Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
/*
 *  linux/fs/affs/file.c
 *
 *  (c) 1996  Hans-Joachim Widmaier - Rewritten
 *
 *  (C) 1993  Ray Burr - Modified for Amiga FFS filesystem.
 *
 *  (C) 1992  Eric Youngdale Modified for ISO 9660 filesystem.
 *
 *  (C) 1991  Linus Torvalds - minix filesystem
 *
 *  affs regular file handling primitives
 */

#define DEBUG 0
#include <asm/div64.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/sched.h>
#include <linux/affs_fs.h>
#include <linux/fcntl.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/stat.h>
#include <linux/locks.h>
#include <linux/smp_lock.h>
#include <linux/dirent.h>
#include <linux/fs.h>
#include <linux/amigaffs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>

#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))

#if PAGE_SIZE < 4096
#error PAGE_SIZE must be at least 4096
#endif

static struct buffer_head *affs_getblock(struct inode *inode, s32 block);
static ssize_t affs_file_read_ofs(struct file *filp, char *buf, size_t count, loff_t *ppos);
static ssize_t affs_file_write(struct file *filp, const char *buf, size_t count, loff_t *ppos);
static ssize_t affs_file_write_ofs(struct file *filp, const char *buf, size_t cnt, loff_t *ppos);
static int alloc_ext_cache(struct inode *inode);

struct file_operations affs_file_operations = {
	read:		generic_file_read,
	write:		affs_file_write,
	mmap:		generic_file_mmap,
	fsync:		file_fsync,
};

struct inode_operations affs_file_inode_operations = {
	truncate:	affs_truncate,
	setattr:	affs_notify_change,
};

struct file_operations affs_file_operations_ofs = {
	read:		affs_file_read_ofs,
	write:		affs_file_write_ofs,
	fsync:		file_fsync,
};

#define AFFS_ISINDEX(x)	((x < 129) ||				\
			 (x < 512 && (x & 1) == 0) ||		\
			 (x < 1024 && (x & 3) == 0) ||		\
			 (x < 2048 && (x & 15) == 0) ||		\
			 (x < 4096 && (x & 63) == 0) ||		\
			 (x < 20480 && (x & 255) == 0) ||	\
			 (x < 36864 && (x & 511) == 0))

/* The keys of the extension blocks are stored in a 512-entry
 * deep cache. In order to save memory, not every key of later
 * extension blocks is stored - the larger the file gets, the
 * bigger the holes in between.
 */

static int
seqnum_to_index(int seqnum)
{
	/* All of the first 127 keys are stored */
	if (seqnum < 128)
		return seqnum;
	seqnum -= 128;

	/* Of the next 384 keys, every 2nd is kept */
	if (seqnum < (192 * 2))
		return 128 + (seqnum >> 1);
	seqnum -= 192 * 2;
	
	/* Every 4th of the next 512 */
	if (seqnum < (128 * 4))
		return 128 + 192 + (seqnum >> 2);
	seqnum -= 128 * 4;

	/* Every 16th of the next 1024 */
	if (seqnum < (64 * 16))
		return 128 + 192 + 128 + (seqnum >> 4);
	seqnum -= 64 * 16;

	/* Every 64th of the next 2048 */
	if (seqnum < (32 * 64))
		return 128 + 192 + 128 + 64 + (seqnum >> 6);
	seqnum -= 32 * 64;

	/* Every 256th of the next 16384 */
	if (seqnum < (64 * 256))
		return 128 + 192 + 128 + 64 + 32 + (seqnum >> 8);
	seqnum -= 64 * 256;

	/* Every 512th upto 36479 (1.3 GB with 512 byte blocks).
	 * Seeking to positions behind this will get slower
	 * than dead snails nailed to the ground. But if
	 * someone uses files that large with 512-byte blocks,
	 * he or she deserves no better.
	 */
	
	if (seqnum > (31 * 512))
		seqnum = 31 * 512;
	return 128 + 192 + 128 + 64 + 32 + 64 + (seqnum >> 9);
}

/* Now the other way round: Calculate the sequence
 * number of an extension block of a key at the
 * given index in the cache.
 */

static int
index_to_seqnum(int index)
{
	if (index < 128)
		return index;
	index -= 128;
	if (index < 192)
		return 128 + (index << 1);
	index -= 192;
	if (index < 128)
		return 128 + 192 * 2 + (index << 2);
	index -= 128;
	if (index < 64)
		return 128 + 192 * 2 + 128 * 4 + (index << 4);
	index -= 64;
	if (index < 32)
		return 128 + 192 * 2 + 128 * 4 + 64 * 16 + (index << 6);
	index -= 32;
	if (index < 64)
		return 128 + 192 * 2 + 128 * 4 + 64 * 16 + 32 * 64 + (index << 8);
	index -= 64;
	return 128 + 192 * 2 + 128 * 4 + 64 * 16 + 32 * 64 + 64 * 256 + (index << 9);
}

static s32 __inline__
calc_key(struct inode *inode, int *ext)
{
	int		  index;
	struct key_cache *kc;

	for (index = 0; index < 4; index++) {
		kc = &inode->u.affs_i.i_ec->kc[index];
		if (kc->kc_last == -1)
			continue;	/* don't look in cache if invalid. */
		if (*ext == kc->kc_this_seq) {
			return kc->kc_this_key;
		} else if (*ext == kc->kc_this_seq + 1) {
			if (kc->kc_next_key)
				return kc->kc_next_key;
			else {
				(*ext)--;
				return kc->kc_this_key;
			}
		}
	}
	index = seqnum_to_index(*ext);
	if (index > inode->u.affs_i.i_ec->max_ext)
		index = inode->u.affs_i.i_ec->max_ext;
	*ext = index_to_seqnum(index);
	return inode->u.affs_i.i_ec->ec[index];
}

int
affs_bmap(struct inode *inode, int block)
{
	struct buffer_head	*bh;
	s32			 key, nkey;
	s32			 ptype, stype;
	int			 ext;
	int			 index;
	int			 keycount;
	struct key_cache	*kc;
	struct key_cache	*tkc;
	struct timeval		 tv;
	s32			*keyp;
	int			 i;

	pr_debug("AFFS: bmap(%lu,%d)\n",inode->i_ino,block);

	lock_kernel();
	if (block < 0) {
		affs_error(inode->i_sb,"bmap","Block < 0");
		goto out_fail;
	}
	if (!inode->u.affs_i.i_ec) {
		if (alloc_ext_cache(inode)) {
			goto out_fail;
		}
	}

	/* Try to find the requested key in the cache.
	 * In order to speed this up as much as possible,
	 * the cache line lookup is done in a separate
	 * step.
	 */

	for (i = 0; i < 4; i++) {
		tkc = &inode->u.affs_i.i_ec->kc[i];
		/* Look in any cache if the key is there */
		if (block <= tkc->kc_last && block >= tkc->kc_first) {
			unlock_kernel();
			return tkc->kc_keys[block - tkc->kc_first];
		}
	}
	kc = NULL;
	tv = xtime;
	for (i = 0; i < 4; i++) {
		tkc = &inode->u.affs_i.i_ec->kc[i];
		if (tkc->kc_lru_time.tv_sec > tv.tv_sec)
			continue;
		if (tkc->kc_lru_time.tv_sec < tv.tv_sec ||
		    tkc->kc_lru_time.tv_usec < tv.tv_usec) {
			kc = tkc;
			tv = tkc->kc_lru_time;
		}
	}
	if (!kc)	/* Really shouldn't happen */
		kc = tkc;
	kc->kc_lru_time = xtime;
	keyp            = kc->kc_keys;
	kc->kc_first    = block;
	kc->kc_last     = -1;
	keycount        = AFFS_KCSIZE;

	/* Calculate sequence number of the extension block where the
	 * number of the requested block is stored. 0 means it's in
	 * the file header.
	 */

	ext    = block / AFFS_I2HSIZE(inode);
	key    = calc_key(inode,&ext);
	block -= ext * AFFS_I2HSIZE(inode);

	for (;;) {
		bh = affs_bread(inode->i_dev,key,AFFS_I2BSIZE(inode));
		if (!bh)
			goto out_fail;

		index = seqnum_to_index(ext);
		if (index > inode->u.affs_i.i_ec->max_ext &&
		    (affs_checksum_block(AFFS_I2BSIZE(inode),bh->b_data,&ptype,&stype) ||
		     (ptype != T_SHORT && ptype != T_LIST) || stype != ST_FILE)) {
			affs_brelse(bh);
			goto out_fail;
		}
		nkey = be32_to_cpu(FILE_END(bh->b_data,inode)->extension);
		if (block < AFFS_I2HSIZE(inode)) {
			/* Fill cache as much as possible */
			if (keycount) {
				kc->kc_first = ext * AFFS_I2HSIZE(inode) + block;
				keycount     = keycount < AFFS_I2HSIZE(inode) - block ? keycount :
						AFFS_I2HSIZE(inode) - block;
				for (i = 0; i < keycount; i++)
					kc->kc_keys[i] = be32_to_cpu(AFFS_BLOCK(bh->b_data,inode,block + i));
				kc->kc_last = kc->kc_first + i - 1;
			}
			break;
		}
		block -= AFFS_I2HSIZE(inode);
		affs_brelse(bh);
		ext++;
		if (index > inode->u.affs_i.i_ec->max_ext && AFFS_ISINDEX(ext)) {
			inode->u.affs_i.i_ec->ec[index] = nkey;
			inode->u.affs_i.i_ec->max_ext   = index;
		}
		key = nkey;
	}
	kc->kc_this_key = key;
	kc->kc_this_seq = ext;
	kc->kc_next_key = nkey;
	key = be32_to_cpu(AFFS_BLOCK(bh->b_data,inode,block));
	affs_brelse(bh);
out:
	unlock_kernel();
	return key;

out_fail:
	key=0;
	goto out;
}


static int affs_get_block(struct inode *inode, long block, struct buffer_head *bh_result, int create)
{
	int err, phys=0, new=0;

	if (!create) {
		phys = affs_bmap(inode, block);
		if (phys) {
			bh_result->b_dev = inode->i_dev;
			bh_result->b_blocknr = phys;
			bh_result->b_state |= (1UL << BH_Mapped);
		}
		return 0;
	}

	err = -EIO;
	lock_kernel();
	if (block < 0)
		goto abort_negative;

	if (affs_getblock(inode, block)==NULL) {
		err = -EIO;
		goto abort;
	}

	bh_result->b_dev = inode->i_dev;
	bh_result->b_blocknr = phys;
	bh_result->b_state |= (1UL << BH_Mapped);
	if (new)
		bh_result->b_state |= (1UL << BH_New);
	
abort:
	unlock_kernel();
	return err;

abort_negative:
	affs_error(inode->i_sb,"affs_get_block","Block < 0");
	goto abort;

}
		
static int affs_writepage(struct page *page)
{
	return block_write_full_page(page,affs_get_block);
}
static int affs_readpage(struct file *file, struct page *page)
{
	return block_read_full_page(page,affs_get_block);
}
static int affs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
{
	return cont_prepare_write(page,from,to,affs_get_block,
		&((struct inode*)page->mapping->host)->u.affs_i.mmu_private);
}
static int _affs_bmap(struct address_space *mapping, long block)
{
	return generic_block_bmap(mapping,block,affs_get_block);
}
struct address_space_operations affs_aops = {
	readpage: affs_readpage,
	writepage: affs_writepage,
	sync_page: block_sync_page,
	prepare_write: affs_prepare_write,
	commit_write: generic_commit_write,
	bmap: _affs_bmap
};

/* With the affs, getting a random block from a file is not
 * a simple business. Since this fs does not allow holes,
 * it may be necessary to allocate all the missing blocks
 * in between, as well as some new extension blocks. The OFS
 * is even worse: All data blocks contain pointers to the
 * next ones, so you have to fix [n-1] after allocating [n].
 * What a mess.
 */

static struct buffer_head * affs_getblock(struct inode *inode, s32 block)
{
	struct super_block	*sb = inode->i_sb;
	int			 ofs = sb->u.affs_sb.s_flags & SF_OFS;
	int			 ext = block / AFFS_I2HSIZE(inode);
	struct buffer_head	*bh, *ebh, *pbh = NULL;
	struct key_cache	*kc;
	s32			 key, nkey;
	int			 cf, j, pt;
	int			 index;
	int			 err;

	pr_debug("AFFS: getblock(%lu,%d)\n",inode->i_ino,block);

	key    = calc_key(inode,&ext);
	block -= ext * AFFS_I2HSIZE(inode);
	pt     = ext ? T_LIST : T_SHORT;

	/* Key refers now to the last known extension block,
	 * ext is its sequence number (if 0, key refers to the
	 * header block), and block is the block number relative
	 * to the first block stored in that extension block.
	 */
	for (;;) {	/* Loop over header block and extension blocks */
		struct file_front *fdp;

		bh = affs_bread(inode->i_dev,key,AFFS_I2BSIZE(inode));
		if (!bh)
			goto out_fail;
		fdp = (struct file_front *) bh->b_data;
		err = affs_checksum_block(AFFS_I2BSIZE(inode),bh->b_data,&cf,&j);
		if (err || cf != pt || j != ST_FILE) {
		    	affs_error(sb, "getblock",
				"Block %d is not a valid %s", key,
				pt == T_SHORT ? "file header" : "ext block");
			goto out_free_bh;
		}
		j  = be32_to_cpu(((struct file_front *)bh->b_data)->block_count);
		for (cf = 0; j < AFFS_I2HSIZE(inode) && j <= block; j++) {
			if (ofs && !pbh && inode->u.affs_i.i_lastblock >= 0) {
				if (j > 0) {
					s32 k = AFFS_BLOCK(bh->b_data, inode, j - 1);
					pbh = affs_bread(inode->i_dev,
							be32_to_cpu(k),
							AFFS_I2BSIZE(inode));
				} else
					pbh = affs_getblock(inode,inode->u.affs_i.i_lastblock);
				if (!pbh) {
					affs_error(sb,"getblock", "Cannot get last block in file");
					break;
				}
			}
			nkey = affs_new_data(inode);
			if (!nkey)
				break;
			inode->u.affs_i.i_lastblock++;
			if (AFFS_BLOCK(bh->b_data,inode,j)) {
				affs_warning(sb,"getblock","Block already allocated");
				affs_free_block(sb,nkey);
				continue;
			}
			AFFS_BLOCK(bh->b_data,inode,j) = cpu_to_be32(nkey);
			if (ofs) {
				ebh = affs_bread(inode->i_dev,nkey,AFFS_I2BSIZE(inode));
				if (!ebh) {
					affs_error(sb,"getblock", "Cannot get block %d",nkey);
					affs_free_block(sb,nkey);
					AFFS_BLOCK(bh->b_data,inode,j) = 0;
					break;
				}
				DATA_FRONT(ebh)->primary_type    = cpu_to_be32(T_DATA);
				DATA_FRONT(ebh)->header_key      = cpu_to_be32(inode->i_ino);
				DATA_FRONT(ebh)->sequence_number = cpu_to_be32(inode->u.affs_i.i_lastblock + 1);
				affs_fix_checksum(AFFS_I2BSIZE(inode), ebh->b_data, 5);
				mark_buffer_dirty(ebh);
				if (pbh) {
					DATA_FRONT(pbh)->data_size = cpu_to_be32(AFFS_I2BSIZE(inode) - 24);
					DATA_FRONT(pbh)->next_data = cpu_to_be32(nkey);
					affs_fix_checksum(AFFS_I2BSIZE(inode),pbh->b_data,5);
					mark_buffer_dirty(pbh);
					affs_brelse(pbh);
				}
				pbh = ebh;
			}
			cf = 1;
		}
		/* N.B. May need to release pbh after here */

		if (cf) {
			if (pt == T_SHORT)
				fdp->first_data = AFFS_BLOCK(bh->b_data,inode,0);
			fdp->block_count = cpu_to_be32(j);
			affs_fix_checksum(AFFS_I2BSIZE(inode),bh->b_data,5);
			mark_buffer_dirty(bh);
		}

		if (block < j) {
			if (pbh)
				affs_brelse(pbh);
			break;
		}
		if (j < AFFS_I2HSIZE(inode)) {
			/* N.B. What about pbh here? */
			goto out_free_bh;
		}

		block -= AFFS_I2HSIZE(inode);
		key    = be32_to_cpu(FILE_END(bh->b_data,inode)->extension);
		if (!key) {
			key = affs_new_header(inode);
			if (!key)
				goto out_free_bh;
			ebh = affs_bread(inode->i_dev,key,AFFS_I2BSIZE(inode));
			if (!ebh) {
				/* N.B. must free bh here */
				goto out_free_block;
			}
			((struct file_front *)ebh->b_data)->primary_type = cpu_to_be32(T_LIST);
			((struct file_front *)ebh->b_data)->own_key      = cpu_to_be32(key);
			FILE_END(ebh->b_data,inode)->secondary_type      = cpu_to_be32(ST_FILE);
			FILE_END(ebh->b_data,inode)->parent              = cpu_to_be32(inode->i_ino);
			affs_fix_checksum(AFFS_I2BSIZE(inode),ebh->b_data,5);
			mark_buffer_dirty(ebh);
			FILE_END(bh->b_data,inode)->extension = cpu_to_be32(key);
			affs_fix_checksum(AFFS_I2BSIZE(inode),bh->b_data,5);
			mark_buffer_dirty(bh);
			affs_brelse(bh);
			bh = ebh;
		}
		pt = T_LIST;
		ext++;
		index = seqnum_to_index(ext);
		if (index > inode->u.affs_i.i_ec->max_ext &&
		    AFFS_ISINDEX(ext)) {
			inode->u.affs_i.i_ec->ec[index] = key;
			inode->u.affs_i.i_ec->max_ext   = index;
		}
		affs_brelse(bh);
	}

	/* Invalidate key cache */
	for (j = 0; j < 4; j++) {
		kc = &inode->u.affs_i.i_ec->kc[j];
		kc->kc_last = -1;
	}
	key = be32_to_cpu(AFFS_BLOCK(bh->b_data,inode,block));
	affs_brelse(bh);
	if (!key)
		goto out_fail;

	bh = affs_bread(inode->i_dev, key, AFFS_I2BSIZE(inode));
	return bh;

out_free_block:
	affs_free_block(sb, key);
out_free_bh:
	affs_brelse(bh);
out_fail:
	return NULL;
}

static ssize_t
affs_file_read_ofs(struct file *filp, char *buf, size_t count, loff_t *ppos)
{
	struct inode		*inode = filp->f_dentry->d_inode;
	char			*start;
	ssize_t			 left, offset, size, sector;
	ssize_t			 blocksize;
	struct buffer_head	*bh;
	void			*data;
	loff_t		tmp;

	pr_debug("AFFS: file_read_ofs(ino=%lu,pos=%lu,%d)\n",inode->i_ino,
		 (unsigned long)*ppos,count);

	if (!inode) {
		affs_error(inode->i_sb,"file_read_ofs","Inode = NULL");
		return -EINVAL;
	}
	blocksize = AFFS_I2BSIZE(inode) - 24;
	if (!(S_ISREG(inode->i_mode))) {
		pr_debug("AFFS: file_read: mode = %07o",inode->i_mode);
		return -EINVAL;
	}
	if (*ppos >= inode->i_size || count <= 0)
		return 0;

	start = buf;
	for (;;) {
		left = MIN (inode->i_size - *ppos,count - (buf - start));
		if (!left)
			break;
		tmp = *ppos;
		do_div(tmp, blocksize);
		sector = affs_bmap(inode, tmp);
		if (!sector)
			break;
		tmp = *ppos;
		offset = do_div(tmp, blocksize);
		bh = affs_bread(inode->i_dev,sector,AFFS_I2BSIZE(inode));
		if (!bh)
			break;
		data = bh->b_data + 24;
		size = MIN(blocksize - offset,left);
		*ppos += size;
		copy_to_user(buf,data + offset,size);
		buf += size;
		affs_brelse(bh);
	}
	if (start == buf)
		return -EIO;
	return buf - start;
}

static ssize_t
affs_file_write(struct file *file, const char *buf, size_t count, loff_t *ppos)
{
	ssize_t retval;

	retval = generic_file_write (file, buf, count, ppos);
	if (retval >0) {
		struct inode *inode = file->f_dentry->d_inode;
		inode->i_ctime = inode->i_mtime = CURRENT_TIME;
		mark_inode_dirty(inode);
	}
	return retval;
}

static ssize_t
affs_file_write_ofs(struct file *file, const char *buf, size_t count, loff_t *ppos)
{
	ssize_t retval;

	retval = generic_file_write (file, buf, count, ppos);
	if (retval >0) {
		struct inode *inode = file->f_dentry->d_inode;
		inode->i_ctime = inode->i_mtime = CURRENT_TIME;
		mark_inode_dirty(inode);
	}
	return retval;
}

/* Free any preallocated blocks. */

void
affs_free_prealloc(struct inode *inode)
{
	struct super_block	*sb = inode->i_sb;
	struct affs_zone	*zone;
	int block;

	pr_debug("AFFS: free_prealloc(ino=%lu)\n", inode->i_ino);

	while (inode->u.affs_i.i_pa_cnt) {	
		block = inode->u.affs_i.i_data[inode->u.affs_i.i_pa_next++];
		inode->u.affs_i.i_pa_next &= AFFS_MAX_PREALLOC - 1;
		inode->u.affs_i.i_pa_cnt--;
		affs_free_block(sb, block);
	}
	if (inode->u.affs_i.i_zone) {
		zone = &sb->u.affs_sb.s_zones[inode->u.affs_i.i_zone];
		if (zone->z_ino == inode->i_ino)
			zone->z_ino = 0;
	}
}

/* Truncate (or enlarge) a file to the requested size. */

void
affs_truncate(struct inode *inode)
{
	struct buffer_head	*bh = NULL;
	int	 first;			/* First block to be thrown away	*/
	int	 block;
	s32	 key;
	s32	*keyp;
	s32	 ekey;
	s32	 ptype, stype;
	int	 freethis;
	int	 net_blocksize;
	int	 blocksize = AFFS_I2BSIZE(inode);
	int	 rem;
	int	 ext;
	loff_t tmp;

	pr_debug("AFFS: truncate(inode=%ld,size=%lu)\n",inode->i_ino,inode->i_size);

	net_blocksize = blocksize - ((inode->i_sb->u.affs_sb.s_flags & SF_OFS) ? 24 : 0);
	first = inode->i_size + net_blocksize -1;
	do_div (first, net_blocksize);
	if (inode->u.affs_i.i_lastblock < first - 1) {
		/* There has to be at least one new block to be allocated */
		if (!inode->u.affs_i.i_ec && alloc_ext_cache(inode)) {
			/* XXX Fine! No way to indicate an error. */
			return /* -ENOSPC */;
		}
		bh = affs_getblock(inode,first - 1);
		if (!bh) {
			affs_warning(inode->i_sb,"truncate","Cannot extend file");
			inode->i_size = net_blocksize * (inode->u.affs_i.i_lastblock + 1);
		} else if (inode->i_sb->u.affs_sb.s_flags & SF_OFS) {
			tmp = inode->i_size;
			rem = do_div(tmp, net_blocksize);
			DATA_FRONT(bh)->data_size = cpu_to_be32(rem ? rem : net_blocksize);
			affs_fix_checksum(blocksize,bh->b_data,5);
			mark_buffer_dirty(bh);
		}
		goto out_truncate;
	}
	ekey = inode->i_ino;
	ext  = 0;

	/* Free all blocks starting at 'first' and all then-empty
	 * extension blocks. Do not free the header block, though.
	 */
	while (ekey) {
		if (!(bh = affs_bread(inode->i_dev,ekey,blocksize))) {
			affs_error(inode->i_sb,"truncate","Cannot read block %d",ekey);
			goto out_truncate;
		}
		if (affs_checksum_block(blocksize,bh->b_data,&ptype,&stype)) {
			affs_error(inode->i_sb,"truncate","Checksum error in header/ext block %d",
				   ekey);
			goto out_truncate;
		}
		if (stype != ST_FILE || (ptype != T_SHORT && ptype != T_LIST)) {
			affs_error(inode->i_sb,"truncate",
				   "Bad block (key=%d, ptype=%d, stype=%d)",ekey,ptype,stype);
			goto out_truncate;
		}
		/* Do we have to free this extension block after
		 * freeing the data blocks pointed to?
		 */
		freethis = first == 0 && ekey != inode->i_ino;

		/* Free the data blocks. 'first' is relative to this
		 * extension block and may well lie behind this block.
		 */
		for (block = first; block < AFFS_I2HSIZE(inode); block++) {
			keyp = &AFFS_BLOCK(bh->b_data,inode,block);
			key  = be32_to_cpu(*keyp);
			if (key) {
				*keyp = 0;
				affs_free_block(inode->i_sb,key);
			} else
				break;
		}
		keyp = &GET_END_PTR(struct file_end,bh->b_data,blocksize)->extension;
		key  = be32_to_cpu(*keyp);

		/* If 'first' is in this block or is the first
		 * in the next one, this will be the last in
		 * the list, thus we have to adjust the count
		 * and zero the pointer to the next ext block.
		 */
		if (first <= AFFS_I2HSIZE(inode)) {
			((struct file_front *)bh->b_data)->block_count = cpu_to_be32(first);
			first = 0;
			*keyp = 0;
			affs_fix_checksum(blocksize,bh->b_data,5);
			mark_buffer_dirty(bh);
		} else
			first -= AFFS_I2HSIZE(inode);
		affs_brelse(bh);
		bh = NULL;
		if (freethis)			/* Don't bother fixing checksum */
			affs_free_block(inode->i_sb,ekey);
		ekey = key;
	}
	block = inode->i_size + net_blocksize - 1;
	do_div (block, net_blocksize);
	block--;
	inode->u.affs_i.i_lastblock = block;

	/* If the file is not truncated to a block boundary,
	 * the partial block after the EOF must be zeroed
	 * so it cannot become accessible again.
	 */

	tmp = inode->i_size;
	rem = do_div(tmp, net_blocksize);
	if (rem) {
		if ((inode->i_sb->u.affs_sb.s_flags & SF_OFS)) 
			rem += 24;
		pr_debug("AFFS: Zeroing from offset %d in block %d\n",rem,block);
		bh = affs_getblock(inode,block);
		if (bh) {
			memset(bh->b_data + rem,0,blocksize - rem);
			if ((inode->i_sb->u.affs_sb.s_flags & SF_OFS)) {
				((struct data_front *)bh->b_data)->data_size = cpu_to_be32(rem);
				((struct data_front *)bh->b_data)->next_data = 0;
				affs_fix_checksum(blocksize,bh->b_data,5);
			}
			mark_buffer_dirty(bh);
		} else 
			affs_error(inode->i_sb,"truncate","Cannot read block %d",block);
	}

out_truncate:
	affs_brelse(bh);
	/* Invalidate cache */
	if (inode->u.affs_i.i_ec) {
		inode->u.affs_i.i_ec->max_ext = 0;
		for (key = 0; key < 4; key++) {
			inode->u.affs_i.i_ec->kc[key].kc_next_key = 0;
			inode->u.affs_i.i_ec->kc[key].kc_last     = -1;
		}
	}
	mark_inode_dirty(inode);
}

/*
 * Called only when we need to allocate the extension cache.
 */

static int
alloc_ext_cache(struct inode *inode)
{
	s32	 key;
	int	 i;
	unsigned long cache_page;
	int      error = 0;

	pr_debug("AFFS: alloc_ext_cache(ino=%lu)\n",inode->i_ino);

	cache_page = get_free_page(GFP_KERNEL);
	/*
	 * Check whether somebody else allocated it for us ...
	 */
	if (inode->u.affs_i.i_ec)
		goto out_free;
	if (!cache_page)
		goto out_error;

	inode->u.affs_i.i_ec = (struct ext_cache *) cache_page;
	/* We only have to initialize non-zero values.
	 * get_free_page() zeroed the page already.
	 */
	key = inode->i_ino;
	inode->u.affs_i.i_ec->ec[0] = key;
	for (i = 0; i < 4; i++) {
		inode->u.affs_i.i_ec->kc[i].kc_this_key = key;
		inode->u.affs_i.i_ec->kc[i].kc_last     = -1;
	}
out:
	return error;

out_free:
	if (cache_page)
		free_page(cache_page);
	goto out;

out_error:
	affs_error(inode->i_sb,"alloc_ext_cache","Cache allocation failed");
	error = -ENOMEM;
	goto out;
}