Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/mmzone.h>	/* for numnodes */
#include <linux/mm.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sn/types.h>
#include <asm/sn/sn0/addrs.h>
#include <asm/sn/sn0/hubni.h>
#include <asm/sn/sn0/hubio.h>
#include <asm/sn/klconfig.h>
#include <asm/sn/ioc3.h>
#include <asm/mipsregs.h>
#include <asm/sn/gda.h>
#include <asm/sn/intr.h>
#include <asm/current.h>
#include <asm/smp.h>
#include <asm/processor.h>
#include <asm/mmu_context.h>
#include <asm/sn/launch.h>
#include <asm/sn/sn_private.h>
#include <asm/sn/sn0/ip27.h>
#include <asm/sn/mapped_kernel.h>

#define CPU_NONE		(cpuid_t)-1

#define	CPUMASK_CLRALL(p)	(p) = 0
#define CPUMASK_SETB(p, bit)	(p) |= 1 << (bit)
#define CPUMASK_CLRB(p, bit)	(p) &= ~(1ULL << (bit))
#define CPUMASK_TSTB(p, bit)	((p) & (1ULL << (bit)))

#define CNODEMASK_CLRALL(p)	(p) = 0
#define CNODEMASK_TSTB(p, bit)	((p) & (1ULL << (bit)))
#define CNODEMASK_SETB(p, bit)	((p) |= 1ULL << (bit))

cpumask_t	boot_cpumask;
hubreg_t	region_mask = 0;
static int	fine_mode = 0;
int		maxcpus;
static spinlock_t hub_mask_lock = SPIN_LOCK_UNLOCKED;
static cnodemask_t hub_init_mask;
static atomic_t numstarted = ATOMIC_INIT(1);
nasid_t master_nasid = INVALID_NASID;

cnodeid_t	nasid_to_compact_node[MAX_NASIDS];
nasid_t		compact_to_nasid_node[MAX_COMPACT_NODES];
cnodeid_t	cpuid_to_compact_node[MAXCPUS];

hubreg_t get_region(cnodeid_t cnode)
{
	if (fine_mode)
		return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_FINEREG_SHFT;
	else
		return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_COARSEREG_SHFT;
}

static void gen_region_mask(hubreg_t *region_mask, int maxnodes)
{
	cnodeid_t cnode;

	(*region_mask) = 0;
	for (cnode = 0; cnode < maxnodes; cnode++) {
		(*region_mask) |= 1ULL << get_region(cnode);
	}
}

int is_fine_dirmode(void)
{
	return (((LOCAL_HUB_L(NI_STATUS_REV_ID) & NSRI_REGIONSIZE_MASK)
		>> NSRI_REGIONSIZE_SHFT) & REGIONSIZE_FINE);
}

nasid_t get_actual_nasid(lboard_t *brd)
{
	klhub_t *hub;

	if (!brd)
		return INVALID_NASID;

	/* find out if we are a completely disabled brd. */
	hub  = (klhub_t *)find_first_component(brd, KLSTRUCT_HUB);
	if (!hub)
		return INVALID_NASID;
	if (!(hub->hub_info.flags & KLINFO_ENABLE))	/* disabled node brd */
		return hub->hub_info.physid;
	else
		return brd->brd_nasid;
}

int do_cpumask(cnodeid_t cnode, nasid_t nasid, cpumask_t *boot_cpumask, 
							int *highest)
{
	lboard_t *brd;
	klcpu_t *acpu;
	int cpus_found = 0;
	cpuid_t cpuid;

	brd = find_lboard((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_IP27);

	do {
		acpu = (klcpu_t *)find_first_component(brd, KLSTRUCT_CPU);
		while (acpu) {
			cpuid = acpu->cpu_info.virtid;
			/* cnode is not valid for completely disabled brds */
			if (get_actual_nasid(brd) == brd->brd_nasid)
				cpuid_to_compact_node[cpuid] = cnode;
			if (cpuid > *highest)
				*highest = cpuid;
			/* Only let it join in if it's marked enabled */
			if (acpu->cpu_info.flags & KLINFO_ENABLE) {
				CPUMASK_SETB(*boot_cpumask, cpuid);
				cpus_found++;
			}
			acpu = (klcpu_t *)find_component(brd, (klinfo_t *)acpu, 
								KLSTRUCT_CPU);
		}
		brd = KLCF_NEXT(brd);
		if (brd)
			brd = find_lboard(brd,KLTYPE_IP27);
		else
			break;
	} while (brd);

	return cpus_found;
}

cpuid_t cpu_node_probe(cpumask_t *boot_cpumask, int *numnodes)
{
	int i, cpus = 0, highest = 0;
	gda_t *gdap = GDA;
	nasid_t nasid;

	/*
	 * Initialize the arrays to invalid nodeid (-1)
	 */
	for (i = 0; i < MAX_COMPACT_NODES; i++)
		compact_to_nasid_node[i] = INVALID_NASID;
	for (i = 0; i < MAX_NASIDS; i++)
		nasid_to_compact_node[i] = INVALID_CNODEID;
	for (i = 0; i < MAXCPUS; i++)
		cpuid_to_compact_node[i] = INVALID_CNODEID;

	*numnodes = 0;
	for (i = 0; i < MAX_COMPACT_NODES; i++) {
		if ((nasid = gdap->g_nasidtable[i]) == INVALID_NASID) {
			break;
		} else {
			compact_to_nasid_node[i] = nasid;
			nasid_to_compact_node[nasid] = i;
			(*numnodes)++;
			cpus += do_cpumask(i, nasid, boot_cpumask, &highest);
		}
	}

	/*
	 * Cpus are numbered in order of cnodes. Currently, disabled
	 * cpus are not numbered.
	 */

	return(highest + 1);
}

int cpu_enabled(cpuid_t cpu)
{
	if (cpu == CPU_NONE)
		return 0;
	return (CPUMASK_TSTB(boot_cpumask, cpu) != 0);
}

void mlreset (void)
{
	int i;

	master_nasid = get_nasid();
	fine_mode = is_fine_dirmode();

	/*
	 * Probe for all CPUs - this creates the cpumask and
	 * sets up the mapping tables.
	 */
	CPUMASK_CLRALL(boot_cpumask);
	maxcpus = cpu_node_probe(&boot_cpumask, &numnodes);
	printk("Discovered %d cpus on %d nodes\n", maxcpus, numnodes);

	gen_region_mask(&region_mask, numnodes);
	CNODEMASK_CLRALL(hub_init_mask);

	setup_replication_mask(numnodes);

	/*
	 * Set all nodes' calias sizes to 8k
	 */
	for (i = 0; i < numnodes; i++) {
		nasid_t nasid;

		nasid = COMPACT_TO_NASID_NODEID(i);

		/*
		 * Always have node 0 in the region mask, otherwise
		 * CALIAS accesses get exceptions since the hub
		 * thinks it is a node 0 address.
		 */
		REMOTE_HUB_S(nasid, PI_REGION_PRESENT, (region_mask | 1));
#ifdef CONFIG_REPLICATE_EXHANDLERS
		REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_8K);
#else
		REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_0);
#endif

#ifdef LATER
		/*
		 * Set up all hubs to have a big window pointing at
		 * widget 0. Memory mode, widget 0, offset 0
		 */
		REMOTE_HUB_S(nasid, IIO_ITTE(SWIN0_BIGWIN),
			((HUB_PIO_MAP_TO_MEM << IIO_ITTE_IOSP_SHIFT) |
			(0 << IIO_ITTE_WIDGET_SHIFT)));
#endif
	}
}


void intr_clear_bits(nasid_t nasid, volatile hubreg_t *pend, int base_level,
							char *name)
{
	volatile hubreg_t bits;
	int i;

	/* Check pending interrupts */
	if ((bits = HUB_L(pend)) != 0)
		for (i = 0; i < N_INTPEND_BITS; i++)
			if (bits & (1 << i))
				LOCAL_HUB_CLR_INTR(base_level + i);
}
	
void intr_clear_all(nasid_t nasid)
{
	REMOTE_HUB_S(nasid, PI_INT_MASK0_A, 0);
	REMOTE_HUB_S(nasid, PI_INT_MASK0_B, 0);
	REMOTE_HUB_S(nasid, PI_INT_MASK1_A, 0);
	REMOTE_HUB_S(nasid, PI_INT_MASK1_B, 0);
	intr_clear_bits(nasid, REMOTE_HUB_ADDR(nasid, PI_INT_PEND0),
		INT_PEND0_BASELVL, "INT_PEND0");
	intr_clear_bits(nasid, REMOTE_HUB_ADDR(nasid, PI_INT_PEND1),
		INT_PEND1_BASELVL, "INT_PEND1");
}

void sn_mp_setup(void)
{
	cnodeid_t	cnode;
#if 0
	cpuid_t		cpu;
#endif

	for (cnode = 0; cnode < numnodes; cnode++) {
#if 0
		init_platform_nodepda();
#endif
		intr_clear_all(COMPACT_TO_NASID_NODEID(cnode));
	}
#if 0
	for (cpu = 0; cpu < maxcpus; cpu++) {
		init_platform_pda();
	}
#endif
}

void per_hub_init(cnodeid_t cnode)
{
	extern void pcibr_setup(cnodeid_t);
	cnodemask_t	done;
	nasid_t		nasid;

	nasid = COMPACT_TO_NASID_NODEID(cnode);

	spin_lock(&hub_mask_lock);
	/* Test our bit. */
	if (!(done = CNODEMASK_TSTB(hub_init_mask, cnode))) {
		/* Turn our bit on in the mask. */
		CNODEMASK_SETB(hub_init_mask, cnode);
		/*
	 	 * Do the actual initialization if it hasn't been done yet.
	 	 * We don't need to hold a lock for this work.
	 	 */
		/*
		 * Set CRB timeout at 5ms, (< PI timeout of 10ms)
		 */
		REMOTE_HUB_S(nasid, IIO_ICTP, 0x800);
		REMOTE_HUB_S(nasid, IIO_ICTO, 0xff);
		hub_rtc_init(cnode);
		pcibr_setup(cnode); 
#ifdef CONFIG_REPLICATE_EXHANDLERS
		/*
		 * If this is not a headless node initialization, 
		 * copy over the caliased exception handlers.
		 */
		if (get_compact_nodeid() == cnode) {
			extern char except_vec0, except_vec1_r10k;
			extern char except_vec2_generic, except_vec3_generic;

			memcpy((void *)(KSEG0 + 0x100), &except_vec2_generic,
								0x80);
			memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic,
								0x80);
			memcpy((void *)KSEG0, &except_vec0, 0x80);
			memcpy((void *)KSEG0 + 0x080, &except_vec1_r10k, 0x80);
			memcpy((void *)(KSEG0 + 0x100), (void *) KSEG0, 0x80);
			memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic,
								0x100);
			flush_cache_l1();
			flush_cache_l2();
		}
#endif
	}
	spin_unlock(&hub_mask_lock);
}

/*
 * This is similar to hard_smp_processor_id().
 */
cpuid_t getcpuid(void)
{
	klcpu_t *klcpu;

	klcpu = nasid_slice_to_cpuinfo(get_nasid(),LOCAL_HUB_L(PI_CPU_NUM));
	return klcpu->cpu_info.virtid;
}

void per_cpu_init(void)
{
	extern void install_cpu_nmi_handler(int slice);
	extern void load_mmu(void);
	static int is_slave = 0;
	int cpu = smp_processor_id();
	cnodeid_t cnode = get_compact_nodeid();

	current_cpu_data.asid_cache = ASID_FIRST_VERSION;
	TLBMISS_HANDLER_SETUP();
#if 0
	intr_init();
#endif
	set_cp0_status(ST0_IM, 0);
	per_hub_init(cnode);
	cpu_time_init();
	if (smp_processor_id())	/* master can't do this early, no kmalloc */
		install_cpuintr(cpu);
	/* Install our NMI handler if symmon hasn't installed one. */
	install_cpu_nmi_handler(cputoslice(cpu));
#if 0
	install_tlbintr(cpu);
#endif
	set_cp0_status(SRB_DEV0 | SRB_DEV1, SRB_DEV0 | SRB_DEV1);
	if (is_slave) {
		set_cp0_status(ST0_BEV, 0);
		if (mips4_available)
			set_cp0_status(ST0_XX, ST0_XX);
		set_cp0_status(ST0_KX|ST0_SX|ST0_UX, ST0_KX|ST0_SX|ST0_UX);
		sti();
		load_mmu();
		atomic_inc(&numstarted);
	} else {
		is_slave = 1;
	}
}

cnodeid_t get_compact_nodeid(void)
{
	nasid_t nasid;

	nasid = get_nasid();
	/*
	 * Map the physical node id to a virtual node id (virtual node ids
	 * are contiguous).
	 */
	return NASID_TO_COMPACT_NODEID(nasid);
}

#ifdef CONFIG_SMP

/*
 * Takes as first input the PROM assigned cpu id, and the kernel
 * assigned cpu id as the second.
 */
static void alloc_cpupda(cpuid_t cpu, int cpunum)
{
	cnodeid_t	node;
	nasid_t		nasid;

	node = get_cpu_cnode(cpu);
	nasid = COMPACT_TO_NASID_NODEID(node);

	cputonasid(cpunum) = nasid;
	cputocnode(cpunum) = node;
	cputoslice(cpunum) = get_cpu_slice(cpu);
	cpu_data[cpunum].p_cpuid = cpu;
}

void __init smp_callin(void)
{
#if 0
	calibrate_delay();
	smp_store_cpu_info(cpuid);
#endif
}

int __init start_secondary(void)
{
	extern int cpu_idle(void);
	extern atomic_t smp_commenced;

	smp_callin();
	while (!atomic_read(&smp_commenced));
	return cpu_idle();
}

static volatile cpumask_t boot_barrier;

void cboot(void)
{
	CPUMASK_CLRB(boot_barrier, getcpuid());	/* needs atomicity */
	per_cpu_init();
#if 0
	ecc_init();
	bte_lateinit();
	init_mfhi_war();
#endif
	_flush_tlb_all();
	flush_cache_l1();
	flush_cache_l2();
	start_secondary();
}

void allowboot(void)
{
	int		num_cpus = 0;
	cpuid_t		cpu, mycpuid = getcpuid();
	cnodeid_t	cnode;
	extern void	bootstrap(void);

	sn_mp_setup();
	/* Master has already done per_cpu_init() */
	install_cpuintr(smp_processor_id());
#if 0
	bte_lateinit();
	ecc_init();
#endif

	replicate_kernel_text(numnodes);
	boot_barrier = boot_cpumask;
	/* Launch slaves. */
	for (cpu = 0; cpu < maxcpus; cpu++) {
		if (cpu == mycpuid) {
			alloc_cpupda(cpu, num_cpus);
			num_cpus++;
			/* We're already started, clear our bit */
			CPUMASK_CLRB(boot_barrier, cpu);
			continue;
		}

		/* Skip holes in CPU space */
		if (CPUMASK_TSTB(boot_cpumask, cpu)) {
			struct task_struct *p;

			/*
			 * The following code is purely to make sure
			 * Linux can schedule processes on this slave.
			 */
			kernel_thread(0, NULL, CLONE_PID);
			p = init_task.prev_task;
			sprintf(p->comm, "%s%d", "Idle", num_cpus);
			init_tasks[num_cpus] = p;
			alloc_cpupda(cpu, num_cpus);
			p->processor = num_cpus;
			p->has_cpu = 1; /* we schedule the first task manually */
			del_from_runqueue(p);
			unhash_process(p);
			/* Attach to the address space of init_task. */
			atomic_inc(&init_mm.mm_count);
			p->active_mm = &init_mm;
			
			/*
		 	 * Launch a slave into bootstrap().
		 	 * It doesn't take an argument, and we
			 * set sp to the kernel stack of the newly 
			 * created idle process, gp to the proc struct
			 * (so that current-> works).
		 	 */
			LAUNCH_SLAVE(cputonasid(num_cpus),cputoslice(num_cpus), 
				(launch_proc_t)MAPPED_KERN_RW_TO_K0(bootstrap),
				0, (void *)((unsigned long)p + 
				KERNEL_STACK_SIZE - 32), (void *)p);

			/*
			 * Now optimistically set the mapping arrays. We
			 * need to wait here, verify the cpu booted up, then
			 * fire up the next cpu.
			 */
			__cpu_number_map[cpu] = num_cpus;
			__cpu_logical_map[num_cpus] = cpu;
			num_cpus++;
			/*
			 * Wait this cpu to start up and initialize its hub,
			 * and discover the io devices it will control.
			 * 
			 * XXX: We really want to fire up launch all the CPUs
			 * at once.  We have to preserve the order of the
			 * devices on the bridges first though.
			 */
			while(atomic_read(&numstarted) != num_cpus);
		}
	}


#ifdef LATER
	Wait logic goes here.
#endif
	for (cnode = 0; cnode < numnodes; cnode++) {
#if 0
		if (cnodetocpu(cnode) == -1) {
			printk("Initializing headless hub,cnode %d", cnode);
			per_hub_init(cnode);
		}
#endif
	}
#if 0
	cpu_io_setup();
	init_mfhi_war();
#endif
	smp_num_cpus = num_cpus;
}

#else /* CONFIG_SMP */
void cboot(void) {}
#endif /* CONFIG_SMP */