Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | /* * Resizable simple ram filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * * This file is released under the GPL. */ /* * NOTE! This filesystem is probably most useful * not as a real filesystem, but as an example of * how virtual filesystems can be written. * * It doesn't get much simpler than this. Consider * that this file implements the full semantics of * a POSIX-compliant read-write filesystem. * * Note in particular how the filesystem does not * need to implement any data structures of its own * to keep track of the virtual data: using the VFS * caches is sufficient. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/string.h> #include <linux/locks.h> #include <asm/uaccess.h> /* some random number */ #define RAMFS_MAGIC 0x858458f6 static struct super_operations ramfs_ops; static struct address_space_operations ramfs_aops; static struct file_operations ramfs_dir_operations; static struct file_operations ramfs_file_operations; static struct inode_operations ramfs_dir_inode_operations; static int ramfs_statfs(struct super_block *sb, struct statfs *buf) { buf->f_type = RAMFS_MAGIC; buf->f_bsize = PAGE_CACHE_SIZE; buf->f_namelen = 255; return 0; } /* * Lookup the data. This is trivial - if the dentry didn't already * exist, we know it is negative. */ static struct dentry * ramfs_lookup(struct inode *dir, struct dentry *dentry) { d_add(dentry, NULL); return NULL; } /* * Read a page. Again trivial. If it didn't already exist * in the page cache, it is zero-filled. */ static int ramfs_readpage(struct file *file, struct page * page) { if (!Page_Uptodate(page)) { memset((void *) page_address(page), 0, PAGE_CACHE_SIZE); SetPageUptodate(page); } UnlockPage(page); return 0; } /* * Writing: just make sure the page gets marked dirty, so that * the page stealer won't grab it. */ static int ramfs_writepage(struct file *file, struct page *page) { SetPageDirty(page); return 0; } static int ramfs_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to) { void *addr; addr = (void *) kmap(page); if (!Page_Uptodate(page)) { memset(addr, 0, PAGE_CACHE_SIZE); SetPageUptodate(page); } SetPageDirty(page); return 0; } static int ramfs_commit_write(struct file *file, struct page *page, unsigned offset, unsigned to) { struct inode *inode = (struct inode*)page->mapping->host; loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; kunmap(page); if (pos > inode->i_size) inode->i_size = pos; return 0; } struct inode *ramfs_get_inode(struct super_block *sb, int mode, int dev) { struct inode * inode = get_empty_inode(); if (inode) { inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_mode = mode; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; inode->i_size = 0; inode->i_blksize = PAGE_CACHE_SIZE; inode->i_blocks = 0; inode->i_rdev = dev; inode->i_nlink = 1; inode->i_op = NULL; inode->i_fop = NULL; inode->i_mapping->a_ops = &ramfs_aops; inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; switch (mode & S_IFMT) { default: init_special_inode(inode, mode, dev); break; case S_IFREG: inode->i_fop = &ramfs_file_operations; break; case S_IFDIR: inode->i_op = &ramfs_dir_inode_operations; inode->i_fop = &ramfs_dir_operations; break; case S_IFLNK: inode->i_op = &page_symlink_inode_operations; break; } } return inode; } /* * File creation. Allocate an inode, and we're done.. */ static int ramfs_mknod(struct inode *dir, struct dentry *dentry, int mode, int dev) { struct inode * inode = ramfs_get_inode(dir->i_sb, mode, dev); int error = -ENOSPC; if (inode) { d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ error = 0; } return error; } static int ramfs_mkdir(struct inode * dir, struct dentry * dentry, int mode) { return ramfs_mknod(dir, dentry, mode | S_IFDIR, 0); } static int ramfs_create(struct inode *dir, struct dentry *dentry, int mode) { return ramfs_mknod(dir, dentry, mode | S_IFREG, 0); } /* * Link a file.. */ static int ramfs_link(struct dentry *old_dentry, struct inode * dir, struct dentry * dentry) { struct inode *inode = old_dentry->d_inode; if (S_ISDIR(inode->i_mode)) return -EPERM; inode->i_nlink++; atomic_inc(&inode->i_count); /* New dentry reference */ dget(dentry); /* Extra pinning count for the created dentry */ d_instantiate(dentry, inode); return 0; } static inline int ramfs_positive(struct dentry *dentry) { return dentry->d_inode && !d_unhashed(dentry); } /* * Check that a directory is empty (this works * for regular files too, they'll just always be * considered empty..). * * Note that an empty directory can still have * children, they just all have to be negative.. */ static int ramfs_empty(struct dentry *dentry) { struct list_head *list = dentry->d_subdirs.next; while (list != &dentry->d_subdirs) { struct dentry *de = list_entry(list, struct dentry, d_child); if (ramfs_positive(de)) return 0; list = list->next; } return 1; } /* * This works for both directories and regular files. * (non-directories will always have empty subdirs) */ static int ramfs_unlink(struct inode * dir, struct dentry *dentry) { int retval = -ENOTEMPTY; if (ramfs_empty(dentry)) { struct inode *inode = dentry->d_inode; inode->i_nlink--; dput(dentry); /* Undo the count from "create" - this does all the work */ retval = 0; } return retval; } #define ramfs_rmdir ramfs_unlink /* * The VFS layer already does all the dentry stuff for rename, * we just have to decrement the usage count for the target if * it exists so that the VFS layer correctly free's it when it * gets overwritten. */ static int ramfs_rename(struct inode * old_dir, struct dentry *old_dentry, struct inode * new_dir,struct dentry *new_dentry) { int error = -ENOTEMPTY; if (ramfs_empty(new_dentry)) { struct inode *inode = new_dentry->d_inode; if (inode) { inode->i_nlink--; dput(new_dentry); } error = 0; } return error; } static int ramfs_symlink(struct inode * dir, struct dentry *dentry, const char * symname) { int error; error = ramfs_mknod(dir, dentry, S_IFLNK | S_IRWXUGO, 0); if (!error) { int l = strlen(symname)+1; struct inode *inode = dentry->d_inode; error = block_symlink(inode, symname, l); } return error; } static struct address_space_operations ramfs_aops = { readpage: ramfs_readpage, writepage: ramfs_writepage, prepare_write: ramfs_prepare_write, commit_write: ramfs_commit_write }; static struct file_operations ramfs_file_operations = { read: generic_file_read, write: generic_file_write, mmap: generic_file_mmap }; static struct file_operations ramfs_dir_operations = { read: generic_read_dir, readdir: dcache_readdir, }; static struct inode_operations ramfs_dir_inode_operations = { create: ramfs_create, lookup: ramfs_lookup, link: ramfs_link, unlink: ramfs_unlink, symlink: ramfs_symlink, mkdir: ramfs_mkdir, rmdir: ramfs_rmdir, mknod: ramfs_mknod, rename: ramfs_rename, }; static void ramfs_put_super(struct super_block *sb) { d_genocide(sb->s_root); shrink_dcache_parent(sb->s_root); } static struct super_operations ramfs_ops = { put_super: ramfs_put_super, statfs: ramfs_statfs, }; static struct super_block *ramfs_read_super(struct super_block * sb, void * data, int silent) { struct inode * inode; struct dentry * root; sb->s_blocksize = PAGE_CACHE_SIZE; sb->s_blocksize_bits = PAGE_CACHE_SHIFT; sb->s_magic = RAMFS_MAGIC; sb->s_op = &ramfs_ops; inode = ramfs_get_inode(sb, S_IFDIR | 0755, 0); if (!inode) return NULL; root = d_alloc_root(inode); if (!root) { iput(inode); return NULL; } sb->s_root = root; return sb; } static DECLARE_FSTYPE(ramfs_fs_type, "ramfs", ramfs_read_super, 0); static int __init init_ramfs_fs(void) { return register_filesystem(&ramfs_fs_type); } static void __exit exit_ramfs_fs(void) { unregister_filesystem(&ramfs_fs_type); } module_init(init_ramfs_fs) module_exit(exit_ramfs_fs) |