Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | /* * linux/arch/arm/mm/fault-common.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/config.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/unaligned.h> #ifdef CONFIG_CPU_26 #define FAULT_CODE_WRITE 0x02 #define FAULT_CODE_FORCECOW 0x01 #define DO_COW(m) ((m) & (FAULT_CODE_WRITE|FAULT_CODE_FORCECOW)) #define READ_FAULT(m) (!((m) & FAULT_CODE_WRITE)) #else /* * On 32-bit processors, we define "mode" to be zero when reading, * non-zero when writing. This now ties up nicely with the polarity * of the 26-bit machines, and also means that we avoid the horrible * gcc code for "int val = !other_val;". */ #define DO_COW(m) (m) #define READ_FAULT(m) (!(m)) #endif NORET_TYPE void die(const char *msg, struct pt_regs *regs, int err) ATTRIB_NORET; /* * This is useful to dump out the page tables associated with * 'addr' in mm 'mm'. */ void show_pte(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; if (!mm) mm = &init_mm; printk(KERN_ALERT "pgd = %p\n", mm->pgd); pgd = pgd_offset(mm, addr); printk(KERN_ALERT "*pgd = %08lx", pgd_val(*pgd)); do { pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) break; if (pgd_bad(*pgd)) { printk("(bad)"); break; } pmd = pmd_offset(pgd, addr); printk(", *pmd = %08lx", pmd_val(*pmd)); if (pmd_none(*pmd)) break; if (pmd_bad(*pmd)) { printk("(bad)"); break; } pte = pte_offset(pmd, addr); printk(", *pte = %08lx", pte_val(*pte)); #ifdef CONFIG_CPU_32 printk(", *ppte = %08lx", pte_val(pte[-PTRS_PER_PTE])); #endif } while(0); printk("\n"); } /* * Oops. The kernel tried to access some page that wasn't present. */ static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, int error_code, struct pt_regs *regs) { unsigned long fixup; /* * Are we prepared to handle this kernel fault? */ if ((fixup = search_exception_table(instruction_pointer(regs))) != 0) { #ifdef DEBUG printk(KERN_DEBUG "%s: Exception at [<%lx>] addr=%lx (fixup: %lx)\n", current->comm, regs->ARM_pc, addr, fixup); #endif regs->ARM_pc = fixup; return; } /* * No handler, we'll have to terminate things with extreme prejudice. */ printk(KERN_ALERT "Unable to handle kernel %s at virtual address %08lx\n", (addr < PAGE_SIZE) ? "NULL pointer dereference" : "paging request", addr); show_pte(mm, addr); die("Oops", regs, error_code); do_exit(SIGKILL); } /* * Something tried to access memory that isn't in our memory map.. * User mode accesses just cause a SIGSEGV */ static void __do_user_fault(struct task_struct *tsk, unsigned long addr, int error_code, int code, struct pt_regs *regs) { struct siginfo si; #ifdef CONFIG_DEBUG_USER printk(KERN_DEBUG "%s: unhandled page fault at pc=0x%08lx, " "lr=0x%08lx (bad address=0x%08lx, code %d)\n", tsk->comm, regs->ARM_pc, regs->ARM_lr, addr, error_code); #endif tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; si.si_signo = SIGSEGV; si.si_errno = 0; si.si_code = code; si.si_addr = (void *)addr; force_sig_info(SIGSEGV, &si, tsk); } void do_bad_area(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, int error_code, struct pt_regs *regs) { /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (user_mode(regs)) __do_user_fault(tsk, addr, error_code, SEGV_MAPERR, regs); else __do_kernel_fault(mm, addr, error_code, regs); } static int __do_page_fault(struct mm_struct *mm, unsigned long addr, int error_code, struct task_struct *tsk) { struct vm_area_struct *vma; int fault, mask; vma = find_vma(mm, addr); fault = -2; /* bad map area */ if (!vma) goto out; if (vma->vm_start > addr) goto check_stack; /* * Ok, we have a good vm_area for this * memory access, so we can handle it. */ good_area: if (READ_FAULT(error_code)) /* read? */ mask = VM_READ|VM_EXEC; else mask = VM_WRITE; fault = -1; /* bad access type */ if (!(vma->vm_flags & mask)) goto out; /* * If for any reason at all we couldn't handle * the fault, make sure we exit gracefully rather * than endlessly redo the fault. */ survive: fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, DO_COW(error_code)); /* * Handle the "normal" cases first - successful and sigbus */ switch (fault) { case 2: tsk->maj_flt++; return fault; case 1: tsk->min_flt++; case 0: return fault; } fault = -3; /* out of memory */ if (tsk->pid != 1) goto out; /* * If we are out of memory for pid1, * sleep for a while and retry */ tsk->policy |= SCHED_YIELD; schedule(); goto survive; check_stack: if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) goto good_area; out: return fault; } int do_page_fault(unsigned long addr, int error_code, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; int fault; tsk = current; mm = tsk->mm; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context; down_read(&mm->mmap_sem); fault = __do_page_fault(mm, addr, error_code, tsk); up_read(&mm->mmap_sem); /* * Handle the "normal" case first */ if (fault > 0) return 0; /* * We had some memory, but were unable to * successfully fix up this page fault. */ if (fault == 0) goto do_sigbus; /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault == -3) { /* * We ran out of memory, or some other thing happened to * us that made us unable to handle the page fault gracefully. */ printk("VM: killing process %s\n", tsk->comm); do_exit(SIGKILL); } else __do_user_fault(tsk, addr, error_code, fault == -1 ? SEGV_ACCERR : SEGV_MAPERR, regs); return 0; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ do_sigbus: /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; force_sig(SIGBUS, tsk); #ifdef CONFIG_DEBUG_USER printk(KERN_DEBUG "%s: sigbus at 0x%08lx, pc=0x%08lx\n", current->comm, addr, instruction_pointer(regs)); #endif /* Kernel mode? Handle exceptions or die */ if (user_mode(regs)) return 0; no_context: __do_kernel_fault(mm, addr, error_code, regs); return 0; } /* * First Level Translation Fault Handler * * We enter here because the first level page table doesn't contain * a valid entry for the address. * * If the address is in kernel space (>= TASK_SIZE), then we are * probably faulting in the vmalloc() area. * * If the init_task's first level page tables contains the relevant * entry, we copy the it to this task. If not, we send the process * a signal, fixup the exception, or oops the kernel. * * NOTE! We MUST NOT take any locks for this case. We may be in an * interrupt or a critical region, and should only copy the information * from the master page table, nothing more. */ int do_translation_fault(unsigned long addr, int error_code, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; int offset; pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; if (addr < TASK_SIZE) return do_page_fault(addr, error_code, regs); offset = __pgd_offset(addr); pgd = cpu_get_pgd() + offset; pgd_k = init_mm.pgd + offset; if (pgd_none(*pgd_k)) goto bad_area; #if 0 /* note that we are two-level */ if (!pgd_present(*pgd)) set_pgd(pgd, *pgd_k); #endif pmd_k = pmd_offset(pgd_k, addr); pmd = pmd_offset(pgd, addr); if (pmd_none(*pmd_k)) goto bad_area; set_pmd(pmd, *pmd_k); return 0; bad_area: tsk = current; mm = tsk->active_mm; do_bad_area(tsk, mm, addr, error_code, regs); return 0; } |