Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
/*
 *  linux/fs/ext2/inode.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 * 	(sct@dcs.ed.ac.uk), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 * 	(jj@sunsite.ms.mff.cuni.cz)
 *
 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
 */

#include <linux/fs.h>
#include <linux/ext2_fs.h>
#include <linux/locks.h>
#include <linux/smp_lock.h>
#include <linux/sched.h>
#include <linux/highuid.h>

static int ext2_update_inode(struct inode * inode, int do_sync);

/*
 * Called at each iput()
 */
void ext2_put_inode (struct inode * inode)
{
	ext2_discard_prealloc (inode);
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
void ext2_delete_inode (struct inode * inode)
{
	lock_kernel();

	if (is_bad_inode(inode) ||
	    inode->i_ino == EXT2_ACL_IDX_INO ||
	    inode->i_ino == EXT2_ACL_DATA_INO)
		goto no_delete;
	inode->u.ext2_i.i_dtime	= CURRENT_TIME;
	mark_inode_dirty(inode);
	ext2_update_inode(inode, IS_SYNC(inode));
	inode->i_size = 0;
	if (inode->i_blocks)
		ext2_truncate (inode);
	ext2_free_inode (inode);

	unlock_kernel();
	return;
no_delete:
	unlock_kernel();
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

void ext2_discard_prealloc (struct inode * inode)
{
#ifdef EXT2_PREALLOCATE
	lock_kernel();
	/* Writer: ->i_prealloc* */
	if (inode->u.ext2_i.i_prealloc_count) {
		unsigned short total = inode->u.ext2_i.i_prealloc_count;
		unsigned long block = inode->u.ext2_i.i_prealloc_block;
		inode->u.ext2_i.i_prealloc_count = 0;
		inode->u.ext2_i.i_prealloc_block = 0;
		/* Writer: end */
		ext2_free_blocks (inode, block, total);
	}
	unlock_kernel();
#endif
}

static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
{
#ifdef EXT2FS_DEBUG
	static unsigned long alloc_hits = 0, alloc_attempts = 0;
#endif
	unsigned long result;


#ifdef EXT2_PREALLOCATE
	/* Writer: ->i_prealloc* */
	if (inode->u.ext2_i.i_prealloc_count &&
	    (goal == inode->u.ext2_i.i_prealloc_block ||
	     goal + 1 == inode->u.ext2_i.i_prealloc_block))
	{		
		result = inode->u.ext2_i.i_prealloc_block++;
		inode->u.ext2_i.i_prealloc_count--;
		/* Writer: end */
#ifdef EXT2FS_DEBUG
		ext2_debug ("preallocation hit (%lu/%lu).\n",
			    ++alloc_hits, ++alloc_attempts);
#endif
	} else {
		ext2_discard_prealloc (inode);
#ifdef EXT2FS_DEBUG
		ext2_debug ("preallocation miss (%lu/%lu).\n",
			    alloc_hits, ++alloc_attempts);
#endif
		if (S_ISREG(inode->i_mode))
			result = ext2_new_block (inode, goal, 
				 &inode->u.ext2_i.i_prealloc_count,
				 &inode->u.ext2_i.i_prealloc_block, err);
		else
			result = ext2_new_block (inode, goal, 0, 0, err);
	}
#else
	result = ext2_new_block (inode, goal, 0, 0, err);
#endif
	return result;
}

typedef struct {
	u32	*p;
	u32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

static inline int verify_chain(Indirect *from, Indirect *to)
{
	while (from <= to && from->key == *from->p)
		from++;
	return (from > to);
}

/**
 *	ext2_block_to_path - parse the block number into array of offsets
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
 *
 *	To store the locations of file's data ext2 uses a data structure common
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])
{
	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT2_NDIR_BLOCKS,
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;

	if (i_block < 0) {
		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
		offsets[n++] = EXT2_IND_BLOCK;
		offsets[n++] = i_block;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
		offsets[n++] = EXT2_DIND_BLOCK;
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
		offsets[n++] = EXT2_TIND_BLOCK;
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
	} else {
		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
	}
	return n;
}

/**
 *	ext2_get_branch - read the chain of indirect blocks leading to data
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it notices that chain had been changed while it was reading
 *		(ditto, *@err == -EAGAIN)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 */
static inline Indirect *ext2_get_branch(struct inode *inode,
					int depth,
					int *offsets,
					Indirect chain[4],
					int *err)
{
	kdev_t dev = inode->i_dev;
	int size = inode->i_sb->s_blocksize;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
	add_chain (chain, NULL, inode->u.ext2_i.i_data + *offsets);
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = bread(dev, le32_to_cpu(p->key), size);
		if (!bh)
			goto failure;
		/* Reader: pointers */
		if (!verify_chain(chain, p))
			goto changed;
		add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

changed:
	*err = -EAGAIN;
	goto no_block;
failure:
	*err = -EIO;
no_block:
	return p;
}

/**
 *	ext2_find_near - find a place for allocation with sufficient locality
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same cylinder group.
 *	Caller must make sure that @ind is valid and will stay that way.
 */

static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
{
	u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext2_i.i_data;
	u32 *p;

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--)
		if (*p)
			return le32_to_cpu(*p);

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be refered from inode itself? OK, just put it into
	 * the same cylinder group then.
	 */
	return (inode->u.ext2_i.i_block_group * 
		EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
	       le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_first_data_block);
}

/**
 *	ext2_find_goal - find a prefered place for allocation.
 *	@inode: owner
 *	@block:  block we want
 *	@chain:  chain of indirect blocks
 *	@partial: pointer to the last triple within a chain
 *	@goal:	place to store the result.
 *
 *	Normally this function find the prefered place for block allocation,
 *	stores it in *@goal and returns zero. If the branch had been changed
 *	under us we return -EAGAIN.
 */

static inline int ext2_find_goal(struct inode *inode,
				 long block,
				 Indirect chain[4],
				 Indirect *partial,
				 unsigned long *goal)
{
	/* Writer: ->i_next_alloc* */
	if (block == inode->u.ext2_i.i_next_alloc_block + 1) {
		inode->u.ext2_i.i_next_alloc_block++;
		inode->u.ext2_i.i_next_alloc_goal++;
	} 
	/* Writer: end */
	/* Reader: pointers, ->i_next_alloc* */
	if (verify_chain(chain, partial)) {
		/*
		 * try the heuristic for sequential allocation,
		 * failing that at least try to get decent locality.
		 */
		if (block == inode->u.ext2_i.i_next_alloc_block)
			*goal = inode->u.ext2_i.i_next_alloc_goal;
		if (!*goal)
			*goal = ext2_find_near(inode, partial);
		return 0;
	}
	/* Reader: end */
	return -EAGAIN;
}

/**
 *	ext2_alloc_branch - allocate and set up a chain of blocks.
 *	@inode: owner
 *	@num: depth of the chain (number of blocks to allocate)
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates @num blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
 *	the same format as ext2_get_branch() would do. We are calling it after
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
 *	picture as after the successful ext2_get_block(), excpet that in one
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	ther buffer_heads) and return the error value the from failed
 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 *	as described above and return 0.
 */

static int ext2_alloc_branch(struct inode *inode,
			     int num,
			     unsigned long goal,
			     int *offsets,
			     Indirect *branch)
{
	int blocksize = inode->i_sb->s_blocksize;
	int n = 0;
	int err;
	int i;
	int parent = ext2_alloc_block(inode, goal, &err);

	branch[0].key = cpu_to_le32(parent);
	if (parent) for (n = 1; n < num; n++) {
		struct buffer_head *bh;
		/* Allocate the next block */
		int nr = ext2_alloc_block(inode, parent, &err);
		if (!nr)
			break;
		branch[n].key = cpu_to_le32(nr);
		/*
		 * Get buffer_head for parent block, zero it out and set 
		 * the pointer to new one, then send parent to disk.
		 */
		bh = getblk(inode->i_dev, parent, blocksize);
		if (!buffer_uptodate(bh))
			wait_on_buffer(bh);
		memset(bh->b_data, 0, blocksize);
		branch[n].bh = bh;
		branch[n].p = (u32*) bh->b_data + offsets[n];
		*branch[n].p = branch[n].key;
		mark_buffer_uptodate(bh, 1);
		mark_buffer_dirty_inode(bh, inode);
		if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) {
			ll_rw_block (WRITE, 1, &bh);
			wait_on_buffer (bh);
		}
		parent = nr;
	}
	if (n == num)
		return 0;

	/* Allocation failed, free what we already allocated */
	for (i = 1; i < n; i++)
		bforget(branch[i].bh);
	for (i = 0; i < n; i++)
		ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
	return err;
}

/**
 *	ext2_splice_branch - splice the allocated branch onto inode.
 *	@inode: owner
 *	@block: (logical) number of block we are adding
 *	@chain: chain of indirect blocks (with a missing link - see
 *		ext2_alloc_branch)
 *	@where: location of missing link
 *	@num:   number of blocks we are adding
 *
 *	This function verifies that chain (up to the missing link) had not
 *	changed, fills the missing link and does all housekeeping needed in
 *	inode (->i_blocks, etc.). In case of success we end up with the full
 *	chain to new block and return 0. Otherwise (== chain had been changed)
 *	we free the new blocks (forgetting their buffer_heads, indeed) and
 *	return -EAGAIN.
 */

static inline int ext2_splice_branch(struct inode *inode,
				     long block,
				     Indirect chain[4],
				     Indirect *where,
				     int num)
{
	int i;

	/* Verify that place we are splicing to is still there and vacant */

	/* Writer: pointers, ->i_next_alloc*, ->i_blocks */
	if (!verify_chain(chain, where-1) || *where->p)
		/* Writer: end */
		goto changed;

	/* That's it */

	*where->p = where->key;
	inode->u.ext2_i.i_next_alloc_block = block;
	inode->u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
	inode->i_blocks += num * inode->i_sb->s_blocksize/512;

	/* Writer: end */

	/* We are done with atomic stuff, now do the rest of housekeeping */

	inode->i_ctime = CURRENT_TIME;

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		mark_buffer_dirty_inode(where->bh, inode);
		if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) {
			ll_rw_block (WRITE, 1, &where->bh);
			wait_on_buffer(where->bh);
		}
	}

	if (IS_SYNC(inode) || inode->u.ext2_i.i_osync)
		ext2_sync_inode (inode);
	else
		mark_inode_dirty(inode);
	return 0;

changed:
	for (i = 1; i < num; i++)
		bforget(where[i].bh);
	for (i = 0; i < num; i++)
		ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
	return -EAGAIN;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 */

static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create)
{
	int err = -EIO;
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
	unsigned long goal;
	int left;
	int depth = ext2_block_to_path(inode, iblock, offsets);

	if (depth == 0)
		goto out;

	lock_kernel();
reread:
	partial = ext2_get_branch(inode, depth, offsets, chain, &err);

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
got_it:
		bh_result->b_dev = inode->i_dev;
		bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
		bh_result->b_state |= (1UL << BH_Mapped);
		/* Clean up and exit */
		partial = chain+depth-1; /* the whole chain */
		goto cleanup;
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO) {
cleanup:
		while (partial > chain) {
			brelse(partial->bh);
			partial--;
		}
		unlock_kernel();
out:
		return err;
	}

	/*
	 * Indirect block might be removed by truncate while we were
	 * reading it. Handling of that case (forget what we've got and
	 * reread) is taken out of the main path.
	 */
	if (err == -EAGAIN)
		goto changed;

	if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)
		goto changed;

	left = (chain + depth) - partial;
	err = ext2_alloc_branch(inode, left, goal,
					offsets+(partial-chain), partial);
	if (err)
		goto cleanup;

	if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
		goto changed;

	bh_result->b_state |= (1UL << BH_New);
	goto got_it;

changed:
	while (partial > chain) {
		bforget(partial->bh);
		partial--;
	}
	goto reread;
}

struct buffer_head * ext2_getblk(struct inode * inode, long block, int create, int * err)
{
	struct buffer_head dummy;
	int error;

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	error = ext2_get_block(inode, block, &dummy, create);
	*err = error;
	if (!error && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = getblk(dummy.b_dev, dummy.b_blocknr, inode->i_sb->s_blocksize);
		if (buffer_new(&dummy)) {
			if (!buffer_uptodate(bh))
				wait_on_buffer(bh);
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			mark_buffer_uptodate(bh, 1);
			mark_buffer_dirty_inode(bh, inode);
		}
		return bh;
	}
	return NULL;
}

struct buffer_head * ext2_bread (struct inode * inode, int block, 
				 int create, int *err)
{
	struct buffer_head * bh;
	int prev_blocks;
	
	prev_blocks = inode->i_blocks;
	
	bh = ext2_getblk (inode, block, create, err);
	if (!bh)
		return bh;
	
	/*
	 * If the inode has grown, and this is a directory, then perform
	 * preallocation of a few more blocks to try to keep directory
	 * fragmentation down.
	 */
	if (create && 
	    S_ISDIR(inode->i_mode) && 
	    inode->i_blocks > prev_blocks &&
	    EXT2_HAS_COMPAT_FEATURE(inode->i_sb,
				    EXT2_FEATURE_COMPAT_DIR_PREALLOC)) {
		int i;
		struct buffer_head *tmp_bh;
		
		for (i = 1;
		     i < EXT2_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
		     i++) {
			/* 
			 * ext2_getblk will zero out the contents of the
			 * directory for us
			 */
			tmp_bh = ext2_getblk(inode, block+i, create, err);
			if (!tmp_bh) {
				brelse (bh);
				return 0;
			}
			brelse (tmp_bh);
		}
	}
	
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block (READ, 1, &bh);
	wait_on_buffer (bh);
	if (buffer_uptodate(bh))
		return bh;
	brelse (bh);
	*err = -EIO;
	return NULL;
}

static int ext2_writepage(struct page *page)
{
	return block_write_full_page(page,ext2_get_block);
}
static int ext2_readpage(struct file *file, struct page *page)
{
	return block_read_full_page(page,ext2_get_block);
}
static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
{
	return block_prepare_write(page,from,to,ext2_get_block);
}
static int ext2_bmap(struct address_space *mapping, long block)
{
	return generic_block_bmap(mapping,block,ext2_get_block);
}
struct address_space_operations ext2_aops = {
	readpage: ext2_readpage,
	writepage: ext2_writepage,
	sync_page: block_sync_page,
	prepare_write: ext2_prepare_write,
	commit_write: generic_commit_write,
	bmap: ext2_bmap
};

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(u32 *p, u32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
 *	ext2_find_shared - find the indirect blocks for partial truncation.
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
 *	This is a helper function used by ext2_truncate().
 *
 *	When we do truncate() we may have to clean the ends of several indirect
 *	blocks but leave the blocks themselves alive. Block is partially
 *	truncated if some data below the new i_size is refered from it (and
 *	it is on the path to the first completely truncated data block, indeed).
 *	We have to free the top of that path along with everything to the right
 *	of the path. Since no allocation past the truncation point is possible
 *	until ext2_truncate() finishes, we may safely do the latter, but top
 *	of branch may require special attention - pageout below the truncation
 *	point might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the block
 *	number of its root in *@top, pointers to buffer_heads of partially
 *	truncated blocks - in @chain[].bh and pointers to their last elements
 *	that should not be removed - in @chain[].p. Return value is the pointer
 *	to last filled element of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].p
 *			(no partially truncated stuff there).
 */

static Indirect *ext2_find_shared(struct inode *inode,
				int depth,
				int offsets[4],
				Indirect chain[4],
				u32 *top)
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
	partial = ext2_get_branch(inode, k, offsets, chain, &err);
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
		*p->p = 0;
	}
	/* Writer: end */

	while(partial > p)
	{
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/**
 *	ext2_free_data - free a list of data blocks
 *	@inode:	inode we are dealing with
 *	@p:	array of block numbers
 *	@q:	points immediately past the end of array
 *
 *	We are freeing all blocks refered from that array (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
static inline void ext2_free_data(struct inode *inode, u32 *p, u32 *q)
{
	int blocks = inode->i_sb->s_blocksize / 512;
	unsigned long block_to_free = 0, count = 0;
	unsigned long nr;

	for ( ; p < q ; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			*p = 0;
			/* accumulate blocks to free if they're contiguous */
			if (count == 0)
				goto free_this;
			else if (block_to_free == nr - count)
				count++;
			else {
				/* Writer: ->i_blocks */
				inode->i_blocks -= blocks * count;
				/* Writer: end */
				ext2_free_blocks (inode, block_to_free, count);
				mark_inode_dirty(inode);
			free_this:
				block_to_free = nr;
				count = 1;
			}
		}
	}
	if (count > 0) {
		/* Writer: ->i_blocks */
		inode->i_blocks -= blocks * count;
		/* Writer: end */
		ext2_free_blocks (inode, block_to_free, count);
		mark_inode_dirty(inode);
	}
}

/**
 *	ext2_free_branches - free an array of branches
 *	@inode:	inode we are dealing with
 *	@p:	array of block numbers
 *	@q:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
static void ext2_free_branches(struct inode *inode, u32 *p, u32 *q, int depth)
{
	struct buffer_head * bh;
	unsigned long nr;

	if (depth--) {
		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
		for ( ; p < q ; p++) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;
			*p = 0;
			bh = bread (inode->i_dev, nr, inode->i_sb->s_blocksize);
			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */ 
			if (!bh) {
				ext2_error(inode->i_sb, "ext2_free_branches",
					"Read failure, inode=%ld, block=%ld",
					inode->i_ino, nr);
				continue;
			}
			ext2_free_branches(inode,
					   (u32*)bh->b_data,
					   (u32*)bh->b_data + addr_per_block,
					   depth);
			bforget(bh);
			/* Writer: ->i_blocks */
			inode->i_blocks -= inode->i_sb->s_blocksize / 512;
			/* Writer: end */
			ext2_free_blocks(inode, nr, 1);
			mark_inode_dirty(inode);
		}
	} else
		ext2_free_data(inode, p, q);
}

void ext2_truncate (struct inode * inode)
{
	u32 *i_data = inode->u.ext2_i.i_data;
	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
	int nr = 0;
	int n;
	long iblock;
	unsigned blocksize;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	ext2_discard_prealloc(inode);

	blocksize = inode->i_sb->s_blocksize;
	iblock = (inode->i_size + blocksize-1)
					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);

	block_truncate_page(inode->i_mapping, inode->i_size, ext2_get_block);

	n = ext2_block_to_path(inode, iblock, offsets);
	if (n == 0)
		return;

	if (n == 1) {
		ext2_free_data(inode, i_data+offsets[0],
					i_data + EXT2_NDIR_BLOCKS);
		goto do_indirects;
	}

	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
	/* Kill the top of shared branch (already detached) */
	if (nr) {
		if (partial == chain)
			mark_inode_dirty(inode);
		else
			mark_buffer_dirty_inode(partial->bh, inode);
		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
		ext2_free_branches(inode,
				   partial->p + 1,
				   (u32*)partial->bh->b_data + addr_per_block,
				   (chain+n-1) - partial);
		mark_buffer_dirty_inode(partial->bh, inode);
		if (IS_SYNC(inode)) {
			ll_rw_block (WRITE, 1, &partial->bh);
			wait_on_buffer (partial->bh);
		}
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
		default:
			nr = i_data[EXT2_IND_BLOCK];
			if (nr) {
				i_data[EXT2_IND_BLOCK] = 0;
				mark_inode_dirty(inode);
				ext2_free_branches(inode, &nr, &nr+1, 1);
			}
		case EXT2_IND_BLOCK:
			nr = i_data[EXT2_DIND_BLOCK];
			if (nr) {
				i_data[EXT2_DIND_BLOCK] = 0;
				mark_inode_dirty(inode);
				ext2_free_branches(inode, &nr, &nr+1, 2);
			}
		case EXT2_DIND_BLOCK:
			nr = i_data[EXT2_TIND_BLOCK];
			if (nr) {
				i_data[EXT2_TIND_BLOCK] = 0;
				mark_inode_dirty(inode);
				ext2_free_branches(inode, &nr, &nr+1, 3);
			}
		case EXT2_TIND_BLOCK:
			;
	}
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	if (IS_SYNC(inode))
		ext2_sync_inode (inode);
	else
		mark_inode_dirty(inode);
}

void ext2_read_inode (struct inode * inode)
{
	struct buffer_head * bh;
	struct ext2_inode * raw_inode;
	unsigned long block_group;
	unsigned long group_desc;
	unsigned long desc;
	unsigned long block;
	unsigned long offset;
	struct ext2_group_desc * gdp;

	if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino != EXT2_ACL_IDX_INO &&
	     inode->i_ino != EXT2_ACL_DATA_INO &&
	     inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
	    inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
		ext2_error (inode->i_sb, "ext2_read_inode",
			    "bad inode number: %lu", inode->i_ino);
		goto bad_inode;
	}
	block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
	if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
		ext2_error (inode->i_sb, "ext2_read_inode",
			    "group >= groups count");
		goto bad_inode;
	}
	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
	desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
	bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
	if (!bh) {
		ext2_error (inode->i_sb, "ext2_read_inode",
			    "Descriptor not loaded");
		goto bad_inode;
	}

	gdp = (struct ext2_group_desc *) bh->b_data;
	/*
	 * Figure out the offset within the block group inode table
	 */
	offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
		EXT2_INODE_SIZE(inode->i_sb);
	block = le32_to_cpu(gdp[desc].bg_inode_table) +
		(offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
	if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) {
		ext2_error (inode->i_sb, "ext2_read_inode",
			    "unable to read inode block - "
			    "inode=%lu, block=%lu", inode->i_ino, block);
		goto bad_inode;
	}
	offset &= (EXT2_BLOCK_SIZE(inode->i_sb) - 1);
	raw_inode = (struct ext2_inode *) (bh->b_data + offset);

	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
	inode->i_size = le32_to_cpu(raw_inode->i_size);
	inode->i_atime = le32_to_cpu(raw_inode->i_atime);
	inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
	inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
	inode->u.ext2_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0 && (inode->i_mode == 0 || inode->u.ext2_i.i_dtime)) {
		/* this inode is deleted */
		brelse (bh);
		goto bad_inode;
	}
	inode->i_blksize = PAGE_SIZE;	/* This is the optimal IO size (for stat), not the fs block size */
	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
	inode->i_version = ++event;
	inode->u.ext2_i.i_flags = le32_to_cpu(raw_inode->i_flags);
	inode->u.ext2_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
	inode->u.ext2_i.i_frag_no = raw_inode->i_frag;
	inode->u.ext2_i.i_frag_size = raw_inode->i_fsize;
	inode->u.ext2_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
	if (S_ISDIR(inode->i_mode))
		inode->u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
	else {
		inode->u.ext2_i.i_high_size = le32_to_cpu(raw_inode->i_size_high);
		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
	}
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	inode->u.ext2_i.i_block_group = block_group;

	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
	for (block = 0; block < EXT2_N_BLOCKS; block++)
		inode->u.ext2_i.i_data[block] = raw_inode->i_block[block];

	if (inode->i_ino == EXT2_ACL_IDX_INO ||
	    inode->i_ino == EXT2_ACL_DATA_INO)
		/* Nothing to do */ ;
	else if (S_ISREG(inode->i_mode)) {
		inode->i_op = &ext2_file_inode_operations;
		inode->i_fop = &ext2_file_operations;
		inode->i_mapping->a_ops = &ext2_aops;
	} else if (S_ISDIR(inode->i_mode)) {
		inode->i_op = &ext2_dir_inode_operations;
		inode->i_fop = &ext2_dir_operations;
	} else if (S_ISLNK(inode->i_mode)) {
		if (!inode->i_blocks)
			inode->i_op = &ext2_fast_symlink_inode_operations;
		else {
			inode->i_op = &page_symlink_inode_operations;
			inode->i_mapping->a_ops = &ext2_aops;
		}
	} else 
		init_special_inode(inode, inode->i_mode,
				   le32_to_cpu(raw_inode->i_block[0]));
	brelse (bh);
	inode->i_attr_flags = 0;
	if (inode->u.ext2_i.i_flags & EXT2_SYNC_FL) {
		inode->i_attr_flags |= ATTR_FLAG_SYNCRONOUS;
		inode->i_flags |= S_SYNC;
	}
	if (inode->u.ext2_i.i_flags & EXT2_APPEND_FL) {
		inode->i_attr_flags |= ATTR_FLAG_APPEND;
		inode->i_flags |= S_APPEND;
	}
	if (inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL) {
		inode->i_attr_flags |= ATTR_FLAG_IMMUTABLE;
		inode->i_flags |= S_IMMUTABLE;
	}
	if (inode->u.ext2_i.i_flags & EXT2_NOATIME_FL) {
		inode->i_attr_flags |= ATTR_FLAG_NOATIME;
		inode->i_flags |= S_NOATIME;
	}
	return;
	
bad_inode:
	make_bad_inode(inode);
	return;
}

static int ext2_update_inode(struct inode * inode, int do_sync)
{
	struct buffer_head * bh;
	struct ext2_inode * raw_inode;
	unsigned long block_group;
	unsigned long group_desc;
	unsigned long desc;
	unsigned long block;
	unsigned long offset;
	int err = 0;
	struct ext2_group_desc * gdp;

	if ((inode->i_ino != EXT2_ROOT_INO &&
	     inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
	    inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
		ext2_error (inode->i_sb, "ext2_write_inode",
			    "bad inode number: %lu", inode->i_ino);
		return -EIO;
	}
	block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
	if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
		ext2_error (inode->i_sb, "ext2_write_inode",
			    "group >= groups count");
		return -EIO;
	}
	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
	desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
	bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
	if (!bh) {
		ext2_error (inode->i_sb, "ext2_write_inode",
			    "Descriptor not loaded");
		return -EIO;
	}
	gdp = (struct ext2_group_desc *) bh->b_data;
	/*
	 * Figure out the offset within the block group inode table
	 */
	offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
		EXT2_INODE_SIZE(inode->i_sb);
	block = le32_to_cpu(gdp[desc].bg_inode_table) +
		(offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
	if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) {
		ext2_error (inode->i_sb, "ext2_write_inode",
			    "unable to read inode block - "
			    "inode=%lu, block=%lu", inode->i_ino, block);
		return -EIO;
	}
	offset &= EXT2_BLOCK_SIZE(inode->i_sb) - 1;
	raw_inode = (struct ext2_inode *) (bh->b_data + offset);

	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!inode->u.ext2_i.i_dtime) {
			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
	raw_inode->i_size = cpu_to_le32(inode->i_size);
	raw_inode->i_atime = cpu_to_le32(inode->i_atime);
	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
	raw_inode->i_dtime = cpu_to_le32(inode->u.ext2_i.i_dtime);
	raw_inode->i_flags = cpu_to_le32(inode->u.ext2_i.i_flags);
	raw_inode->i_faddr = cpu_to_le32(inode->u.ext2_i.i_faddr);
	raw_inode->i_frag = inode->u.ext2_i.i_frag_no;
	raw_inode->i_fsize = inode->u.ext2_i.i_frag_size;
	raw_inode->i_file_acl = cpu_to_le32(inode->u.ext2_i.i_file_acl);
	if (S_ISDIR(inode->i_mode))
		raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext2_i.i_dir_acl);
	else {
		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
		if (raw_inode->i_size_high) {
			struct super_block *sb = inode->i_sb;
			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
			    EXT2_SB(sb)->s_es->s_rev_level ==
					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
			       /* If this is the first large file
				* created, add a flag to the superblock.
				*/
				lock_kernel();
				ext2_update_dynamic_rev(sb);
				EXT2_SET_RO_COMPAT_FEATURE(sb,
					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
				unlock_kernel();
				ext2_write_super(sb);
			}
		}
	}
	
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
		raw_inode->i_block[0] = cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
	else for (block = 0; block < EXT2_N_BLOCKS; block++)
		raw_inode->i_block[block] = inode->u.ext2_i.i_data[block];
	mark_buffer_dirty(bh);
	if (do_sync) {
		ll_rw_block (WRITE, 1, &bh);
		wait_on_buffer (bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			printk ("IO error syncing ext2 inode ["
				"%s:%08lx]\n",
				bdevname(inode->i_dev), inode->i_ino);
			err = -EIO;
		}
	}
	brelse (bh);
	return err;
}

void ext2_write_inode (struct inode * inode, int wait)
{
	lock_kernel();
	ext2_update_inode (inode, wait);
	unlock_kernel();
}

int ext2_sync_inode (struct inode *inode)
{
	return ext2_update_inode (inode, 1);
}

int ext2_notify_change(struct dentry *dentry, struct iattr *iattr)
{
	struct inode *inode = dentry->d_inode;
	int		retval;
	unsigned int	flags;
	
	retval = -EPERM;
	if (iattr->ia_valid & ATTR_ATTR_FLAG &&
	    ((!(iattr->ia_attr_flags & ATTR_FLAG_APPEND) !=
	      !(inode->u.ext2_i.i_flags & EXT2_APPEND_FL)) ||
	     (!(iattr->ia_attr_flags & ATTR_FLAG_IMMUTABLE) !=
	      !(inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL)))) {
		if (!capable(CAP_LINUX_IMMUTABLE))
			goto out;
	} else if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
		goto out;

	retval = inode_change_ok(inode, iattr);
	if (retval != 0)
		goto out;

	inode_setattr(inode, iattr);
	
	flags = iattr->ia_attr_flags;
	if (flags & ATTR_FLAG_SYNCRONOUS) {
		inode->i_flags |= S_SYNC;
		inode->u.ext2_i.i_flags |= EXT2_SYNC_FL;
	} else {
		inode->i_flags &= ~S_SYNC;
		inode->u.ext2_i.i_flags &= ~EXT2_SYNC_FL;
	}
	if (flags & ATTR_FLAG_NOATIME) {
		inode->i_flags |= S_NOATIME;
		inode->u.ext2_i.i_flags |= EXT2_NOATIME_FL;
	} else {
		inode->i_flags &= ~S_NOATIME;
		inode->u.ext2_i.i_flags &= ~EXT2_NOATIME_FL;
	}
	if (flags & ATTR_FLAG_APPEND) {
		inode->i_flags |= S_APPEND;
		inode->u.ext2_i.i_flags |= EXT2_APPEND_FL;
	} else {
		inode->i_flags &= ~S_APPEND;
		inode->u.ext2_i.i_flags &= ~EXT2_APPEND_FL;
	}
	if (flags & ATTR_FLAG_IMMUTABLE) {
		inode->i_flags |= S_IMMUTABLE;
		inode->u.ext2_i.i_flags |= EXT2_IMMUTABLE_FL;
	} else {
		inode->i_flags &= ~S_IMMUTABLE;
		inode->u.ext2_i.i_flags &= ~EXT2_IMMUTABLE_FL;
	}
	mark_inode_dirty(inode);
out:
	return retval;
}