Loading...
/* * Integer division routine. * * Copyright (C) 1999-2000 Hewlett-Packard Co * Copyright (C) 1999-2000 David Mosberger-Tang <davidm@hpl.hp.com> */ #include <asm/asmmacro.h> /* * Compute a 64-bit unsigned integer quotient. * * Use reciprocal approximation and Newton-Raphson iteration to compute the * quotient. frcpa gives 8.6 significant bits, so we need 3 iterations * to get more than the 64 bits of precision that we need for DImode. * * Must use max precision for the reciprocal computations to get 64 bits of * precision. * * r32 holds the dividend. r33 holds the divisor. */ #ifdef MODULO # define OP mod #else # define OP div #endif #ifdef UNSIGNED # define SGN u # define INT_TO_FP(a,b) fcvt.xuf.s1 a=b # define FP_TO_INT(a,b) fcvt.fxu.trunc.s1 a=b #else # define SGN # define INT_TO_FP(a,b) fcvt.xf a=b # define FP_TO_INT(a,b) fcvt.fx.trunc.s1 a=b #endif #define PASTE1(a,b) a##b #define PASTE(a,b) PASTE1(a,b) #define NAME PASTE(PASTE(__,SGN),PASTE(OP,di3)) GLOBAL_ENTRY(NAME) UNW(.prologue) .regstk 2,0,0,0 // Transfer inputs to FP registers. setf.sig f8 = in0 setf.sig f9 = in1 UNW(.fframe 16) UNW(.save.f 0x20) stf.spill [sp] = f17,-16 // Convert the inputs to FP, to avoid FP software-assist faults. INT_TO_FP(f8, f8) ;; UNW(.save.f 0x10) stf.spill [sp] = f16 UNW(.body) INT_TO_FP(f9, f9) ;; frcpa.s1 f17, p6 = f8, f9 // y = frcpa(b) ;; /* * This is the magic algorithm described in Section 8.6.2 of "IA-64 * and Elementary Functions" by Peter Markstein; HP Professional Books * (http://www.hp.com/go/retailbooks/) */ (p6) fmpy.s1 f7 = f8, f17 // q = a*y (p6) fnma.s1 f6 = f9, f17, f1 // e = -b*y + 1 ;; (p6) fma.s1 f16 = f7, f6, f7 // q1 = q*e + q (p6) fmpy.s1 f7 = f6, f6 // e1 = e*e ;; (p6) fma.s1 f16 = f16, f7, f16 // q2 = q1*e1 + q1 (p6) fma.s1 f6 = f17, f6, f17 // y1 = y*e + y ;; (p6) fma.s1 f6 = f6, f7, f6 // y2 = y1*e1 + y1 (p6) fnma.s1 f7 = f9, f16, f8 // r = -b*q2 + a ;; (p6) fma.s1 f17 = f7, f6, f16 // q3 = r*y2 + q2 ;; #ifdef MODULO FP_TO_INT(f17, f17) // round quotient to an unsigned integer ;; INT_TO_FP(f17, f17) // renormalize ;; fnma.s1 f17 = f17, f9, f8 // compute remainder ;; #endif UNW(.restore sp) ldf.fill f16 = [sp], 16 FP_TO_INT(f8, f17) // round result to an (unsigned) integer ;; ldf.fill f17 = [sp] getf.sig r8 = f8 // transfer result to result register br.ret.sptk rp END(NAME) |