offset(pmd, address) \
        ((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))

/*
 * A page-table entry has some bits we have to treat in a special way.
 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
 * exception will occur instead of a page translation exception. The
 * specifiation exception has the bad habit not to store necessary
 * information in the lowcore.
 * Bit 21 and bit 22 are the page invalid bit and the page protection
 * bit. We set both to indicate a swapped page.
 * Bit 31 is used as the software page present bit. If a page is
 * swapped this obviously has to be zero.
 * This leaves the bits 1-19 and bits 24-30 to store type and offset.
 * We use the 7 bits from 24-30 for the type and the 19 bits from 1-19
 * for the offset.
 * 0|     offset      |0110|type |0
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 */
extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{
	pte_t pte;
	pte_val(pte) = (type << 1) | (offset << 12) | _PAGE_INVALID | _PAGE_RO;
	pte_val(pte) &= 0x7ffff6fe;  /* better to be paranoid */
	return pte;
}

#define SWP_TYPE(entry)		(((entry).val >> 1) & 0x3f)
#define SWP_OFFSET(entry)	(((entry).val >> 12) & 0x7FFFF )
#define SWP_ENTRY(type,offset)	((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })

#define pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x)	((pte_t) { (x).val })

#endif /* !__ASSEMBLY__ */

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page)          (0)
#define kern_addr_valid(addr)   (1)

/*
 * No page table caches to initialise
 */
#define pgtable_cache_init()	do { } while (0)

#endif /* _S390_PAGE_H */