Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | #ifndef _I386_PGTABLE_H #define _I386_PGTABLE_H #include <linux/config.h> /* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */ #ifndef __ASSEMBLY__ #include <asm/processor.h> #include <asm/fixmap.h> #include <linux/threads.h> extern pgd_t swapper_pg_dir[1024]; extern void paging_init(void); /* Caches aren't brain-dead on the intel. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) #define flush_icache_page(vma,pg) do { } while (0) #define __flush_tlb() \ do { \ unsigned int tmpreg; \ \ __asm__ __volatile__( \ "movl %%cr3, %0; # flush TLB \n" \ "movl %0, %%cr3; \n" \ : "=r" (tmpreg) \ :: "memory"); \ } while (0) /* * Global pages have to be flushed a bit differently. Not a real * performance problem because this does not happen often. */ #define __flush_tlb_global() \ do { \ unsigned int tmpreg; \ \ __asm__ __volatile__( \ "movl %1, %%cr4; # turn off PGE \n" \ "movl %%cr3, %0; # flush TLB \n" \ "movl %0, %%cr3; \n" \ "movl %2, %%cr4; # turn PGE back on \n" \ : "=&r" (tmpreg) \ : "r" (mmu_cr4_features & ~X86_CR4_PGE), \ "r" (mmu_cr4_features) \ : "memory"); \ } while (0) extern unsigned long pgkern_mask; /* * Do not check the PGE bit unnecesserily if this is a PPro+ kernel. */ #ifdef CONFIG_X86_PGE # define __flush_tlb_all() __flush_tlb_global() #else # define __flush_tlb_all() \ do { \ if (cpu_has_pge) \ __flush_tlb_global(); \ else \ __flush_tlb(); \ } while (0) #endif #ifndef CONFIG_X86_INVLPG #define __flush_tlb_one(addr) __flush_tlb() #else #define __flush_tlb_one(addr) \ __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr)) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */ #ifndef __ASSEMBLY__ #if CONFIG_X86_PAE # include <asm/pgtable-3level.h> #else # include <asm/pgtable-2level.h> #endif #endif #define __beep() asm("movb $0x3,%al; outb %al,$0x61") #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define TWOLEVEL_PGDIR_SHIFT 22 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) #ifndef __ASSEMBLY__ /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + 2*VMALLOC_OFFSET-1) & \ ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (FIXADDR_START) /* * The 4MB page is guessing.. Detailed in the infamous "Chapter H" * of the Pentium details, but assuming intel did the straightforward * thing, this bit set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory. */ #define _PAGE_PRESENT 0x001 #define _PAGE_RW 0x002 #define _PAGE_USER 0x004 #define _PAGE_PWT 0x008 #define _PAGE_PCD 0x010 #define _PAGE_ACCESSED 0x020 #define _PAGE_DIRTY 0x040 #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */ #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */ #define _PAGE_PROTNONE 0x080 /* If not present */ #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define __PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define __PAGE_KERNEL_NOCACHE \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED) #define __PAGE_KERNEL_RO \ (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED) #ifdef CONFIG_X86_PGE # define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL) #else # define MAKE_GLOBAL(x) \ ({ \ pgprot_t __ret; \ \ if (cpu_has_pge) \ __ret = __pgprot((x) | _PAGE_GLOBAL); \ else \ __ret = __pgprot(x); \ __ret; \ }) #endif #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) /* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */ #undef TEST_VERIFY_AREA /* page table for 0-4MB for everybody */ extern unsigned long pg0[1024]; /* * Handling allocation failures during page table setup. */ extern void __handle_bad_pmd(pmd_t * pmd); extern void __handle_bad_pmd_kernel(pmd_t * pmd); #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE)) #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0) #define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT))) #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) /* * Permanent address of a page. Obviously must never be * called on a highmem page. */ #define page_address(page) ({ if (!(page)->virtual) BUG(); (page)->virtual; }) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) #define pte_page(x) (mem_map+pte_pagenr(x)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; } extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page,pgprot) \ ({ \ pte_t __pte; \ \ set_pte(&__pte, __pte(((page)-mem_map) * \ (unsigned long long)PAGE_SIZE + pgprot_val(pgprot))); \ __pte; \ }) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; set_pte(&__pte, __pte(physpage + pgprot_val(pgprot))); __pte; }) extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define pmd_page(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* to find an entry in a page-table-directory. */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define __pgd_offset(address) pgd_index(address) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define __pmd_offset(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* Find an entry in the third-level page table.. */ #define __pte_offset(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \ __pte_offset(address)) /* * The i386 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma,address,pte) do { } while (0) /* Encode and de-code a swap entry */ #define SWP_TYPE(x) (((x).val >> 1) & 0x3f) #define SWP_OFFSET(x) ((x).val >> 8) #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #define module_map vmalloc #define module_unmap vfree #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #define io_remap_page_range remap_page_range #endif /* _I386_PGTABLE_H */ |