Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | /* * BK Id: SCCS/s.uaccess.h 1.8 09/11/01 18:10:06 paulus */ #ifdef __KERNEL__ #ifndef _PPC_UACCESS_H #define _PPC_UACCESS_H #ifndef __ASSEMBLY__ #include <linux/sched.h> #include <linux/errno.h> #include <asm/processor.h> #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ #define KERNEL_DS ((mm_segment_t) { 0 }) #define USER_DS ((mm_segment_t) { 1 }) #define get_ds() (KERNEL_DS) #define get_fs() (current->thread.fs) #define set_fs(val) (current->thread.fs = (val)) #define segment_eq(a,b) ((a).seg == (b).seg) #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size))) #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size)) extern inline int verify_area(int type, const void * addr, unsigned long size) { return access_ok(type,addr,size) ? 0 : -EFAULT; } /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table(unsigned long); extern void sort_exception_table(void); /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the uglyness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). * * As we use the same address space for kernel and user data on the * PowerPC, we can just do these as direct assignments. (Of course, the * exception handling means that it's no longer "just"...) */ #define get_user(x,ptr) \ __get_user_check((x),(ptr),sizeof(*(ptr))) #define put_user(x,ptr) \ __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __get_user(x,ptr) \ __get_user_nocheck((x),(ptr),sizeof(*(ptr))) #define __put_user(x,ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) extern long __put_user_bad(void); #define __put_user_nocheck(x,ptr,size) \ ({ \ long __pu_err; \ __put_user_size((x),(ptr),(size),__pu_err); \ __pu_err; \ }) #define __put_user_check(x,ptr,size) \ ({ \ long __pu_err = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ __put_user_size((x),__pu_addr,(size),__pu_err); \ __pu_err; \ }) #define __put_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __put_user_asm(x,ptr,retval,"stb"); break; \ case 2: __put_user_asm(x,ptr,retval,"sth"); break; \ case 4: __put_user_asm(x,ptr,retval,"stw"); break; \ case 8: __put_user_asm2(x,ptr,retval); break; \ default: __put_user_bad(); \ } \ } while (0) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) /* * We don't tell gcc that we are accessing memory, but this is OK * because we do not write to any memory gcc knows about, so there * are no aliasing issues. */ #define __put_user_asm(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" %1,0(%2)\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " b 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err) \ : "r"(x), "b"(addr), "i"(-EFAULT), "0"(err)) #define __put_user_asm2(x, addr, err) \ __asm__ __volatile__( \ "1: stw %1,0(%2)\n" \ "2: stw %1+1,4(%2)\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: li %0,%3\n" \ " b 3b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,4b\n" \ " .long 2b,4b\n" \ ".previous" \ : "=r"(err) \ : "r"(x), "b"(addr), "i"(-EFAULT), "0"(err)) #define __get_user_nocheck(x,ptr,size) \ ({ \ long __gu_err, __gu_val; \ __get_user_size(__gu_val,(ptr),(size),__gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) #define __get_user_check(x,ptr,size) \ ({ \ long __gu_err = -EFAULT, __gu_val = 0; \ const __typeof__(*(ptr)) *__gu_addr = (ptr); \ if (access_ok(VERIFY_READ,__gu_addr,size)) \ __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) extern long __get_user_bad(void); #define __get_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __get_user_asm(x,ptr,retval,"lbz"); break; \ case 2: __get_user_asm(x,ptr,retval,"lhz"); break; \ case 4: __get_user_asm(x,ptr,retval,"lwz"); break; \ case 8: __get_user_asm2(x, ptr, retval); \ default: (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" %1,0(%2)\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " li %1,0\n" \ " b 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err), "=r"(x) \ : "b"(addr), "i"(-EFAULT), "0"(err)) #define __get_user_asm2(x, addr, err) \ __asm__ __volatile__( \ "1: lwz %1,0(%2)\n" \ "2: lwz %1+1,4(%2)\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: li %0,%3\n" \ " li %1,0\n" \ " li %1+1,0\n" \ " b 3b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,4b\n" \ " .long 2b,4b\n" \ ".previous" \ : "=r"(err), "=&r"(x) \ : "b"(addr), "i"(-EFAULT), "0"(err)) /* more complex routines */ extern int __copy_tofrom_user(void *to, const void *from, unsigned long size); extern inline unsigned long copy_from_user(void *to, const void *from, unsigned long n) { unsigned long over; if (access_ok(VERIFY_READ, from, n)) return __copy_tofrom_user(to, from, n); if ((unsigned long)from < TASK_SIZE) { over = (unsigned long)from + n - TASK_SIZE; return __copy_tofrom_user(to, from, n - over) + over; } return n; } extern inline unsigned long copy_to_user(void *to, const void *from, unsigned long n) { unsigned long over; if (access_ok(VERIFY_WRITE, to, n)) return __copy_tofrom_user(to, from, n); if ((unsigned long)to < TASK_SIZE) { over = (unsigned long)to + n - TASK_SIZE; return __copy_tofrom_user(to, from, n - over) + over; } return n; } #define __copy_from_user(to, from, size) \ __copy_tofrom_user((to), (from), (size)) #define __copy_to_user(to, from, size) \ __copy_tofrom_user((to), (from), (size)) extern unsigned long __clear_user(void *addr, unsigned long size); extern inline unsigned long clear_user(void *addr, unsigned long size) { if (access_ok(VERIFY_WRITE, addr, size)) return __clear_user(addr, size); return size? -EFAULT: 0; } extern int __strncpy_from_user(char *dst, const char *src, long count); extern inline long strncpy_from_user(char *dst, const char *src, long count) { if (access_ok(VERIFY_READ, src, 1)) return __strncpy_from_user(dst, src, count); return -EFAULT; } /* * Return the size of a string (including the ending 0) * * Return 0 for error */ extern int __strnlen_user(const char *str, long len, unsigned long top); /* * Returns the length of the string at str (including the null byte), * or 0 if we hit a page we can't access, * or something > len if we didn't find a null byte. * * The `top' parameter to __strnlen_user is to make sure that * we can never overflow from the user area into kernel space. */ extern __inline__ int strnlen_user(const char *str, long len) { unsigned long top = __kernel_ok? ~0UL: TASK_SIZE - 1; if ((unsigned long)str > top) return 0; return __strnlen_user(str, len, top); } #define strlen_user(str) strnlen_user((str), 0x7ffffffe) #endif /* __ASSEMBLY__ */ #endif /* _PPC_UACCESS_H */ #endif /* __KERNEL__ */ |