Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
 *  linux/kernel/vm86.c
 *
 *  Copyright (C) 1994  Linus Torvalds
 */
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>

#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/io.h>

/*
 * Known problems:
 *
 * Interrupt handling is not guaranteed:
 * - a real x86 will disable all interrupts for one instruction
 *   after a "mov ss,xx" to make stack handling atomic even without
 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 *   as the next instruction might result in a page fault or similar.
 * - a real x86 will have interrupts disabled for one instruction
 *   past the 'sti' that enables them. We don't bother with all the
 *   details yet.
 *
 * Let's hope these problems do not actually matter for anything.
 */


#define KVM86	((struct kernel_vm86_struct *)regs)
#define VMPI 	KVM86->vm86plus


/*
 * 8- and 16-bit register defines..
 */
#define AL(regs)	(((unsigned char *)&((regs)->eax))[0])
#define AH(regs)	(((unsigned char *)&((regs)->eax))[1])
#define IP(regs)	(*(unsigned short *)&((regs)->eip))
#define SP(regs)	(*(unsigned short *)&((regs)->esp))

/*
 * virtual flags (16 and 32-bit versions)
 */
#define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
#define VEFLAGS	(current->thread.v86flags)

#define set_flags(X,new,mask) \
((X) = ((X) & ~(mask)) | ((new) & (mask)))

#define SAFE_MASK	(0xDD5)
#define RETURN_MASK	(0xDFF)

#define VM86_REGS_PART2 orig_eax
#define VM86_REGS_SIZE1 \
        ( (unsigned)( & (((struct kernel_vm86_regs *)0)->VM86_REGS_PART2) ) )
#define VM86_REGS_SIZE2 (sizeof(struct kernel_vm86_regs) - VM86_REGS_SIZE1)

asmlinkage struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
struct pt_regs * save_v86_state(struct kernel_vm86_regs * regs)
{
	struct tss_struct *tss;
	struct pt_regs *ret;
	unsigned long tmp;

	if (!current->thread.vm86_info) {
		printk("no vm86_info: BAD\n");
		do_exit(SIGSEGV);
	}
	set_flags(regs->eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
	tmp = copy_to_user(&current->thread.vm86_info->regs,regs, VM86_REGS_SIZE1);
	tmp += copy_to_user(&current->thread.vm86_info->regs.VM86_REGS_PART2,
		&regs->VM86_REGS_PART2, VM86_REGS_SIZE2);
	tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
	if (tmp) {
		printk("vm86: could not access userspace vm86_info\n");
		do_exit(SIGSEGV);
	}
	tss = init_tss + smp_processor_id();
	tss->esp0 = current->thread.esp0 = current->thread.saved_esp0;
	current->thread.saved_esp0 = 0;
	ret = KVM86->regs32;
	return ret;
}

static void mark_screen_rdonly(struct task_struct * tsk)
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;
	int i;

	pgd = pgd_offset(tsk->mm, 0xA0000);
	if (pgd_none(*pgd))
		return;
	if (pgd_bad(*pgd)) {
		pgd_ERROR(*pgd);
		pgd_clear(pgd);
		return;
	}
	pmd = pmd_offset(pgd, 0xA0000);
	if (pmd_none(*pmd))
		return;
	if (pmd_bad(*pmd)) {
		pmd_ERROR(*pmd);
		pmd_clear(pmd);
		return;
	}
	pte = pte_offset(pmd, 0xA0000);
	for (i = 0; i < 32; i++) {
		if (pte_present(*pte))
			set_pte(pte, pte_wrprotect(*pte));
		pte++;
	}
	flush_tlb();
}



static int do_vm86_irq_handling(int subfunction, int irqnumber);
static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);

asmlinkage int sys_vm86old(struct vm86_struct * v86)
{
	struct kernel_vm86_struct info; /* declare this _on top_,
					 * this avoids wasting of stack space.
					 * This remains on the stack until we
					 * return to 32 bit user space.
					 */
	struct task_struct *tsk;
	int tmp, ret = -EPERM;

	tsk = current;
	if (tsk->thread.saved_esp0)
		goto out;
	tmp  = copy_from_user(&info, v86, VM86_REGS_SIZE1);
	tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
		(long)&info.vm86plus - (long)&info.regs.VM86_REGS_PART2);
	ret = -EFAULT;
	if (tmp)
		goto out;
	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
	info.regs32 = (struct pt_regs *) &v86;
	tsk->thread.vm86_info = v86;
	do_sys_vm86(&info, tsk);
	ret = 0;	/* we never return here */
out:
	return ret;
}


asmlinkage int sys_vm86(unsigned long subfunction, struct vm86plus_struct * v86)
{
	struct kernel_vm86_struct info; /* declare this _on top_,
					 * this avoids wasting of stack space.
					 * This remains on the stack until we
					 * return to 32 bit user space.
					 */
	struct task_struct *tsk;
	int tmp, ret;

	tsk = current;
	switch (subfunction) {
		case VM86_REQUEST_IRQ:
		case VM86_FREE_IRQ:
		case VM86_GET_IRQ_BITS:
		case VM86_GET_AND_RESET_IRQ:
			ret = do_vm86_irq_handling(subfunction,(int)v86);
			goto out;
		case VM86_PLUS_INSTALL_CHECK:
			/* NOTE: on old vm86 stuff this will return the error
			   from verify_area(), because the subfunction is
			   interpreted as (invalid) address to vm86_struct.
			   So the installation check works.
			 */
			ret = 0;
			goto out;
	}

	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
	ret = -EPERM;
	if (tsk->thread.saved_esp0)
		goto out;
	tmp  = copy_from_user(&info, v86, VM86_REGS_SIZE1);
	tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
		(long)&info.regs32 - (long)&info.regs.VM86_REGS_PART2);
	ret = -EFAULT;
	if (tmp)
		goto out;
	info.regs32 = (struct pt_regs *) &subfunction;
	info.vm86plus.is_vm86pus = 1;
	tsk->thread.vm86_info = (struct vm86_struct *)v86;
	do_sys_vm86(&info, tsk);
	ret = 0;	/* we never return here */
out:
	return ret;
}


static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
{
	struct tss_struct *tss;
/*
 * make sure the vm86() system call doesn't try to do anything silly
 */
	info->regs.__null_ds = 0;
	info->regs.__null_es = 0;

/* we are clearing fs,gs later just before "jmp ret_from_sys_call",
 * because starting with Linux 2.1.x they aren't no longer saved/restored
 */

/*
 * The eflags register is also special: we cannot trust that the user
 * has set it up safely, so this makes sure interrupt etc flags are
 * inherited from protected mode.
 */
 	VEFLAGS = info->regs.eflags;
	info->regs.eflags &= SAFE_MASK;
	info->regs.eflags |= info->regs32->eflags & ~SAFE_MASK;
	info->regs.eflags |= VM_MASK;

	switch (info->cpu_type) {
		case CPU_286:
			tsk->thread.v86mask = 0;
			break;
		case CPU_386:
			tsk->thread.v86mask = NT_MASK | IOPL_MASK;
			break;
		case CPU_486:
			tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
			break;
		default:
			tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
			break;
	}

/*
 * Save old state, set default return value (%eax) to 0
 */
	info->regs32->eax = 0;
	tsk->thread.saved_esp0 = tsk->thread.esp0;
	tss = init_tss + smp_processor_id();
	tss->esp0 = tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;

	tsk->thread.screen_bitmap = info->screen_bitmap;
	if (info->flags & VM86_SCREEN_BITMAP)
		mark_screen_rdonly(tsk);
	__asm__ __volatile__(
		"xorl %%eax,%%eax; movl %%eax,%%fs; movl %%eax,%%gs\n\t"
		"movl %0,%%esp\n\t"
		"jmp ret_from_sys_call"
		: /* no outputs */
		:"r" (&info->regs), "b" (tsk) : "ax");
	/* we never return here */
}

static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
{
	struct pt_regs * regs32;

	regs32 = save_v86_state(regs16);
	regs32->eax = retval;
	__asm__ __volatile__("movl %0,%%esp\n\t"
		"jmp ret_from_sys_call"
		: : "r" (regs32), "b" (current));
}

static inline void set_IF(struct kernel_vm86_regs * regs)
{
	VEFLAGS |= VIF_MASK;
	if (VEFLAGS & VIP_MASK)
		return_to_32bit(regs, VM86_STI);
}

static inline void clear_IF(struct kernel_vm86_regs * regs)
{
	VEFLAGS &= ~VIF_MASK;
}

static inline void clear_TF(struct kernel_vm86_regs * regs)
{
	regs->eflags &= ~TF_MASK;
}

static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
{
	set_flags(VEFLAGS, eflags, current->thread.v86mask);
	set_flags(regs->eflags, eflags, SAFE_MASK);
	if (eflags & IF_MASK)
		set_IF(regs);
}

static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
{
	set_flags(VFLAGS, flags, current->thread.v86mask);
	set_flags(regs->eflags, flags, SAFE_MASK);
	if (flags & IF_MASK)
		set_IF(regs);
}

static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
{
	unsigned long flags = regs->eflags & RETURN_MASK;

	if (VEFLAGS & VIF_MASK)
		flags |= IF_MASK;
	return flags | (VEFLAGS & current->thread.v86mask);
}

static inline int is_revectored(int nr, struct revectored_struct * bitmap)
{
	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
		:"=r" (nr)
		:"m" (*bitmap),"r" (nr));
	return nr;
}

/*
 * Boy are these ugly, but we need to do the correct 16-bit arithmetic.
 * Gcc makes a mess of it, so we do it inline and use non-obvious calling
 * conventions..
 */
#define pushb(base, ptr, val) \
__asm__ __volatile__( \
	"decw %w0\n\t" \
	"movb %2,0(%1,%0)" \
	: "=r" (ptr) \
	: "r" (base), "q" (val), "0" (ptr))

#define pushw(base, ptr, val) \
__asm__ __volatile__( \
	"decw %w0\n\t" \
	"movb %h2,0(%1,%0)\n\t" \
	"decw %w0\n\t" \
	"movb %b2,0(%1,%0)" \
	: "=r" (ptr) \
	: "r" (base), "q" (val), "0" (ptr))

#define pushl(base, ptr, val) \
__asm__ __volatile__( \
	"decw %w0\n\t" \
	"rorl $16,%2\n\t" \
	"movb %h2,0(%1,%0)\n\t" \
	"decw %w0\n\t" \
	"movb %b2,0(%1,%0)\n\t" \
	"decw %w0\n\t" \
	"rorl $16,%2\n\t" \
	"movb %h2,0(%1,%0)\n\t" \
	"decw %w0\n\t" \
	"movb %b2,0(%1,%0)" \
	: "=r" (ptr) \
	: "r" (base), "q" (val), "0" (ptr))

#define popb(base, ptr) \
({ unsigned long __res; \
__asm__ __volatile__( \
	"movb 0(%1,%0),%b2\n\t" \
	"incw %w0" \
	: "=r" (ptr), "=r" (base), "=q" (__res) \
	: "0" (ptr), "1" (base), "2" (0)); \
__res; })

#define popw(base, ptr) \
({ unsigned long __res; \
__asm__ __volatile__( \
	"movb 0(%1,%0),%b2\n\t" \
	"incw %w0\n\t" \
	"movb 0(%1,%0),%h2\n\t" \
	"incw %w0" \
	: "=r" (ptr), "=r" (base), "=q" (__res) \
	: "0" (ptr), "1" (base), "2" (0)); \
__res; })

#define popl(base, ptr) \
({ unsigned long __res; \
__asm__ __volatile__( \
	"movb 0(%1,%0),%b2\n\t" \
	"incw %w0\n\t" \
	"movb 0(%1,%0),%h2\n\t" \
	"incw %w0\n\t" \
	"rorl $16,%2\n\t" \
	"movb 0(%1,%0),%b2\n\t" \
	"incw %w0\n\t" \
	"movb 0(%1,%0),%h2\n\t" \
	"incw %w0\n\t" \
	"rorl $16,%2" \
	: "=r" (ptr), "=r" (base), "=q" (__res) \
	: "0" (ptr), "1" (base)); \
__res; })

static void do_int(struct kernel_vm86_regs *regs, int i, unsigned char * ssp, unsigned long sp)
{
	unsigned long *intr_ptr, segoffs;

	if (regs->cs == BIOSSEG)
		goto cannot_handle;
	if (is_revectored(i, &KVM86->int_revectored))
		goto cannot_handle;
	if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
		goto cannot_handle;
	intr_ptr = (unsigned long *) (i << 2);
	if (get_user(segoffs, intr_ptr))
		goto cannot_handle;
	if ((segoffs >> 16) == BIOSSEG)
		goto cannot_handle;
	pushw(ssp, sp, get_vflags(regs));
	pushw(ssp, sp, regs->cs);
	pushw(ssp, sp, IP(regs));
	regs->cs = segoffs >> 16;
	SP(regs) -= 6;
	IP(regs) = segoffs & 0xffff;
	clear_TF(regs);
	clear_IF(regs);
	return;

cannot_handle:
	return_to_32bit(regs, VM86_INTx + (i << 8));
}

int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
{
	if (VMPI.is_vm86pus) {
		if ( (trapno==3) || (trapno==1) )
			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
		do_int(regs, trapno, (unsigned char *) (regs->ss << 4), SP(regs));
		return 0;
	}
	if (trapno !=1)
		return 1; /* we let this handle by the calling routine */
	if (current->ptrace & PT_PTRACED) {
		unsigned long flags;
		spin_lock_irqsave(&current->sigmask_lock, flags);
		sigdelset(&current->blocked, SIGTRAP);
		recalc_sigpending(current);
		spin_unlock_irqrestore(&current->sigmask_lock, flags);
	}
	send_sig(SIGTRAP, current, 1);
	current->thread.trap_no = trapno;
	current->thread.error_code = error_code;
	return 0;
}

void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
{
	unsigned char *csp, *ssp;
	unsigned long ip, sp;

#define CHECK_IF_IN_TRAP \
	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
		pushw(ssp,sp,popw(ssp,sp) | TF_MASK);
#define VM86_FAULT_RETURN \
	if (VMPI.force_return_for_pic  && (VEFLAGS & IF_MASK)) \
		return_to_32bit(regs, VM86_PICRETURN); \
	return;
	                                   
	csp = (unsigned char *) (regs->cs << 4);
	ssp = (unsigned char *) (regs->ss << 4);
	sp = SP(regs);
	ip = IP(regs);

	switch (popb(csp, ip)) {

	/* operand size override */
	case 0x66:
		switch (popb(csp, ip)) {

		/* pushfd */
		case 0x9c:
			SP(regs) -= 4;
			IP(regs) += 2;
			pushl(ssp, sp, get_vflags(regs));
			VM86_FAULT_RETURN;

		/* popfd */
		case 0x9d:
			SP(regs) += 4;
			IP(regs) += 2;
			CHECK_IF_IN_TRAP
			set_vflags_long(popl(ssp, sp), regs);
			VM86_FAULT_RETURN;

		/* iretd */
		case 0xcf:
			SP(regs) += 12;
			IP(regs) = (unsigned short)popl(ssp, sp);
			regs->cs = (unsigned short)popl(ssp, sp);
			CHECK_IF_IN_TRAP
			set_vflags_long(popl(ssp, sp), regs);
			VM86_FAULT_RETURN;
		/* need this to avoid a fallthrough */
		default:
			return_to_32bit(regs, VM86_UNKNOWN);
		}

	/* pushf */
	case 0x9c:
		SP(regs) -= 2;
		IP(regs)++;
		pushw(ssp, sp, get_vflags(regs));
		VM86_FAULT_RETURN;

	/* popf */
	case 0x9d:
		SP(regs) += 2;
		IP(regs)++;
		CHECK_IF_IN_TRAP
		set_vflags_short(popw(ssp, sp), regs);
		VM86_FAULT_RETURN;

	/* int xx */
	case 0xcd: {
	        int intno=popb(csp, ip);
		IP(regs) += 2;
		if (VMPI.vm86dbg_active) {
			if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
				return_to_32bit(regs, VM86_INTx + (intno << 8));
		}
		do_int(regs, intno, ssp, sp);
		return;
	}

	/* iret */
	case 0xcf:
		SP(regs) += 6;
		IP(regs) = popw(ssp, sp);
		regs->cs = popw(ssp, sp);
		CHECK_IF_IN_TRAP
		set_vflags_short(popw(ssp, sp), regs);
		VM86_FAULT_RETURN;

	/* cli */
	case 0xfa:
		IP(regs)++;
		clear_IF(regs);
		VM86_FAULT_RETURN;

	/* sti */
	/*
	 * Damn. This is incorrect: the 'sti' instruction should actually
	 * enable interrupts after the /next/ instruction. Not good.
	 *
	 * Probably needs some horsing around with the TF flag. Aiee..
	 */
	case 0xfb:
		IP(regs)++;
		set_IF(regs);
		VM86_FAULT_RETURN;

	default:
		return_to_32bit(regs, VM86_UNKNOWN);
	}
}

/* ---------------- vm86 special IRQ passing stuff ----------------- */

#define VM86_IRQNAME		"vm86irq"

static struct vm86_irqs {
	struct task_struct *tsk;
	int sig;
} vm86_irqs[16];
static int irqbits;

#define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
	| (1 << SIGUNUSED) )
	
static void irq_handler(int intno, void *dev_id, struct pt_regs * regs) {
	int irq_bit;
	unsigned long flags;
	
	save_flags(flags);
	cli();
	irq_bit = 1 << intno;
	if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
		goto out;
	irqbits |= irq_bit;
	if (vm86_irqs[intno].sig)
		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
	/* else user will poll for IRQs */
out:
	restore_flags(flags);
}

static inline void free_vm86_irq(int irqnumber)
{
	free_irq(irqnumber,0);
	vm86_irqs[irqnumber].tsk = 0;
	irqbits &= ~(1 << irqnumber);
}

static inline int task_valid(struct task_struct *tsk)
{
	struct task_struct *p;
	int ret = 0;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if ((p == tsk) && (p->sig)) {
			ret = 1;
			break;
		}
	}
	read_unlock(&tasklist_lock);
	return ret;
}

static inline void handle_irq_zombies(void)
{
	int i;
	for (i=3; i<16; i++) {
		if (vm86_irqs[i].tsk) {
			if (task_valid(vm86_irqs[i].tsk)) continue;
			free_vm86_irq(i);
		}
	}
}

static inline int get_and_reset_irq(int irqnumber)
{
	int bit;
	unsigned long flags;
	
	if ( (irqnumber<3) || (irqnumber>15) ) return 0;
	if (vm86_irqs[irqnumber].tsk != current) return 0;
	save_flags(flags);
	cli();
	bit = irqbits & (1 << irqnumber);
	irqbits &= ~bit;
	restore_flags(flags);
	return bit;
}


static int do_vm86_irq_handling(int subfunction, int irqnumber)
{
	int ret;
	switch (subfunction) {
		case VM86_GET_AND_RESET_IRQ: {
			return get_and_reset_irq(irqnumber);
		}
		case VM86_GET_IRQ_BITS: {
			return irqbits;
		}
		case VM86_REQUEST_IRQ: {
			int sig = irqnumber >> 8;
			int irq = irqnumber & 255;
			handle_irq_zombies();
			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
			if ( (irq<3) || (irq>15) ) return -EPERM;
			if (vm86_irqs[irq].tsk) return -EPERM;
			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, 0);
			if (ret) return ret;
			vm86_irqs[irq].sig = sig;
			vm86_irqs[irq].tsk = current;
			return irq;
		}
		case  VM86_FREE_IRQ: {
			handle_irq_zombies();
			if ( (irqnumber<3) || (irqnumber>15) ) return -EPERM;
			if (!vm86_irqs[irqnumber].tsk) return 0;
			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
			free_vm86_irq(irqnumber);
			return 0;
		}
	}
	return -EINVAL;
}