Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 | /* * linux/fs/ext2/inode.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Goal-directed block allocation by Stephen Tweedie * (sct@dcs.ed.ac.uk), 1993, 1998 * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 * 64-bit file support on 64-bit platforms by Jakub Jelinek * (jj@sunsite.ms.mff.cuni.cz) * * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 */ #include <linux/fs.h> #include <linux/ext2_fs.h> #include <linux/locks.h> #include <linux/smp_lock.h> #include <linux/sched.h> #include <linux/highuid.h> static int ext2_update_inode(struct inode * inode, int do_sync); /* * Called at each iput() */ void ext2_put_inode (struct inode * inode) { ext2_discard_prealloc (inode); } /* * Called at the last iput() if i_nlink is zero. */ void ext2_delete_inode (struct inode * inode) { lock_kernel(); if (is_bad_inode(inode) || inode->i_ino == EXT2_ACL_IDX_INO || inode->i_ino == EXT2_ACL_DATA_INO) goto no_delete; inode->u.ext2_i.i_dtime = CURRENT_TIME; mark_inode_dirty(inode); ext2_update_inode(inode, IS_SYNC(inode)); inode->i_size = 0; if (inode->i_blocks) ext2_truncate (inode); ext2_free_inode (inode); unlock_kernel(); return; no_delete: unlock_kernel(); clear_inode(inode); /* We must guarantee clearing of inode... */ } void ext2_discard_prealloc (struct inode * inode) { #ifdef EXT2_PREALLOCATE lock_kernel(); /* Writer: ->i_prealloc* */ if (inode->u.ext2_i.i_prealloc_count) { unsigned short total = inode->u.ext2_i.i_prealloc_count; unsigned long block = inode->u.ext2_i.i_prealloc_block; inode->u.ext2_i.i_prealloc_count = 0; inode->u.ext2_i.i_prealloc_block = 0; /* Writer: end */ ext2_free_blocks (inode, block, total); } unlock_kernel(); #endif } static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err) { #ifdef EXT2FS_DEBUG static unsigned long alloc_hits = 0, alloc_attempts = 0; #endif unsigned long result; #ifdef EXT2_PREALLOCATE /* Writer: ->i_prealloc* */ if (inode->u.ext2_i.i_prealloc_count && (goal == inode->u.ext2_i.i_prealloc_block || goal + 1 == inode->u.ext2_i.i_prealloc_block)) { result = inode->u.ext2_i.i_prealloc_block++; inode->u.ext2_i.i_prealloc_count--; /* Writer: end */ #ifdef EXT2FS_DEBUG ext2_debug ("preallocation hit (%lu/%lu).\n", ++alloc_hits, ++alloc_attempts); #endif } else { ext2_discard_prealloc (inode); #ifdef EXT2FS_DEBUG ext2_debug ("preallocation miss (%lu/%lu).\n", alloc_hits, ++alloc_attempts); #endif if (S_ISREG(inode->i_mode)) result = ext2_new_block (inode, goal, &inode->u.ext2_i.i_prealloc_count, &inode->u.ext2_i.i_prealloc_block, err); else result = ext2_new_block (inode, goal, 0, 0, err); } #else result = ext2_new_block (inode, goal, 0, 0, err); #endif return result; } typedef struct { u32 *p; u32 key; struct buffer_head *bh; } Indirect; static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v) { p->key = *(p->p = v); p->bh = bh; } static inline int verify_chain(Indirect *from, Indirect *to) { while (from <= to && from->key == *from->p) from++; return (from > to); } /** * ext2_block_to_path - parse the block number into array of offsets * @inode: inode in question (we are only interested in its superblock) * @i_block: block number to be parsed * @offsets: array to store the offsets in * * To store the locations of file's data ext2 uses a data structure common * for UNIX filesystems - tree of pointers anchored in the inode, with * data blocks at leaves and indirect blocks in intermediate nodes. * This function translates the block number into path in that tree - * return value is the path length and @offsets[n] is the offset of * pointer to (n+1)th node in the nth one. If @block is out of range * (negative or too large) warning is printed and zero returned. * * Note: function doesn't find node addresses, so no IO is needed. All * we need to know is the capacity of indirect blocks (taken from the * inode->i_sb). */ /* * Portability note: the last comparison (check that we fit into triple * indirect block) is spelled differently, because otherwise on an * architecture with 32-bit longs and 8Kb pages we might get into trouble * if our filesystem had 8Kb blocks. We might use long long, but that would * kill us on x86. Oh, well, at least the sign propagation does not matter - * i_block would have to be negative in the very beginning, so we would not * get there at all. */ static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4]) { int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); const long direct_blocks = EXT2_NDIR_BLOCKS, indirect_blocks = ptrs, double_blocks = (1 << (ptrs_bits * 2)); int n = 0; if (i_block < 0) { ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0"); } else if (i_block < direct_blocks) { offsets[n++] = i_block; } else if ( (i_block -= direct_blocks) < indirect_blocks) { offsets[n++] = EXT2_IND_BLOCK; offsets[n++] = i_block; } else if ((i_block -= indirect_blocks) < double_blocks) { offsets[n++] = EXT2_DIND_BLOCK; offsets[n++] = i_block >> ptrs_bits; offsets[n++] = i_block & (ptrs - 1); } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { offsets[n++] = EXT2_TIND_BLOCK; offsets[n++] = i_block >> (ptrs_bits * 2); offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); offsets[n++] = i_block & (ptrs - 1); } else { ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); } return n; } /** * ext2_get_branch - read the chain of indirect blocks leading to data * @inode: inode in question * @depth: depth of the chain (1 - direct pointer, etc.) * @offsets: offsets of pointers in inode/indirect blocks * @chain: place to store the result * @err: here we store the error value * * Function fills the array of triples <key, p, bh> and returns %NULL * if everything went OK or the pointer to the last filled triple * (incomplete one) otherwise. Upon the return chain[i].key contains * the number of (i+1)-th block in the chain (as it is stored in memory, * i.e. little-endian 32-bit), chain[i].p contains the address of that * number (it points into struct inode for i==0 and into the bh->b_data * for i>0) and chain[i].bh points to the buffer_head of i-th indirect * block for i>0 and NULL for i==0. In other words, it holds the block * numbers of the chain, addresses they were taken from (and where we can * verify that chain did not change) and buffer_heads hosting these * numbers. * * Function stops when it stumbles upon zero pointer (absent block) * (pointer to last triple returned, *@err == 0) * or when it gets an IO error reading an indirect block * (ditto, *@err == -EIO) * or when it notices that chain had been changed while it was reading * (ditto, *@err == -EAGAIN) * or when it reads all @depth-1 indirect blocks successfully and finds * the whole chain, all way to the data (returns %NULL, *err == 0). */ static inline Indirect *ext2_get_branch(struct inode *inode, int depth, int *offsets, Indirect chain[4], int *err) { kdev_t dev = inode->i_dev; int size = inode->i_sb->s_blocksize; Indirect *p = chain; struct buffer_head *bh; *err = 0; /* i_data is not going away, no lock needed */ add_chain (chain, NULL, inode->u.ext2_i.i_data + *offsets); if (!p->key) goto no_block; while (--depth) { bh = bread(dev, le32_to_cpu(p->key), size); if (!bh) goto failure; /* Reader: pointers */ if (!verify_chain(chain, p)) goto changed; add_chain(++p, bh, (u32*)bh->b_data + *++offsets); /* Reader: end */ if (!p->key) goto no_block; } return NULL; changed: *err = -EAGAIN; goto no_block; failure: *err = -EIO; no_block: return p; } /** * ext2_find_near - find a place for allocation with sufficient locality * @inode: owner * @ind: descriptor of indirect block. * * This function returns the prefered place for block allocation. * It is used when heuristic for sequential allocation fails. * Rules are: * + if there is a block to the left of our position - allocate near it. * + if pointer will live in indirect block - allocate near that block. * + if pointer will live in inode - allocate in the same cylinder group. * Caller must make sure that @ind is valid and will stay that way. */ static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind) { u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext2_i.i_data; u32 *p; /* Try to find previous block */ for (p = ind->p - 1; p >= start; p--) if (*p) return le32_to_cpu(*p); /* No such thing, so let's try location of indirect block */ if (ind->bh) return ind->bh->b_blocknr; /* * It is going to be refered from inode itself? OK, just put it into * the same cylinder group then. */ return (inode->u.ext2_i.i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) + le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_first_data_block); } /** * ext2_find_goal - find a prefered place for allocation. * @inode: owner * @block: block we want * @chain: chain of indirect blocks * @partial: pointer to the last triple within a chain * @goal: place to store the result. * * Normally this function find the prefered place for block allocation, * stores it in *@goal and returns zero. If the branch had been changed * under us we return -EAGAIN. */ static inline int ext2_find_goal(struct inode *inode, long block, Indirect chain[4], Indirect *partial, unsigned long *goal) { /* Writer: ->i_next_alloc* */ if (block == inode->u.ext2_i.i_next_alloc_block + 1) { inode->u.ext2_i.i_next_alloc_block++; inode->u.ext2_i.i_next_alloc_goal++; } /* Writer: end */ /* Reader: pointers, ->i_next_alloc* */ if (verify_chain(chain, partial)) { /* * try the heuristic for sequential allocation, * failing that at least try to get decent locality. */ if (block == inode->u.ext2_i.i_next_alloc_block) *goal = inode->u.ext2_i.i_next_alloc_goal; if (!*goal) *goal = ext2_find_near(inode, partial); return 0; } /* Reader: end */ return -EAGAIN; } /** * ext2_alloc_branch - allocate and set up a chain of blocks. * @inode: owner * @num: depth of the chain (number of blocks to allocate) * @offsets: offsets (in the blocks) to store the pointers to next. * @branch: place to store the chain in. * * This function allocates @num blocks, zeroes out all but the last one, * links them into chain and (if we are synchronous) writes them to disk. * In other words, it prepares a branch that can be spliced onto the * inode. It stores the information about that chain in the branch[], in * the same format as ext2_get_branch() would do. We are calling it after * we had read the existing part of chain and partial points to the last * triple of that (one with zero ->key). Upon the exit we have the same * picture as after the successful ext2_get_block(), excpet that in one * place chain is disconnected - *branch->p is still zero (we did not * set the last link), but branch->key contains the number that should * be placed into *branch->p to fill that gap. * * If allocation fails we free all blocks we've allocated (and forget * ther buffer_heads) and return the error value the from failed * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain * as described above and return 0. */ static int ext2_alloc_branch(struct inode *inode, int num, unsigned long goal, int *offsets, Indirect *branch) { int blocksize = inode->i_sb->s_blocksize; int n = 0; int err; int i; int parent = ext2_alloc_block(inode, goal, &err); branch[0].key = cpu_to_le32(parent); if (parent) for (n = 1; n < num; n++) { struct buffer_head *bh; /* Allocate the next block */ int nr = ext2_alloc_block(inode, parent, &err); if (!nr) break; branch[n].key = cpu_to_le32(nr); /* * Get buffer_head for parent block, zero it out and set * the pointer to new one, then send parent to disk. */ bh = getblk(inode->i_dev, parent, blocksize); if (!buffer_uptodate(bh)) wait_on_buffer(bh); memset(bh->b_data, 0, blocksize); branch[n].bh = bh; branch[n].p = (u32*) bh->b_data + offsets[n]; *branch[n].p = branch[n].key; mark_buffer_uptodate(bh, 1); mark_buffer_dirty_inode(bh, inode); if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); } parent = nr; } if (n == num) return 0; /* Allocation failed, free what we already allocated */ for (i = 1; i < n; i++) bforget(branch[i].bh); for (i = 0; i < n; i++) ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1); return err; } /** * ext2_splice_branch - splice the allocated branch onto inode. * @inode: owner * @block: (logical) number of block we are adding * @chain: chain of indirect blocks (with a missing link - see * ext2_alloc_branch) * @where: location of missing link * @num: number of blocks we are adding * * This function verifies that chain (up to the missing link) had not * changed, fills the missing link and does all housekeeping needed in * inode (->i_blocks, etc.). In case of success we end up with the full * chain to new block and return 0. Otherwise (== chain had been changed) * we free the new blocks (forgetting their buffer_heads, indeed) and * return -EAGAIN. */ static inline int ext2_splice_branch(struct inode *inode, long block, Indirect chain[4], Indirect *where, int num) { int i; /* Verify that place we are splicing to is still there and vacant */ /* Writer: pointers, ->i_next_alloc*, ->i_blocks */ if (!verify_chain(chain, where-1) || *where->p) /* Writer: end */ goto changed; /* That's it */ *where->p = where->key; inode->u.ext2_i.i_next_alloc_block = block; inode->u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key); inode->i_blocks += num * inode->i_sb->s_blocksize/512; /* Writer: end */ /* We are done with atomic stuff, now do the rest of housekeeping */ inode->i_ctime = CURRENT_TIME; /* had we spliced it onto indirect block? */ if (where->bh) { mark_buffer_dirty_inode(where->bh, inode); if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) { ll_rw_block (WRITE, 1, &where->bh); wait_on_buffer(where->bh); } } if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) ext2_sync_inode (inode); else mark_inode_dirty(inode); return 0; changed: for (i = 1; i < num; i++) bforget(where[i].bh); for (i = 0; i < num; i++) ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1); return -EAGAIN; } /* * Allocation strategy is simple: if we have to allocate something, we will * have to go the whole way to leaf. So let's do it before attaching anything * to tree, set linkage between the newborn blocks, write them if sync is * required, recheck the path, free and repeat if check fails, otherwise * set the last missing link (that will protect us from any truncate-generated * removals - all blocks on the path are immune now) and possibly force the * write on the parent block. * That has a nice additional property: no special recovery from the failed * allocations is needed - we simply release blocks and do not touch anything * reachable from inode. */ static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create) { int err = -EIO; int offsets[4]; Indirect chain[4]; Indirect *partial; unsigned long goal; int left; int depth = ext2_block_to_path(inode, iblock, offsets); if (depth == 0) goto out; lock_kernel(); reread: partial = ext2_get_branch(inode, depth, offsets, chain, &err); /* Simplest case - block found, no allocation needed */ if (!partial) { got_it: bh_result->b_dev = inode->i_dev; bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key); bh_result->b_state |= (1UL << BH_Mapped); /* Clean up and exit */ partial = chain+depth-1; /* the whole chain */ goto cleanup; } /* Next simple case - plain lookup or failed read of indirect block */ if (!create || err == -EIO) { cleanup: while (partial > chain) { brelse(partial->bh); partial--; } unlock_kernel(); out: return err; } /* * Indirect block might be removed by truncate while we were * reading it. Handling of that case (forget what we've got and * reread) is taken out of the main path. */ if (err == -EAGAIN) goto changed; if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0) goto changed; left = (chain + depth) - partial; err = ext2_alloc_branch(inode, left, goal, offsets+(partial-chain), partial); if (err) goto cleanup; if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0) goto changed; bh_result->b_state |= (1UL << BH_New); goto got_it; changed: while (partial > chain) { bforget(partial->bh); partial--; } goto reread; } struct buffer_head * ext2_getblk(struct inode * inode, long block, int create, int * err) { struct buffer_head dummy; int error; dummy.b_state = 0; dummy.b_blocknr = -1000; error = ext2_get_block(inode, block, &dummy, create); *err = error; if (!error && buffer_mapped(&dummy)) { struct buffer_head *bh; bh = getblk(dummy.b_dev, dummy.b_blocknr, inode->i_sb->s_blocksize); if (buffer_new(&dummy)) { if (!buffer_uptodate(bh)) wait_on_buffer(bh); memset(bh->b_data, 0, inode->i_sb->s_blocksize); mark_buffer_uptodate(bh, 1); mark_buffer_dirty_inode(bh, inode); } return bh; } return NULL; } struct buffer_head * ext2_bread (struct inode * inode, int block, int create, int *err) { struct buffer_head * bh; int prev_blocks; prev_blocks = inode->i_blocks; bh = ext2_getblk (inode, block, create, err); if (!bh) return bh; /* * If the inode has grown, and this is a directory, then perform * preallocation of a few more blocks to try to keep directory * fragmentation down. */ if (create && S_ISDIR(inode->i_mode) && inode->i_blocks > prev_blocks && EXT2_HAS_COMPAT_FEATURE(inode->i_sb, EXT2_FEATURE_COMPAT_DIR_PREALLOC)) { int i; struct buffer_head *tmp_bh; for (i = 1; i < EXT2_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks; i++) { /* * ext2_getblk will zero out the contents of the * directory for us */ tmp_bh = ext2_getblk(inode, block+i, create, err); if (!tmp_bh) { brelse (bh); return 0; } brelse (tmp_bh); } } if (buffer_uptodate(bh)) return bh; ll_rw_block (READ, 1, &bh); wait_on_buffer (bh); if (buffer_uptodate(bh)) return bh; brelse (bh); *err = -EIO; return NULL; } static int ext2_writepage(struct page *page) { return block_write_full_page(page,ext2_get_block); } static int ext2_readpage(struct file *file, struct page *page) { return block_read_full_page(page,ext2_get_block); } static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) { return block_prepare_write(page,from,to,ext2_get_block); } static int ext2_bmap(struct address_space *mapping, long block) { return generic_block_bmap(mapping,block,ext2_get_block); } struct address_space_operations ext2_aops = { readpage: ext2_readpage, writepage: ext2_writepage, sync_page: block_sync_page, prepare_write: ext2_prepare_write, commit_write: generic_commit_write, bmap: ext2_bmap }; /* * Probably it should be a library function... search for first non-zero word * or memcmp with zero_page, whatever is better for particular architecture. * Linus? */ static inline int all_zeroes(u32 *p, u32 *q) { while (p < q) if (*p++) return 0; return 1; } /** * ext2_find_shared - find the indirect blocks for partial truncation. * @inode: inode in question * @depth: depth of the affected branch * @offsets: offsets of pointers in that branch (see ext2_block_to_path) * @chain: place to store the pointers to partial indirect blocks * @top: place to the (detached) top of branch * * This is a helper function used by ext2_truncate(). * * When we do truncate() we may have to clean the ends of several indirect * blocks but leave the blocks themselves alive. Block is partially * truncated if some data below the new i_size is refered from it (and * it is on the path to the first completely truncated data block, indeed). * We have to free the top of that path along with everything to the right * of the path. Since no allocation past the truncation point is possible * until ext2_truncate() finishes, we may safely do the latter, but top * of branch may require special attention - pageout below the truncation * point might try to populate it. * * We atomically detach the top of branch from the tree, store the block * number of its root in *@top, pointers to buffer_heads of partially * truncated blocks - in @chain[].bh and pointers to their last elements * that should not be removed - in @chain[].p. Return value is the pointer * to last filled element of @chain. * * The work left to caller to do the actual freeing of subtrees: * a) free the subtree starting from *@top * b) free the subtrees whose roots are stored in * (@chain[i].p+1 .. end of @chain[i].bh->b_data) * c) free the subtrees growing from the inode past the @chain[0].p * (no partially truncated stuff there). */ static Indirect *ext2_find_shared(struct inode *inode, int depth, int offsets[4], Indirect chain[4], u32 *top) { Indirect *partial, *p; int k, err; *top = 0; for (k = depth; k > 1 && !offsets[k-1]; k--) ; partial = ext2_get_branch(inode, k, offsets, chain, &err); /* Writer: pointers */ if (!partial) partial = chain + k-1; /* * If the branch acquired continuation since we've looked at it - * fine, it should all survive and (new) top doesn't belong to us. */ if (!partial->key && *partial->p) /* Writer: end */ goto no_top; for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--) ; /* * OK, we've found the last block that must survive. The rest of our * branch should be detached before unlocking. However, if that rest * of branch is all ours and does not grow immediately from the inode * it's easier to cheat and just decrement partial->p. */ if (p == chain + k - 1 && p > chain) { p->p--; } else { *top = *p->p; *p->p = 0; } /* Writer: end */ while(partial > p) { brelse(partial->bh); partial--; } no_top: return partial; } /** * ext2_free_data - free a list of data blocks * @inode: inode we are dealing with * @p: array of block numbers * @q: points immediately past the end of array * * We are freeing all blocks refered from that array (numbers are * stored as little-endian 32-bit) and updating @inode->i_blocks * appropriately. */ static inline void ext2_free_data(struct inode *inode, u32 *p, u32 *q) { int blocks = inode->i_sb->s_blocksize / 512; unsigned long block_to_free = 0, count = 0; unsigned long nr; for ( ; p < q ; p++) { nr = le32_to_cpu(*p); if (nr) { *p = 0; /* accumulate blocks to free if they're contiguous */ if (count == 0) goto free_this; else if (block_to_free == nr - count) count++; else { /* Writer: ->i_blocks */ inode->i_blocks -= blocks * count; /* Writer: end */ ext2_free_blocks (inode, block_to_free, count); mark_inode_dirty(inode); free_this: block_to_free = nr; count = 1; } } } if (count > 0) { /* Writer: ->i_blocks */ inode->i_blocks -= blocks * count; /* Writer: end */ ext2_free_blocks (inode, block_to_free, count); mark_inode_dirty(inode); } } /** * ext2_free_branches - free an array of branches * @inode: inode we are dealing with * @p: array of block numbers * @q: pointer immediately past the end of array * @depth: depth of the branches to free * * We are freeing all blocks refered from these branches (numbers are * stored as little-endian 32-bit) and updating @inode->i_blocks * appropriately. */ static void ext2_free_branches(struct inode *inode, u32 *p, u32 *q, int depth) { struct buffer_head * bh; unsigned long nr; if (depth--) { int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); for ( ; p < q ; p++) { nr = le32_to_cpu(*p); if (!nr) continue; *p = 0; bh = bread (inode->i_dev, nr, inode->i_sb->s_blocksize); /* * A read failure? Report error and clear slot * (should be rare). */ if (!bh) { ext2_error(inode->i_sb, "ext2_free_branches", "Read failure, inode=%ld, block=%ld", inode->i_ino, nr); continue; } ext2_free_branches(inode, (u32*)bh->b_data, (u32*)bh->b_data + addr_per_block, depth); bforget(bh); /* Writer: ->i_blocks */ inode->i_blocks -= inode->i_sb->s_blocksize / 512; /* Writer: end */ ext2_free_blocks(inode, nr, 1); mark_inode_dirty(inode); } } else ext2_free_data(inode, p, q); } void ext2_truncate (struct inode * inode) { u32 *i_data = inode->u.ext2_i.i_data; int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); int offsets[4]; Indirect chain[4]; Indirect *partial; int nr = 0; int n; long iblock; unsigned blocksize; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; ext2_discard_prealloc(inode); blocksize = inode->i_sb->s_blocksize; iblock = (inode->i_size + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); block_truncate_page(inode->i_mapping, inode->i_size, ext2_get_block); n = ext2_block_to_path(inode, iblock, offsets); if (n == 0) return; if (n == 1) { ext2_free_data(inode, i_data+offsets[0], i_data + EXT2_NDIR_BLOCKS); goto do_indirects; } partial = ext2_find_shared(inode, n, offsets, chain, &nr); /* Kill the top of shared branch (already detached) */ if (nr) { if (partial == chain) mark_inode_dirty(inode); else mark_buffer_dirty_inode(partial->bh, inode); ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); } /* Clear the ends of indirect blocks on the shared branch */ while (partial > chain) { ext2_free_branches(inode, partial->p + 1, (u32*)partial->bh->b_data + addr_per_block, (chain+n-1) - partial); mark_buffer_dirty_inode(partial->bh, inode); if (IS_SYNC(inode)) { ll_rw_block (WRITE, 1, &partial->bh); wait_on_buffer (partial->bh); } brelse (partial->bh); partial--; } do_indirects: /* Kill the remaining (whole) subtrees */ switch (offsets[0]) { default: nr = i_data[EXT2_IND_BLOCK]; if (nr) { i_data[EXT2_IND_BLOCK] = 0; mark_inode_dirty(inode); ext2_free_branches(inode, &nr, &nr+1, 1); } case EXT2_IND_BLOCK: nr = i_data[EXT2_DIND_BLOCK]; if (nr) { i_data[EXT2_DIND_BLOCK] = 0; mark_inode_dirty(inode); ext2_free_branches(inode, &nr, &nr+1, 2); } case EXT2_DIND_BLOCK: nr = i_data[EXT2_TIND_BLOCK]; if (nr) { i_data[EXT2_TIND_BLOCK] = 0; mark_inode_dirty(inode); ext2_free_branches(inode, &nr, &nr+1, 3); } case EXT2_TIND_BLOCK: ; } inode->i_mtime = inode->i_ctime = CURRENT_TIME; if (IS_SYNC(inode)) ext2_sync_inode (inode); else mark_inode_dirty(inode); } void ext2_read_inode (struct inode * inode) { struct buffer_head * bh; struct ext2_inode * raw_inode; unsigned long block_group; unsigned long group_desc; unsigned long desc; unsigned long block; unsigned long offset; struct ext2_group_desc * gdp; if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino != EXT2_ACL_IDX_INO && inode->i_ino != EXT2_ACL_DATA_INO && inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) || inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) { ext2_error (inode->i_sb, "ext2_read_inode", "bad inode number: %lu", inode->i_ino); goto bad_inode; } block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) { ext2_error (inode->i_sb, "ext2_read_inode", "group >= groups count"); goto bad_inode; } group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb); desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1); bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc]; if (!bh) { ext2_error (inode->i_sb, "ext2_read_inode", "Descriptor not loaded"); goto bad_inode; } gdp = (struct ext2_group_desc *) bh->b_data; /* * Figure out the offset within the block group inode table */ offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) * EXT2_INODE_SIZE(inode->i_sb); block = le32_to_cpu(gdp[desc].bg_inode_table) + (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb)); if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) { ext2_error (inode->i_sb, "ext2_read_inode", "unable to read inode block - " "inode=%lu, block=%lu", inode->i_ino, block); goto bad_inode; } offset &= (EXT2_BLOCK_SIZE(inode->i_sb) - 1); raw_inode = (struct ext2_inode *) (bh->b_data + offset); inode->i_mode = le16_to_cpu(raw_inode->i_mode); inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); if(!(test_opt (inode->i_sb, NO_UID32))) { inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; } inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); inode->i_size = le32_to_cpu(raw_inode->i_size); inode->i_atime = le32_to_cpu(raw_inode->i_atime); inode->i_ctime = le32_to_cpu(raw_inode->i_ctime); inode->i_mtime = le32_to_cpu(raw_inode->i_mtime); inode->u.ext2_i.i_dtime = le32_to_cpu(raw_inode->i_dtime); /* We now have enough fields to check if the inode was active or not. * This is needed because nfsd might try to access dead inodes * the test is that same one that e2fsck uses * NeilBrown 1999oct15 */ if (inode->i_nlink == 0 && (inode->i_mode == 0 || inode->u.ext2_i.i_dtime)) { /* this inode is deleted */ brelse (bh); goto bad_inode; } inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); inode->i_version = ++event; inode->u.ext2_i.i_flags = le32_to_cpu(raw_inode->i_flags); inode->u.ext2_i.i_faddr = le32_to_cpu(raw_inode->i_faddr); inode->u.ext2_i.i_frag_no = raw_inode->i_frag; inode->u.ext2_i.i_frag_size = raw_inode->i_fsize; inode->u.ext2_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl); if (S_ISDIR(inode->i_mode)) inode->u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); else { inode->u.ext2_i.i_high_size = le32_to_cpu(raw_inode->i_size_high); inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; } inode->i_generation = le32_to_cpu(raw_inode->i_generation); inode->u.ext2_i.i_block_group = block_group; /* * NOTE! The in-memory inode i_data array is in little-endian order * even on big-endian machines: we do NOT byteswap the block numbers! */ for (block = 0; block < EXT2_N_BLOCKS; block++) inode->u.ext2_i.i_data[block] = raw_inode->i_block[block]; if (inode->i_ino == EXT2_ACL_IDX_INO || inode->i_ino == EXT2_ACL_DATA_INO) /* Nothing to do */ ; else if (S_ISREG(inode->i_mode)) { inode->i_op = &ext2_file_inode_operations; inode->i_fop = &ext2_file_operations; inode->i_mapping->a_ops = &ext2_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &ext2_dir_inode_operations; inode->i_fop = &ext2_dir_operations; } else if (S_ISLNK(inode->i_mode)) { if (!inode->i_blocks) inode->i_op = &ext2_fast_symlink_inode_operations; else { inode->i_op = &page_symlink_inode_operations; inode->i_mapping->a_ops = &ext2_aops; } } else init_special_inode(inode, inode->i_mode, le32_to_cpu(raw_inode->i_block[0])); brelse (bh); inode->i_attr_flags = 0; if (inode->u.ext2_i.i_flags & EXT2_SYNC_FL) { inode->i_attr_flags |= ATTR_FLAG_SYNCRONOUS; inode->i_flags |= S_SYNC; } if (inode->u.ext2_i.i_flags & EXT2_APPEND_FL) { inode->i_attr_flags |= ATTR_FLAG_APPEND; inode->i_flags |= S_APPEND; } if (inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL) { inode->i_attr_flags |= ATTR_FLAG_IMMUTABLE; inode->i_flags |= S_IMMUTABLE; } if (inode->u.ext2_i.i_flags & EXT2_NOATIME_FL) { inode->i_attr_flags |= ATTR_FLAG_NOATIME; inode->i_flags |= S_NOATIME; } return; bad_inode: make_bad_inode(inode); return; } static int ext2_update_inode(struct inode * inode, int do_sync) { struct buffer_head * bh; struct ext2_inode * raw_inode; unsigned long block_group; unsigned long group_desc; unsigned long desc; unsigned long block; unsigned long offset; int err = 0; struct ext2_group_desc * gdp; if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) || inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) { ext2_error (inode->i_sb, "ext2_write_inode", "bad inode number: %lu", inode->i_ino); return -EIO; } block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) { ext2_error (inode->i_sb, "ext2_write_inode", "group >= groups count"); return -EIO; } group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb); desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1); bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc]; if (!bh) { ext2_error (inode->i_sb, "ext2_write_inode", "Descriptor not loaded"); return -EIO; } gdp = (struct ext2_group_desc *) bh->b_data; /* * Figure out the offset within the block group inode table */ offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) * EXT2_INODE_SIZE(inode->i_sb); block = le32_to_cpu(gdp[desc].bg_inode_table) + (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb)); if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) { ext2_error (inode->i_sb, "ext2_write_inode", "unable to read inode block - " "inode=%lu, block=%lu", inode->i_ino, block); return -EIO; } offset &= EXT2_BLOCK_SIZE(inode->i_sb) - 1; raw_inode = (struct ext2_inode *) (bh->b_data + offset); raw_inode->i_mode = cpu_to_le16(inode->i_mode); if(!(test_opt(inode->i_sb, NO_UID32))) { raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); /* * Fix up interoperability with old kernels. Otherwise, old inodes get * re-used with the upper 16 bits of the uid/gid intact */ if(!inode->u.ext2_i.i_dtime) { raw_inode->i_uid_high = cpu_to_le16(high_16_bits(inode->i_uid)); raw_inode->i_gid_high = cpu_to_le16(high_16_bits(inode->i_gid)); } else { raw_inode->i_uid_high = 0; raw_inode->i_gid_high = 0; } } else { raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(inode->i_uid)); raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(inode->i_gid)); raw_inode->i_uid_high = 0; raw_inode->i_gid_high = 0; } raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); raw_inode->i_size = cpu_to_le32(inode->i_size); raw_inode->i_atime = cpu_to_le32(inode->i_atime); raw_inode->i_ctime = cpu_to_le32(inode->i_ctime); raw_inode->i_mtime = cpu_to_le32(inode->i_mtime); raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); raw_inode->i_dtime = cpu_to_le32(inode->u.ext2_i.i_dtime); raw_inode->i_flags = cpu_to_le32(inode->u.ext2_i.i_flags); raw_inode->i_faddr = cpu_to_le32(inode->u.ext2_i.i_faddr); raw_inode->i_frag = inode->u.ext2_i.i_frag_no; raw_inode->i_fsize = inode->u.ext2_i.i_frag_size; raw_inode->i_file_acl = cpu_to_le32(inode->u.ext2_i.i_file_acl); if (S_ISDIR(inode->i_mode)) raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext2_i.i_dir_acl); else { raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); if (raw_inode->i_size_high) { struct super_block *sb = inode->i_sb; if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || EXT2_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT2_GOOD_OLD_REV)) { /* If this is the first large file * created, add a flag to the superblock. */ lock_kernel(); ext2_update_dynamic_rev(sb); EXT2_SET_RO_COMPAT_FEATURE(sb, EXT2_FEATURE_RO_COMPAT_LARGE_FILE); unlock_kernel(); ext2_write_super(sb); } } } raw_inode->i_generation = cpu_to_le32(inode->i_generation); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) raw_inode->i_block[0] = cpu_to_le32(kdev_t_to_nr(inode->i_rdev)); else for (block = 0; block < EXT2_N_BLOCKS; block++) raw_inode->i_block[block] = inode->u.ext2_i.i_data[block]; mark_buffer_dirty(bh); if (do_sync) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); if (buffer_req(bh) && !buffer_uptodate(bh)) { printk ("IO error syncing ext2 inode [" "%s:%08lx]\n", bdevname(inode->i_dev), inode->i_ino); err = -EIO; } } brelse (bh); return err; } void ext2_write_inode (struct inode * inode, int wait) { lock_kernel(); ext2_update_inode (inode, wait); unlock_kernel(); } int ext2_sync_inode (struct inode *inode) { return ext2_update_inode (inode, 1); } int ext2_notify_change(struct dentry *dentry, struct iattr *iattr) { struct inode *inode = dentry->d_inode; int retval; unsigned int flags; retval = -EPERM; if (iattr->ia_valid & ATTR_ATTR_FLAG && ((!(iattr->ia_attr_flags & ATTR_FLAG_APPEND) != !(inode->u.ext2_i.i_flags & EXT2_APPEND_FL)) || (!(iattr->ia_attr_flags & ATTR_FLAG_IMMUTABLE) != !(inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL)))) { if (!capable(CAP_LINUX_IMMUTABLE)) goto out; } else if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER)) goto out; retval = inode_change_ok(inode, iattr); if (retval != 0) goto out; inode_setattr(inode, iattr); flags = iattr->ia_attr_flags; if (flags & ATTR_FLAG_SYNCRONOUS) { inode->i_flags |= S_SYNC; inode->u.ext2_i.i_flags |= EXT2_SYNC_FL; } else { inode->i_flags &= ~S_SYNC; inode->u.ext2_i.i_flags &= ~EXT2_SYNC_FL; } if (flags & ATTR_FLAG_NOATIME) { inode->i_flags |= S_NOATIME; inode->u.ext2_i.i_flags |= EXT2_NOATIME_FL; } else { inode->i_flags &= ~S_NOATIME; inode->u.ext2_i.i_flags &= ~EXT2_NOATIME_FL; } if (flags & ATTR_FLAG_APPEND) { inode->i_flags |= S_APPEND; inode->u.ext2_i.i_flags |= EXT2_APPEND_FL; } else { inode->i_flags &= ~S_APPEND; inode->u.ext2_i.i_flags &= ~EXT2_APPEND_FL; } if (flags & ATTR_FLAG_IMMUTABLE) { inode->i_flags |= S_IMMUTABLE; inode->u.ext2_i.i_flags |= EXT2_IMMUTABLE_FL; } else { inode->i_flags &= ~S_IMMUTABLE; inode->u.ext2_i.i_flags &= ~EXT2_IMMUTABLE_FL; } mark_inode_dirty(inode); out: return retval; } |