Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 | // -*- mode: cpp; mode: fold -*- // Description /*{{{*/ // $Id: mapped.c,v 1.8 2000/03/31 14:40:42 dwmw2 Exp $ /* ###################################################################### Flash MTD Routines These routine support IDing and manipulating flash. Currently the older JEDEC ID mechanism and a table is used for determining the flash characterisitics, but it is trivial to add support for the CFI specification: http://www.pentium.com/design/flash/ in the technote section. ##################################################################### */ /*}}}*/ #include <linux/mtd/mapped.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/sched.h> #include <asm/io.h> struct JEDECTable mtd_JEDEC_table[] = {{0x01AD,"AMD Am29F016",2*1024*1024,64*1024,MTD_CAP_NORFLASH}, {0x01D5,"AMD Am29F080",1*1024*1024,64*1024,MTD_CAP_NORFLASH}, {}}; // flash_setup - Setup the mapped_mtd_info structure for normal flash /*{{{*/ // --------------------------------------------------------------------- /* There is a set of commands that flash manufactures follow for getting the JEDEC id, erasing and writing. So long as your flash device supports getting the JEDEC ID in this (standard?) way it will be supported as flash, otherwise it is converted to ROM. Upon completion the structure is registered with the MTD layer */ int mtd_mapped_setup(struct mapped_mtd_info *map) { DEBUG(1, "\n"); // Must define a page function to use the defaults! if (map->page == 0) return -1; if (map->jedec_sense == 0) map->jedec_sense = flash_jedec; if (map->jedec_sense(map) != 0) return -1; if (map->mtd.erase == 0 && map->mtd.type == MTD_NORFLASH) map->mtd.erase = flash_erase; if (map->mtd.write == 0) { if (map->mtd.type == MTD_NORFLASH) map->mtd.write = flash_write; if (map->mtd.type == MTD_RAM) map->mtd.write = ram_write; } if (map->mtd.read == 0) map->mtd.read = rom_read; return add_mtd_device(&map->mtd); } /*}}}*/ // flash_remove - Remove the flash device from the MTD layer /*{{{*/ // --------------------------------------------------------------------- /* Free any memory allocated for the device here */ int mtd_mapped_remove(struct mapped_mtd_info *map) { return del_mtd_device(&map->mtd); } /*}}}*/ // checkparity - Checks a number for odd parity /*{{{*/ // --------------------------------------------------------------------- /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ static int checkparity(u_char C) { u_char parity = 0; while (C != 0) { parity ^= C & 1; C >>= 1; } return parity == 1; } /*}}}*/ // SetJedec - Set the jedec information for a chip /*{{{*/ // --------------------------------------------------------------------- /* We track the configuration of each chip separately in the chip list, each chip can have a different type and configuration to allow for maximum flexability. */ void set_jedec(struct mapped_mtd_info *map,unsigned chip,unsigned char mfr, unsigned char id) { unsigned long longID = (mfr << 8) + id; unsigned int I; map->mtd.type = MTD_NORFLASH; map->mfr = mfr; map->id = id; // Locate the chip in the jedec table for (I = 0; mtd_JEDEC_table[I].jedec != 0; I++) { if (mtd_JEDEC_table[I].jedec == longID) break; } if (mtd_JEDEC_table[I].jedec != longID || longID == 0) { printk("Unknown JEDEC number %x-%x, treating as ROM\n",map->mfr, map->id); map->mtd.type = MTD_ROM; return; } // Setup the MTD from the JEDEC information // map->mtd.size = mtd_JEDEC_table[I].size; // map->mtd.erasesize = mtd_JEDEC_table[I].sectorsize; // map->mtd.capabilities = mtd_JEDEC_table[I].capabilities; // strncpy(map->mtd.part,mtd_JEDEC_table[I].name,sizeof(map->mtd.part)-1); map->chips[chip].jedec = longID; map->chips[chip].size = mtd_JEDEC_table[I].size; map->chips[chip].sectorsize = mtd_JEDEC_table[I].sectorsize; map->chips[chip].capabilities = mtd_JEDEC_table[I].capabilities; map->chips[chip].base = 0; } /*}}}*/ // isjedec - Check if reading from the memory location gives jedec #s /*{{{*/ // --------------------------------------------------------------------- /* This is ment to be called on the flash window once it is in jedec mode */ int isjedec(unsigned long base) { // Test #1, JEDEC numbers are readable from 0x??00/0x??01 if (readb(base + 0) != readb(base + 0x100) || readb(base + 1) != readb(base + 0x101)) return 0; // Test #2 JEDEC numbers exhibit odd parity if (checkparity(readb(base + 0)) == 0 || checkparity(readb(base + 1)) == 0) return 0; return 1; } /*}}}*/ // flash_jedec - JEDEC ID sensor /*{{{*/ // --------------------------------------------------------------------- /* The mysterious jedec flash probe sequence writes a specific pattern of bytes to the flash. This should be general enough to work with any MTD structure that may contain a flash chip, but note that it will corrupt address 0x5555 on SRAM cards if the machine dies between the two critical operations. */ int flash_jedec(struct mapped_mtd_info *map) { unsigned I; u_char OldVal; unsigned long base; unsigned long baseaddr = 0; unsigned chip = 0; unsigned count; // Who has a page size this small? :> if (map->pagesize < 0x555) return 1; base = map->page(map,0); // Wait for any write/erase operation to settle OldVal = readb(base); for (I = 0; OldVal != readb(base) && I < 10000; I++) OldVal = readb(base); /* Check for sram by writing to it, the write also happens to be part of the flash reset sequence.. */ OldVal = readb(base + 0x555); writeb(OldVal,base + 0x555); writeb(0xF0,base + 0x555); if (OldVal != readb(base + 0x555)) { udelay(100); // Set it back and make sure.. writeb(OldVal,base + 0x555); if (OldVal == readb(base + 0x555)) { map->mtd.type = MTD_RAM; return 0; } writeb(0xF0,base + 0x555); } // Probe for chips while (chip < sizeof(map->chips)/sizeof(map->chips[0])) { // Already in jedec mode, we might be doing some address wrap around if (chip != 0 && isjedec(base) != 0) { /* Try to reset this page and check if that resets the first page to confirm */ writeb(0xF0,base + 0x555); if (isjedec(base) != 0) break; base = map->page(map,0); if (isjedec(base) == 0) break; base = map->page(map,baseaddr/map->pagesize); } // Send the sequence writeb(0xAA,base + 0x555); writeb(0x55,base + 0x2AA); writeb(0x90,base + 0x555); // Check the jedec number if (isjedec(base) == 0) { /* If this is the first chip it must be rom, otherwise it is the end of the flash region */ if (chip == 0) { map->mtd.type = MTD_ROM; return 0; } break; } // Store the jdec info set_jedec(map,chip,readb(base + 0),readb(base + 1)); map->chips[chip].base = baseaddr; // Jump to the next chip baseaddr += map->chips[chip].size; if (baseaddr/map->pagesize > map->maxsize) break; base = map->page(map,baseaddr/map->pagesize); if (base == 0) return -EIO; chip++; } // Reset all of the chips map->mtd.size = 0; baseaddr = 0; map->mtd.flags = 0xFFFF; for (I = 0; map->chips[I].jedec != 0; I++) { // Fill in the various MTD structures map->mtd.size += map->chips[I].size; if (map->mtd.erasesize < map->chips[I].sectorsize) map->mtd.erasesize = map->chips[I].sectorsize; map->mtd.flags &= map->chips[I].capabilities; base = map->page(map,baseaddr/map->pagesize); baseaddr += map->chips[chip].size; writeb(0xF0,base + 0); // Reset } /* Generate a part name that includes the number of different chips and other configuration information */ count = 1; map->part[0] = 0; for (I = 0; map->chips[I].jedec != 0; I++) { unsigned J; if (map->chips[I+1].jedec == map->chips[I].jedec) { count++; continue; } // Locate the chip in the jedec table for (J = 0; mtd_JEDEC_table[J].jedec != 0; J++) { if (mtd_JEDEC_table[J].jedec == map->chips[I].jedec) break; } if (map->part[0] != 0) strcat(map->part,","); if (count != 1) sprintf(map->part+strlen(map->part),"%u*[%s]",count, mtd_JEDEC_table[J].name); else sprintf(map->part+strlen(map->part),"%s", mtd_JEDEC_table[J].name); count = 1; } return 0; } /*}}}*/ // flash_failed - Print a console message about why the failure /*{{{*/ // --------------------------------------------------------------------- /* Pass the flags value that the flash return before it re-entered read mode. */ static void flash_failed(unsigned char code) { /* Bit 5 being high indicates that there was an internal device failure, erasure time limits exceeded or something */ if ((code & (1 << 5)) != 0) { printk("mtd: Internal Flash failure\n"); return; } printk("mtd: Programming didn't take\n"); } /*}}}*/ // flash_erase - Generic erase function /*{{{*/ // --------------------------------------------------------------------- /* This uses the erasure function described in the AMD Flash Handbook, it will work for flashes with a fixed sector size only. Flashes with a selection of sector sizes (ie the AMD Am29F800B) will need a different routine. This routine tries to parallize erasing multiple chips/sectors where possible */ int flash_erase(struct mtd_info *mtd, struct erase_info *instr) { unsigned long Time = 0; unsigned long NoTime = 0; unsigned long start = instr->addr, len = instr->len; unsigned int I; struct mapped_mtd_info *map = (struct mapped_mtd_info *)mtd; // Verify the arguments.. if (start + len > map->mtd.size || (start % map->mtd.erasesize) != 0 || (len % map->mtd.erasesize) != 0 || (len/map->mtd.erasesize) == 0) return -EINVAL; flash_chip_scan(map,start,len); // Start the erase sequence on each chip for (I = 0; map->chips[I].jedec != 0; I++) { unsigned long off; struct flash_chip *chip = map->chips + I; unsigned long base; unsigned long flags; if (chip->length == 0) continue; if (page_jump(map,chip->base + chip->start,0x555,&base,0) != 0) return -EIO; // Send the erase setup code writeb(0xF0,base + 0x555); writeb(0xAA,base + 0x555); writeb(0x55,base + 0x2AA); writeb(0x80,base + 0x555); writeb(0xAA,base + 0x555); writeb(0x55,base + 0x2AA); // Use chip erase if possible if (chip->start == 0 && chip->length == chip->size) { writeb(0x10,base+0x555); continue; } /* Once we start selecting the erase sectors the delay between each command must not exceed 50us or it will immediately start erasing and ignore the other sectors */ save_flags(flags); cli(); for (off = 0; off < chip->length; off += chip->sectorsize) { if (page_jump(map,chip->base + chip->start + off,1,&base,0) != 0) return -EIO; // Check to make sure we didn't timeout writeb(0x30,base); if ((readb(base) & (1 << 3)) != 0) { printk("mtd: Ack! We timed out the erase timer!\n"); return -EIO; } } restore_flags(flags); } /* We could split this into a timer routine and return early, performing background erasure.. Maybe later if the need warrents */ /* Poll the flash for erasure completion, specs say this can take as long as 480 seconds to do all the sectors (for a 2 meg flash). Erasure time is dependant on chip age, temp and wear.. */ Time = 0; NoTime = 0; for (I = 0; map->chips[I].jedec != 0; I++) { struct flash_chip *chip = map->chips + I; unsigned long base; unsigned long off = 0; if (chip->length == 0) continue; if (page_jump(map,chip->base + chip->start,1,&base,0) != 0) return -EIO; while (1) { unsigned char Last[4]; unsigned long Count = 0; /* During erase bit 7 is held low and bit 6 toggles, we watch this, should it stop toggling or go high then the erase is completed, or this is not really flash ;> */ Last[0] = readb(base); Last[1] = readb(base); Last[2] = readb(base); for (Count = 3; (Last[(Count - 1) % 4] & (1 << 7)) == 0 && Last[(Count - 1) % 4] != Last[(Count - 2) % 4]; Count++) { if (NoTime == 0) Time += HZ/10 - schedule_timeout(HZ/10); NoTime = 0; Last[Count % 4] = readb(base); // Count time, max of 15s per sector (according to AMD) if (Time > 15*len/mtd->erasesize*HZ) { printk("mtd: Flash Erase Timed out\n"); return -EIO; } } if (Last[(Count - 1) % 4] == Last[(Count - 2) % 4]) { flash_failed(Last[(Count - 3) % 4]); return -EIO; } // Skip to the next chip if we used chip erase if (chip->length == chip->size) off = chip->size; else off += chip->sectorsize; if (off >= chip->length) break; if (page_jump(map,chip->base + chip->start + off,1,&base,0) != 0) return -EIO; NoTime = 1; } } // Paranoid verify of erasure { unsigned long base; unsigned long buflen; while (len > 0) { unsigned long step; if (page_jump(map,start,len,&base,&buflen) != 0) return -EIO; start += buflen; len -= buflen; step = buflen/128; for (;buflen != 0; buflen -= step) { if (readb(base+buflen-1) != 0xFF) { printk("mtd: Flash Erase didn't take %lu %lu %lu\n",buflen,len,start); return -EIO; } } } } return 0; } #if 1 /*}}}*/ // flash_write - Generic writing function /*{{{*/ // --------------------------------------------------------------------- /* This could do parallel writes on multiple chips but doesnt, memory constraints make that infeasable. This should work with any sort of linear flash that is not interleved */ extern int flash_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u_char *buf) { struct mapped_mtd_info *map = (struct mapped_mtd_info *)mtd; unsigned long base; unsigned long off; DEBUG(1,"\n"); if (start + len > mtd->size) return -EIO; while (len != 0) { // Compute the page offset and reposition base = map->page(map,(u_long)start/map->pagesize); off = (u_long)start % map->pagesize; // Loop over this page for (; off != map->pagesize && len != 0; start++, len--, off++,buf++) { unsigned char oldbyte = readb(base+off); unsigned char Last[4]; unsigned long Count = 0; if (oldbyte == *buf) continue; if (((~oldbyte) & *buf) != 0) printk("mtd: warn: Trying to set a 0 to a 1\n"); // Write writeb(0xAA,base + 0x555); writeb(0x55,base + 0x2AA); writeb(0xA0,base + 0x555); writeb(*buf,base + off); Last[0] = readb(base + off); Last[1] = readb(base + off); Last[2] = readb(base + off); /* Wait for the flash to finish the operation. We store the last 4 status bytes that have been retrieved so we can determine why it failed. The toggle bits keep toggling when there is a failure */ for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && Count < 10000; Count++) Last[Count % 4] = readb(base + off); if (Last[(Count - 1) % 4] != *buf) { flash_failed(Last[(Count - 3) % 4]); return -EIO; } } } *retlen = len; return 0; } #endif // ram_write - Generic writing function for ram /*{{{*/ // --------------------------------------------------------------------- /* */ extern int ram_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u_char *buf) { struct mapped_mtd_info *map = (struct mapped_mtd_info *)mtd; unsigned long base; size_t origlen = len; unsigned long buflen; DEBUG(1,"\n"); if (start + len > mtd->size) return -EIO; while (len != 0) { // Reposition.. if (page_jump(map,start,len,&base,&buflen) != 0) return -EIO; // Copy memcpy_toio(base,buf,buflen); len -= buflen; start += buflen; } *retlen = origlen; return 0; } // rom_read - Read handler for any sort of device /*{{{*/ // --------------------------------------------------------------------- /* This is a generic read function that should work with any device in the mapped region. */ extern int rom_read(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u_char *buf) { struct mapped_mtd_info *map = (struct mapped_mtd_info *)mtd; size_t origlen = len; unsigned long base; unsigned long buflen; printk("Rom_Read\n"); if (start + len > mtd->size) return -EIO; while (len != 0) { // Reposition.. if (page_jump(map,start,len,&base,&buflen) != 0) return -EIO; // Copy memcpy_fromio(buf,base,buflen); len -= buflen; start += buflen; } *retlen = origlen; return 0; } // page_jump - Move the window and return the buffer /*{{{*/ // --------------------------------------------------------------------- /* Unlike the page function this returns a buffer and length adjusted for the page dimensions and the reading offset into the page, simplifies many of the other routines */ int page_jump(struct mapped_mtd_info *map,unsigned long start, unsigned long len,unsigned long *base, unsigned long *retlen) { DEBUG(1,"Page Jump\n"); if (start > map->mtd.size || start + len > map->mtd.size) return -EINVAL; *base = map->page(map,start/map->pagesize); if (*base == 0) return -EIO; *base += start % map->pagesize; // If retlen is 0 that mean the caller requires len bytes, no quibbling. if (retlen == 0) { if (len > map->pagesize - (start % map->pagesize)) return -EIO; return 0; } // Compute the buffer paramaters and return if (len > map->pagesize - (start % map->pagesize)) *retlen = map->pagesize - (start % map->pagesize); else *retlen = len; return 0; } /*}}}*/ // flash_chip_scan - Intersect a region with the flash chip structure /*{{{*/ // --------------------------------------------------------------------- /* This is used to enhance the speed of the erase routine, when things are being done to multiple chips it is possible to parallize the operations, particularly full memory erases of multi chip memories benifit */ void flash_chip_scan(struct mapped_mtd_info *map,unsigned long start, unsigned long len) { unsigned int I = 0; DEBUG(1,"\n"); // Zero the records for (I = 0; map->chips[I].jedec != 0; I++) map->chips[I].start = map->chips[I].length = 0; // Intesect our region with the chip structures for (I = 0; map->chips[I].jedec != 0 && len != 0; I++) { // Havent found the start yet if (start >= map->chips[I].base + map->chips[I].size) continue; // Store the portion of this chip that is being effected map->chips[I].start = start - map->chips[I].base; if (len <= map->chips[I].size - map->chips[I].start) map->chips[I].length = len; else map->chips[I].length = map->chips[I].size - map->chips[I].start; len -= map->chips[I].length; start = map->chips[I].base + map->chips[I].size; } } /*}}}*/ |