/*
* AGPGART module version 0.99
* Copyright (C) 1999 Jeff Hartmann
* Copyright (C) 1999 Precision Insight, Inc.
* Copyright (C) 1999 Xi Graphics, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* JEFF HARTMANN, OR ANY OTHER CONTRIBUTORS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/miscdevice.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/page.h>
#include <linux/agp_backend.h>
#include "agp.h"
MODULE_AUTHOR("Jeff Hartmann <jhartmann@precisioninsight.com>");
MODULE_PARM(agp_try_unsupported, "1i");
EXPORT_SYMBOL(agp_free_memory);
EXPORT_SYMBOL(agp_allocate_memory);
EXPORT_SYMBOL(agp_copy_info);
EXPORT_SYMBOL(agp_bind_memory);
EXPORT_SYMBOL(agp_unbind_memory);
EXPORT_SYMBOL(agp_enable);
EXPORT_SYMBOL(agp_backend_acquire);
EXPORT_SYMBOL(agp_backend_release);
static void flush_cache(void);
static struct agp_bridge_data agp_bridge;
static int agp_try_unsupported __initdata = 0;
static inline void flush_cache(void)
{
#if defined(__i386__)
asm volatile ("wbinvd":::"memory");
#elif defined(__alpha__) || defined(__ia64__)
/* ??? I wonder if we'll really need to flush caches, or if the
core logic can manage to keep the system coherent. The ARM
speaks only of using `cflush' to get things in memory in
preparation for power failure.
If we do need to call `cflush', we'll need a target page,
as we can only flush one page at a time.
Ditto for IA-64. --davidm 00/08/07 */
mb();
#else
#error "Please define flush_cache."
#endif
}
#ifdef CONFIG_SMP
static atomic_t cpus_waiting;
static void ipi_handler(void *null)
{
flush_cache();
atomic_dec(&cpus_waiting);
while (atomic_read(&cpus_waiting) > 0)
barrier();
}
static void smp_flush_cache(void)
{
atomic_set(&cpus_waiting, smp_num_cpus - 1);
if (smp_call_function(ipi_handler, NULL, 1, 0) != 0)
panic(PFX "timed out waiting for the other CPUs!\n");
flush_cache();
while (atomic_read(&cpus_waiting) > 0)
barrier();
}
#define global_cache_flush smp_flush_cache
#else /* CONFIG_SMP */
#define global_cache_flush flush_cache
#endif /* CONFIG_SMP */
int agp_backend_acquire(void)
{
if (agp_bridge.type == NOT_SUPPORTED) {
return -EINVAL;
}
atomic_inc(&agp_bridge.agp_in_use);
if (atomic_read(&agp_bridge.agp_in_use) != 1) {
atomic_dec(&agp_bridge.agp_in_use);
return -EBUSY;
}
MOD_INC_USE_COUNT;
return 0;
}
void agp_backend_release(void)
{
if (agp_bridge.type == NOT_SUPPORTED) {
return;
}
atomic_dec(&agp_bridge.agp_in_use);
MOD_DEC_USE_COUNT;
}
/*
* Basic Page Allocation Routines -
* These routines handle page allocation
* and by default they reserve the allocated
* memory. They also handle incrementing the
* current_memory_agp value, Which is checked
* against a maximum value.
*/
static unsigned long agp_alloc_page(void)
{
void *pt;
pt = (void *) __get_free_page(GFP_KERNEL);
if (pt == NULL) {
return 0;
}
atomic_inc(&virt_to_page(pt)->count);
set_bit(PG_locked, &virt_to_page(pt)->flags);
atomic_inc(&agp_bridge.current_memory_agp);
return (unsigned long) pt;
}
static void agp_destroy_page(unsigned long page)
{
void *pt = (void *) page;
if (pt == NULL) {
return;
}
atomic_dec(&virt_to_page(pt)->count);
clear_bit(PG_locked, &virt_to_page(pt)->flags);
wake_up(&virt_to_page(pt)->wait);
free_page((unsigned long) pt);
atomic_dec(&agp_bridge.current_memory_agp);
}
/* End Basic Page Allocation Routines */
/*
* Generic routines for handling agp_memory structures -
* They use the basic page allocation routines to do the
* brunt of the work.
*/
static void agp_free_key(int key)
{
if (key < 0) {
return;
}
if (key < MAXKEY) {
clear_bit(key, agp_bridge.key_list);
}
}
static int agp_get_key(void)
{
int bit;
bit = find_first_zero_bit(agp_bridge.key_list, MAXKEY);
if (bit < MAXKEY) {
set_bit(bit, agp_bridge.key_list);
return bit;
}
return -1;
}
static agp_memory *agp_create_memory(int scratch_pages)
{
agp_memory *new;
new = kmalloc(sizeof(agp_memory), GFP_KERNEL);
if (new == NULL) {
return NULL;
}
memset(new, 0, sizeof(agp_memory));
new->key = agp_get_key();
if (new->key < 0) {
kfree(new);
return NULL;
}
new->memory = vmalloc(PAGE_SIZE * scratch_pages);
if (new->memory == NULL) {
agp_free_key(new->key);
kfree(new);
return NULL;
}
new->num_scratch_pages = scratch_pages;
return new;
}
void agp_free_memory(agp_memory * curr)
{
int i;
if ((agp_bridge.type == NOT_SUPPORTED) || (curr == NULL)) {
return;
}
if (curr->is_bound == TRUE) {
agp_unbind_memory(curr);
}
if (curr->type != 0) {
agp_bridge.free_by_type(curr);
return;
}
if (curr->page_count != 0) {
for (i = 0; i < curr->page_count; i++) {
curr->memory[i] &= ~(0x00000fff);
agp_destroy_page((unsigned long)
phys_to_virt(curr->memory[i]));
}
}
agp_free_key(curr->key);
vfree(curr->memory);
kfree(curr);
MOD_DEC_USE_COUNT;
}
#define ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
agp_memory *agp_allocate_memory(size_t page_count, u32 type)
{
int scratch_pages;
agp_memory *new;
int i;
if (agp_bridge.type == NOT_SUPPORTED) {
return NULL;
}
if ((atomic_read(&agp_bridge.current_memory_agp) + page_count) >
agp_bridge.max_memory_agp) {
return NULL;
}
if (type != 0) {
new = agp_bridge.alloc_by_type(page_count, type);
return new;
}
/* We always increase the module count, since free auto-decrements
* it
*/
MOD_INC_USE_COUNT;
scratch_pages = (page_count + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
new = agp_create_memory(scratch_pages);
if (new == NULL) {
MOD_DEC_USE_COUNT;
return NULL;
}
for (i = 0; i < page_count; i++) {
new->memory[i] = agp_alloc_page();
if (new->memory[i] == 0) {
/* Free this structure */
agp_free_memory(new);
return NULL;
}
new->memory[i] =
agp_bridge.mask_memory(
virt_to_phys((void *) new->memory[i]),
type);
new->page_count++;
}
return new;
}
/* End - Generic routines for handling agp_memory structures */
static int agp_return_size(void)
{
int current_size;
void *temp;
temp = agp_bridge.current_size;
switch (agp_bridge.size_type) {
case U8_APER_SIZE:
current_size = A_SIZE_8(temp)->size;
break;
case U16_APER_SIZE:
current_size = A_SIZE_16(temp)->size;
break;
case U32_APER_SIZE:
current_size = A_SIZE_32(temp)->size;
break;
case LVL2_APER_SIZE:
current_size = A_SIZE_LVL2(temp)->size;
break;
case FIXED_APER_SIZE:
current_size = A_SIZE_FIX(temp)->size;
break;
default:
current_size = 0;
break;
}
return current_size;
}
/* Routine to copy over information structure */
void agp_copy_info(agp_kern_info * info)
{
memset(info, 0, sizeof(agp_kern_info));
if (agp_bridge.type == NOT_SUPPORTED) {
info->chipset = agp_bridge.type;
return;
}
info->version.major = agp_bridge.version->major;
info->version.minor = agp_bridge.version->minor;
info->device = agp_bridge.dev;
info->chipset = agp_bridge.type;
info->mode = agp_bridge.mode;
info->aper_base = agp_bridge.gart_bus_addr;
info->aper_size = agp_return_size();
info->max_memory = agp_bridge.max_memory_agp;
info->current_memory = atomic_read(&agp_bridge.current_memory_agp);
}
/* End - Routine to copy over information structure */
/*
* Routines for handling swapping of agp_memory into the GATT -
* These routines take agp_memory and insert them into the GATT.
* They call device specific routines to actually write to the GATT.
*/
int agp_bind_memory(agp_memory * curr, off_t pg_start)
{
int ret_val;
if ((agp_bridge.type == NOT_SUPPORTED) ||
(curr == NULL) || (curr->is_bound == TRUE)) {
return -EINVAL;
}
if (curr->is_flushed == FALSE) {
CACHE_FLUSH();
curr->is_flushed = TRUE;
}
ret_val = agp_bridge.insert_memory(curr, pg_start, curr->type);
if (ret_val != 0) {
return ret_val;
}
curr->is_bound = TRUE;
curr->pg_start = pg_start;
return 0;
}
int agp_unbind_memory(agp_memory * curr)
{
int ret_val;
if ((agp_bridge.type == NOT_SUPPORTED) || (curr == NULL)) {
return -EINVAL;
}
if (curr->is_bound != TRUE) {
return -EINVAL;
}
ret_val = agp_bridge.remove_memory(curr, curr->pg_start, curr->type);
if (ret_val != 0) {
return ret_val;
}
curr->is_bound = FALSE;
curr->pg_start = 0;
return 0;
}
/* End - Routines for handling swapping of agp_memory into the GATT */
/*
* Driver routines - start
* Currently this module supports the following chipsets:
* i810, 440lx, 440bx, 440gx, via vp3, via mvp3, via kx133, via kt133,
* amd irongate, ALi M1541, and generic support for the SiS chipsets.
*/
/* Generic Agp routines - Start */
static void agp_generic_agp_enable(u32 mode)
{
struct pci_dev *device = NULL;
u32 command, scratch, cap_id;
u8 cap_ptr;
pci_read_config_dword(agp_bridge.dev,
agp_bridge.capndx + 4,
&command);
/*
* PASS1: go throu all devices that claim to be
* AGP devices and collect their data.
*/
while ((device = pci_find_class(PCI_CLASS_DISPLAY_VGA << 8,
device)) != NULL) {
pci_read_config_dword(device, 0x04, &scratch);
if (!(scratch & 0x00100000))
continue;
pci_read_config_byte(device, 0x34, &cap_ptr);
if (cap_ptr != 0x00) {
do {
pci_read_config_dword(device,
cap_ptr, &cap_id);
if ((cap_id & 0xff) != 0x02)
cap_ptr = (cap_id >> 8) & 0xff;
}
while (((cap_id & 0xff) != 0x02) && (cap_ptr != 0x00));
}
if (cap_ptr != 0x00) {
/*
* Ok, here we have a AGP device. Disable impossible
* settings, and adjust the readqueue to the minimum.
*/
pci_read_config_dword(device, cap_ptr + 4, &scratch);
/* adjust RQ depth */
command =
((command & ~0xff000000) |
min((mode & 0xff000000),
min((command & 0xff000000),
(scratch & 0xff000000))));
/* disable SBA if it's not supported */
if (!((command & 0x00000200) &&
(scratch & 0x00000200) &&
(mode & 0x00000200)))
command &= ~0x00000200;
/* disable FW if it's not supported */
if (!((command & 0x00000010) &&
(scratch & 0x00000010) &&
(mode & 0x00000010)))
command &= ~0x00000010;
if (!((command & 4) &&
(scratch & 4) &&
(mode & 4)))
command &= ~0x00000004;
if (!((command & 2) &&
(scratch & 2) &&
(mode & 2)))
command &= ~0x00000002;
if (!((command & 1) &&
(scratch & 1) &&
(mode & 1)))
command &= ~0x00000001;
}
}
/*
* PASS2: Figure out the 4X/2X/1X setting and enable the
* target (our motherboard chipset).
*/
if (command & 4) {
command &= ~3; /* 4X */
}
if (command & 2) {
command &= ~5; /* 2X */
}
if (command & 1) {
command &= ~6; /* 1X */
}
command |= 0x00000100;
pci_write_config_dword(agp_bridge.dev,
agp_bridge.capndx + 8,
command);
/*
* PASS3: Go throu all AGP devices and update the
* command registers.
*/
while ((device = pci_find_class(PCI_CLASS_DISPLAY_VGA << 8,
device)) != NULL) {
pci_read_config_dword(device, 0x04, &scratch);
if (!(scratch & 0x00100000))
continue;
pci_read_config_byte(device, 0x34, &cap_ptr);
if (cap_ptr != 0x00) {
do {
pci_read_config_dword(device,
cap_ptr, &cap_id);
if ((cap_id & 0xff) != 0x02)
cap_ptr = (cap_id >> 8) & 0xff;
}
while (((cap_id & 0xff) != 0x02) && (cap_ptr != 0x00));
}
if (cap_ptr != 0x00)
pci_write_config_dword(device, cap_ptr + 8, command);
}
}
static int agp_generic_create_gatt_table(void)
{
char *table;
char *table_end;
int size;
int page_order;
int num_entries;
int i;
void *temp;
struct page *page;
/* The generic routines can't handle 2 level gatt's */
if (agp_bridge.size_type == LVL2_APER_SIZE) {
return -EINVAL;
}
table = NULL;
i = agp_bridge.aperture_size_idx;
temp = agp_bridge.current_size;
size = page_order = num_entries = 0;
if (agp_bridge.size_type != FIXED_APER_SIZE) {
do {
switch (agp_bridge.size_type) {
case U8_APER_SIZE:
size = A_SIZE_8(temp)->size;
page_order =
A_SIZE_8(temp)->page_order;
num_entries =
A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
size = A_SIZE_16(temp)->size;
page_order = A_SIZE_16(temp)->page_order;
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
size = A_SIZE_32(temp)->size;
page_order = A_SIZE_32(temp)->page_order;
num_entries = A_SIZE_32(temp)->num_entries;
break;
/* This case will never really happen. */
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
size = page_order = num_entries = 0;
break;
}
table = (char *) __get_free_pages(GFP_KERNEL,
page_order);
if (table == NULL) {
i++;
switch (agp_bridge.size_type) {
case U8_APER_SIZE:
agp_bridge.current_size = A_IDX8();
break;
case U16_APER_SIZE:
agp_bridge.current_size = A_IDX16();
break;
case U32_APER_SIZE:
agp_bridge.current_size = A_IDX32();
break;
/* This case will never really
* happen.
*/
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
agp_bridge.current_size =
agp_bridge.current_size;
break;
}
} else {
agp_bridge.aperture_size_idx = i;
}
} while ((table == NULL) &&
(i < agp_bridge.num_aperture_sizes));
} else {
size = ((aper_size_info_fixed *) temp)->size;
page_order = ((aper_size_info_fixed *) temp)->page_order;
num_entries = ((aper_size_info_fixed *) temp)->num_entries;
table = (char *) __get_free_pages(GFP_KERNEL, page_order);
}
if (table == NULL) {
return -ENOMEM;
}
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
set_bit(PG_reserved, &page->flags);
agp_bridge.gatt_table_real = (unsigned long *) table;
CACHE_FLUSH();
agp_bridge.gatt_table = ioremap_nocache(virt_to_phys(table),
(PAGE_SIZE * (1 << page_order)));
CACHE_FLUSH();
if (agp_bridge.gatt_table == NULL) {
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
clear_bit(PG_reserved, &page->flags);
free_pages((unsigned long) table, page_order);
return -ENOMEM;
}
agp_bridge.gatt_bus_addr = virt_to_phys(agp_bridge.gatt_table_real);
for (i = 0; i < num_entries; i++) {
agp_bridge.gatt_table[i] =
(unsigned long) agp_bridge.scratch_page;
}
return 0;
}
static int agp_generic_free_gatt_table(void)
{
int page_order;
char *table, *table_end;
void *temp;
struct page *page;
temp = agp_bridge.current_size;
switch (agp_bridge.size_type) {
case U8_APER_SIZE:
page_order = A_SIZE_8(temp)->page_order;
break;
case U16_APER_SIZE:
page_order = A_SIZE_16(temp)->page_order;
break;
case U32_APER_SIZE:
page_order = A_SIZE_32(temp)->page_order;
break;
case FIXED_APER_SIZE:
page_order = A_SIZE_FIX(temp)->page_order;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
break;
default:
page_order = 0;
break;
}
/* Do not worry about freeing memory, because if this is
* called, then all agp memory is deallocated and removed
* from the table.
*/
iounmap(agp_bridge.gatt_table);
table = (char *) agp_bridge.gatt_table_real;
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
clear_bit(PG_reserved, &page->flags);
free_pages((unsigned long) agp_bridge.gatt_table_real, page_order);
return 0;
}
static int agp_generic_insert_memory(agp_memory * mem,
off_t pg_start, int type)
{
int i, j, num_entries;
void *temp;
temp = agp_bridge.current_size;
switch (agp_bridge.size_type) {
case U8_APER_SIZE:
num_entries = A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
num_entries = A_SIZE_32(temp)->num_entries;
break;
case FIXED_APER_SIZE:
num_entries = A_SIZE_FIX(temp)->num_entries;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
break;
default:
num_entries = 0;
break;
}
if (type != 0 || mem->type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
if ((pg_start + mem->page_count) > num_entries) {
return -EINVAL;
}
j = pg_start;
while (j < (pg_start + mem->page_count)) {
if (!PGE_EMPTY(agp_bridge.gatt_table[j])) {
return -EBUSY;
}
j++;
}
if (mem->is_flushed == FALSE) {
CACHE_FLUSH();
mem->is_flushed = TRUE;
}
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
agp_bridge.gatt_table[j] = mem->memory[i];
}
agp_bridge.tlb_flush(mem);
return 0;
}
static int agp_generic_remove_memory(agp_memory * mem, off_t pg_start,
int type)
{
int i;
if (type != 0 || mem->type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
agp_bridge.gatt_table[i] =
(unsigned long) agp_bridge.scratch_page;
}
agp_bridge.tlb_flush(mem);
return 0;
}
static agp_memory *agp_generic_alloc_by_type(size_t page_count, int type)
{
return NULL;
}
static void agp_generic_free_by_type(agp_memory * curr)
{
if (curr->memory != NULL) {
vfree(curr->memory);
}
agp_free_key(curr->key);
kfree(curr);
}
void agp_enable(u32 mode)
{
if (agp_bridge.type == NOT_SUPPORTED) return;
agp_bridge.agp_enable(mode);
}
/* End - Generic Agp routines */
#ifdef CONFIG_AGP_I810
static aper_size_info_fixed intel_i810_sizes[] =
{
{64, 16384, 4},
/* The 32M mode still requires a 64k gatt */
{32, 8192, 4}
};
#define AGP_DCACHE_MEMORY 1
#define AGP_PHYS_MEMORY 2
static gatt_mask intel_i810_masks[] =
{
{I810_PTE_VALID, 0},
{(I810_PTE_VALID | I810_PTE_LOCAL), AGP_DCACHE_MEMORY},
{I810_PTE_VALID, 0}
};
static struct _intel_i810_private {
struct pci_dev *i810_dev; /* device one */
volatile u8 *registers;
int num_dcache_entries;
} intel_i810_private;
static int intel_i810_fetch_size(void)
{
u32 smram_miscc;
aper_size_info_fixed *values;
pci_read_config_dword(agp_bridge.dev, I810_SMRAM_MISCC, &smram_miscc);
values = A_SIZE_FIX(agp_bridge.aperture_sizes);
if ((smram_miscc & I810_GMS) == I810_GMS_DISABLE) {
printk(KERN_WARNING PFX "i810 is disabled\n");
return 0;
}
if ((smram_miscc & I810_GFX_MEM_WIN_SIZE) == I810_GFX_MEM_WIN_32M) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + 1);
agp_bridge.aperture_size_idx = 1;
return values[1].size;
} else {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values);
agp_bridge.aperture_size_idx = 0;
return values[0].size;
}
return 0;
}
static int intel_i810_configure(void)
{
aper_size_info_fixed *current_size;
u32 temp;
int i;
current_size = A_SIZE_FIX(agp_bridge.current_size);
pci_read_config_dword(intel_i810_private.i810_dev, I810_MMADDR, &temp);
temp &= 0xfff80000;
intel_i810_private.registers =
(volatile u8 *) ioremap(temp, 128 * 4096);
if ((INREG32(intel_i810_private.registers, I810_DRAM_CTL)
& I810_DRAM_ROW_0) == I810_DRAM_ROW_0_SDRAM) {
/* This will need to be dynamically assigned */
printk(KERN_INFO PFX "detected 4MB dedicated video ram.\n");
intel_i810_private.num_dcache_entries = 1024;
}
pci_read_config_dword(intel_i810_private.i810_dev, I810_GMADDR, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
OUTREG32(intel_i810_private.registers, I810_PGETBL_CTL,
agp_bridge.gatt_bus_addr | I810_PGETBL_ENABLED);
CACHE_FLUSH();
if (agp_bridge.needs_scratch_page == TRUE) {
for (i = 0; i < current_size->num_entries; i++) {
OUTREG32(intel_i810_private.registers,
I810_PTE_BASE + (i * 4),
agp_bridge.scratch_page);
}
}
return 0;
}
static void intel_i810_cleanup(void)
{
OUTREG32(intel_i810_private.registers, I810_PGETBL_CTL, 0);
iounmap((void *) intel_i810_private.registers);
}
static void intel_i810_tlbflush(agp_memory * mem)
{
return;
}
static void intel_i810_agp_enable(u32 mode)
{
return;
}
static int intel_i810_insert_entries(agp_memory * mem, off_t pg_start,
int type)
{
int i, j, num_entries;
void *temp;
temp = agp_bridge.current_size;
num_entries = A_SIZE_FIX(temp)->num_entries;
if ((pg_start + mem->page_count) > num_entries) {
return -EINVAL;
}
for (j = pg_start; j < (pg_start + mem->page_count); j++) {
if (!PGE_EMPTY(agp_bridge.gatt_table[j])) {
return -EBUSY;
}
}
if (type != 0 || mem->type != 0) {
if ((type == AGP_DCACHE_MEMORY) &&
(mem->type == AGP_DCACHE_MEMORY)) {
/* special insert */
CACHE_FLUSH();
for (i = pg_start;
i < (pg_start + mem->page_count); i++) {
OUTREG32(intel_i810_private.registers,
I810_PTE_BASE + (i * 4),
(i * 4096) | I810_PTE_LOCAL |
I810_PTE_VALID);
}
CACHE_FLUSH();
agp_bridge.tlb_flush(mem);
return 0;
}
if((type == AGP_PHYS_MEMORY) &&
(mem->type == AGP_PHYS_MEMORY)) {
goto insert;
}
return -EINVAL;
}
insert:
CACHE_FLUSH();
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
OUTREG32(intel_i810_private.registers,
I810_PTE_BASE + (j * 4), mem->memory[i]);
}
CACHE_FLUSH();
agp_bridge.tlb_flush(mem);
return 0;
}
static int intel_i810_remove_entries(agp_memory * mem, off_t pg_start,
int type)
{
int i;
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
OUTREG32(intel_i810_private.registers,
I810_PTE_BASE + (i * 4),
agp_bridge.scratch_page);
}
CACHE_FLUSH();
agp_bridge.tlb_flush(mem);
return 0;
}
static agp_memory *intel_i810_alloc_by_type(size_t pg_count, int type)
{
agp_memory *new;
if (type == AGP_DCACHE_MEMORY) {
if (pg_count != intel_i810_private.num_dcache_entries) {
return NULL;
}
new = agp_create_memory(1);
if (new == NULL) {
return NULL;
}
new->type = AGP_DCACHE_MEMORY;
new->page_count = pg_count;
new->num_scratch_pages = 0;
vfree(new->memory);
MOD_INC_USE_COUNT;
return new;
}
if(type == AGP_PHYS_MEMORY) {
/* The I810 requires a physical address to program
* it's mouse pointer into hardware. However the
* Xserver still writes to it through the agp
* aperture
*/
if (pg_count != 1) {
return NULL;
}
new = agp_create_memory(1);
if (new == NULL) {
return NULL;
}
MOD_INC_USE_COUNT;
new->memory[0] = agp_alloc_page();
if (new->memory[0] == 0) {
/* Free this structure */
agp_free_memory(new);
return NULL;
}
new->memory[0] =
agp_bridge.mask_memory(
virt_to_phys((void *) new->memory[0]),
type);
new->page_count = 1;
new->num_scratch_pages = 1;
new->type = AGP_PHYS_MEMORY;
new->physical = virt_to_phys((void *) new->memory[0]);
return new;
}
return NULL;
}
static void intel_i810_free_by_type(agp_memory * curr)
{
agp_free_key(curr->key);
if(curr->type == AGP_PHYS_MEMORY) {
agp_destroy_page((unsigned long)
phys_to_virt(curr->memory[0]));
vfree(curr->memory);
}
kfree(curr);
MOD_DEC_USE_COUNT;
}
static unsigned long intel_i810_mask_memory(unsigned long addr, int type)
{
/* Type checking must be done elsewhere */
return addr | agp_bridge.masks[type].mask;
}
static int __init intel_i810_setup(struct pci_dev *i810_dev)
{
intel_i810_private.i810_dev = i810_dev;
agp_bridge.masks = intel_i810_masks;
agp_bridge.num_of_masks = 2;
agp_bridge.aperture_sizes = (void *) intel_i810_sizes;
agp_bridge.size_type = FIXED_APER_SIZE;
agp_bridge.num_aperture_sizes = 2;
agp_bridge.dev_private_data = (void *) &intel_i810_private;
agp_bridge.needs_scratch_page = TRUE;
agp_bridge.configure = intel_i810_configure;
agp_bridge.fetch_size = intel_i810_fetch_size;
agp_bridge.cleanup = intel_i810_cleanup;
agp_bridge.tlb_flush = intel_i810_tlbflush;
agp_bridge.mask_memory = intel_i810_mask_memory;
agp_bridge.agp_enable = intel_i810_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = intel_i810_insert_entries;
agp_bridge.remove_memory = intel_i810_remove_entries;
agp_bridge.alloc_by_type = intel_i810_alloc_by_type;
agp_bridge.free_by_type = intel_i810_free_by_type;
return 0;
}
#endif /* CONFIG_AGP_I810 */
#ifdef CONFIG_AGP_INTEL
static int intel_fetch_size(void)
{
int i;
u16 temp;
aper_size_info_16 *values;
pci_read_config_word(agp_bridge.dev, INTEL_APSIZE, &temp);
values = A_SIZE_16(agp_bridge.aperture_sizes);
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
if (temp == values[i].size_value) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + i);
agp_bridge.aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
static void intel_tlbflush(agp_memory * mem)
{
pci_write_config_dword(agp_bridge.dev, INTEL_AGPCTRL, 0x2200);
pci_write_config_dword(agp_bridge.dev, INTEL_AGPCTRL, 0x2280);
}
static void intel_cleanup(void)
{
u16 temp;
aper_size_info_16 *previous_size;
previous_size = A_SIZE_16(agp_bridge.previous_size);
pci_read_config_word(agp_bridge.dev, INTEL_NBXCFG, &temp);
pci_write_config_word(agp_bridge.dev, INTEL_NBXCFG, temp & ~(1 << 9));
pci_write_config_word(agp_bridge.dev, INTEL_APSIZE,
previous_size->size_value);
}
static int intel_configure(void)
{
u32 temp;
u16 temp2;
aper_size_info_16 *current_size;
current_size = A_SIZE_16(agp_bridge.current_size);
/* aperture size */
pci_write_config_word(agp_bridge.dev, INTEL_APSIZE,
current_size->size_value);
/* address to map to */
pci_read_config_dword(agp_bridge.dev, INTEL_APBASE, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
/* attbase - aperture base */
pci_write_config_dword(agp_bridge.dev, INTEL_ATTBASE,
agp_bridge.gatt_bus_addr);
/* agpctrl */
pci_write_config_dword(agp_bridge.dev, INTEL_AGPCTRL, 0x2280);
/* paccfg/nbxcfg */
pci_read_config_word(agp_bridge.dev, INTEL_NBXCFG, &temp2);
pci_write_config_word(agp_bridge.dev, INTEL_NBXCFG,
(temp2 & ~(1 << 10)) | (1 << 9));
/* clear any possible error conditions */
pci_write_config_byte(agp_bridge.dev, INTEL_ERRSTS + 1, 7);
return 0;
}
static int intel_840_configure(void)
{
u32 temp;
u16 temp2;
aper_size_info_16 *current_size;
current_size = A_SIZE_16(agp_bridge.current_size);
/* aperture size */
pci_write_config_byte(agp_bridge.dev, INTEL_APSIZE,
(char)current_size->size_value);
/* address to map to */
pci_read_config_dword(agp_bridge.dev, INTEL_APBASE, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
/* attbase - aperture base */
pci_write_config_dword(agp_bridge.dev, INTEL_ATTBASE,
agp_bridge.gatt_bus_addr);
/* agpctrl */
pci_write_config_dword(agp_bridge.dev, INTEL_AGPCTRL, 0x0000);
/* mcgcfg */
pci_read_config_word(agp_bridge.dev, INTEL_I840_MCHCFG, &temp2);
pci_write_config_word(agp_bridge.dev, INTEL_I840_MCHCFG,
temp2 | (1 << 9));
/* clear any possible error conditions */
pci_write_config_word(agp_bridge.dev, INTEL_I840_ERRSTS, 0xc000);
return 0;
}
static unsigned long intel_mask_memory(unsigned long addr, int type)
{
/* Memory type is ignored */
return addr | agp_bridge.masks[0].mask;
}
/* Setup function */
static gatt_mask intel_generic_masks[] =
{
{0x00000017, 0}
};
static aper_size_info_16 intel_generic_sizes[7] =
{
{256, 65536, 6, 0},
{128, 32768, 5, 32},
{64, 16384, 4, 48},
{32, 8192, 3, 56},
{16, 4096, 2, 60},
{8, 2048, 1, 62},
{4, 1024, 0, 63}
};
static int __init intel_generic_setup (struct pci_dev *pdev)
{
agp_bridge.masks = intel_generic_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) intel_generic_sizes;
agp_bridge.size_type = U16_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = intel_configure;
agp_bridge.fetch_size = intel_fetch_size;
agp_bridge.cleanup = intel_cleanup;
agp_bridge.tlb_flush = intel_tlbflush;
agp_bridge.mask_memory = intel_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = agp_generic_insert_memory;
agp_bridge.remove_memory = agp_generic_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
(void) pdev; /* unused */
}
static int __init intel_840_setup (struct pci_dev *pdev)
{
agp_bridge.masks = intel_generic_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) intel_generic_sizes;
agp_bridge.size_type = U16_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = intel_840_configure;
agp_bridge.fetch_size = intel_fetch_size;
agp_bridge.cleanup = intel_cleanup;
agp_bridge.tlb_flush = intel_tlbflush;
agp_bridge.mask_memory = intel_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = agp_generic_insert_memory;
agp_bridge.remove_memory = agp_generic_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
(void) pdev; /* unused */
}
#endif /* CONFIG_AGP_INTEL */
#ifdef CONFIG_AGP_VIA
static int via_fetch_size(void)
{
int i;
u8 temp;
aper_size_info_8 *values;
values = A_SIZE_8(agp_bridge.aperture_sizes);
pci_read_config_byte(agp_bridge.dev, VIA_APSIZE, &temp);
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
if (temp == values[i].size_value) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + i);
agp_bridge.aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
static int via_configure(void)
{
u32 temp;
aper_size_info_8 *current_size;
current_size = A_SIZE_8(agp_bridge.current_size);
/* aperture size */
pci_write_config_byte(agp_bridge.dev, VIA_APSIZE,
current_size->size_value);
/* address to map too */
pci_read_config_dword(agp_bridge.dev, VIA_APBASE, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
/* GART control register */
pci_write_config_dword(agp_bridge.dev, VIA_GARTCTRL, 0x0000000f);
/* attbase - aperture GATT base */
pci_write_config_dword(agp_bridge.dev, VIA_ATTBASE,
(agp_bridge.gatt_bus_addr & 0xfffff000) | 3);
return 0;
}
static void via_cleanup(void)
{
aper_size_info_8 *previous_size;
previous_size = A_SIZE_8(agp_bridge.previous_size);
pci_write_config_dword(agp_bridge.dev, VIA_ATTBASE, 0);
pci_write_config_byte(agp_bridge.dev, VIA_APSIZE,
previous_size->size_value);
}
static void via_tlbflush(agp_memory * mem)
{
pci_write_config_dword(agp_bridge.dev, VIA_GARTCTRL, 0x0000008f);
pci_write_config_dword(agp_bridge.dev, VIA_GARTCTRL, 0x0000000f);
}
static unsigned long via_mask_memory(unsigned long addr, int type)
{
/* Memory type is ignored */
return addr | agp_bridge.masks[0].mask;
}
static aper_size_info_8 via_generic_sizes[7] =
{
{256, 65536, 6, 0},
{128, 32768, 5, 128},
{64, 16384, 4, 192},
{32, 8192, 3, 224},
{16, 4096, 2, 240},
{8, 2048, 1, 248},
{4, 1024, 0, 252}
};
static gatt_mask via_generic_masks[] =
{
{0x00000000, 0}
};
static int __init via_generic_setup (struct pci_dev *pdev)
{
agp_bridge.masks = via_generic_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) via_generic_sizes;
agp_bridge.size_type = U8_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = via_configure;
agp_bridge.fetch_size = via_fetch_size;
agp_bridge.cleanup = via_cleanup;
agp_bridge.tlb_flush = via_tlbflush;
agp_bridge.mask_memory = via_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = agp_generic_insert_memory;
agp_bridge.remove_memory = agp_generic_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
(void) pdev; /* unused */
}
#endif /* CONFIG_AGP_VIA */
#ifdef CONFIG_AGP_SIS
static int sis_fetch_size(void)
{
u8 temp_size;
int i;
aper_size_info_8 *values;
pci_read_config_byte(agp_bridge.dev, SIS_APSIZE, &temp_size);
values = A_SIZE_8(agp_bridge.aperture_sizes);
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
if ((temp_size == values[i].size_value) ||
((temp_size & ~(0x03)) ==
(values[i].size_value & ~(0x03)))) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + i);
agp_bridge.aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
static void sis_tlbflush(agp_memory * mem)
{
pci_write_config_byte(agp_bridge.dev, SIS_TLBFLUSH, 0x02);
}
static int sis_configure(void)
{
u32 temp;
aper_size_info_8 *current_size;
current_size = A_SIZE_8(agp_bridge.current_size);
pci_write_config_byte(agp_bridge.dev, SIS_TLBCNTRL, 0x05);
pci_read_config_dword(agp_bridge.dev, SIS_APBASE, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
pci_write_config_dword(agp_bridge.dev, SIS_ATTBASE,
agp_bridge.gatt_bus_addr);
pci_write_config_byte(agp_bridge.dev, SIS_APSIZE,
current_size->size_value);
return 0;
}
static void sis_cleanup(void)
{
aper_size_info_8 *previous_size;
previous_size = A_SIZE_8(agp_bridge.previous_size);
pci_write_config_byte(agp_bridge.dev, SIS_APSIZE,
(previous_size->size_value & ~(0x03)));
}
static unsigned long sis_mask_memory(unsigned long addr, int type)
{
/* Memory type is ignored */
return addr | agp_bridge.masks[0].mask;
}
static aper_size_info_8 sis_generic_sizes[7] =
{
{256, 65536, 6, 99},
{128, 32768, 5, 83},
{64, 16384, 4, 67},
{32, 8192, 3, 51},
{16, 4096, 2, 35},
{8, 2048, 1, 19},
{4, 1024, 0, 3}
};
static gatt_mask sis_generic_masks[] =
{
{0x00000000, 0}
};
static int __init sis_generic_setup (struct pci_dev *pdev)
{
agp_bridge.masks = sis_generic_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) sis_generic_sizes;
agp_bridge.size_type = U8_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = sis_configure;
agp_bridge.fetch_size = sis_fetch_size;
agp_bridge.cleanup = sis_cleanup;
agp_bridge.tlb_flush = sis_tlbflush;
agp_bridge.mask_memory = sis_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = agp_generic_insert_memory;
agp_bridge.remove_memory = agp_generic_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
}
#endif /* CONFIG_AGP_SIS */
#ifdef CONFIG_AGP_AMD
typedef struct _amd_page_map {
unsigned long *real;
unsigned long *remapped;
} amd_page_map;
static struct _amd_irongate_private {
volatile u8 *registers;
amd_page_map **gatt_pages;
int num_tables;
} amd_irongate_private;
static int amd_create_page_map(amd_page_map *page_map)
{
int i;
page_map->real = (unsigned long *) __get_free_page(GFP_KERNEL);
if (page_map->real == NULL) {
return -ENOMEM;
}
set_bit(PG_reserved, &virt_to_page(page_map->real)->flags);
CACHE_FLUSH();
page_map->remapped = ioremap_nocache(virt_to_phys(page_map->real),
PAGE_SIZE);
if (page_map->remapped == NULL) {
clear_bit(PG_reserved,
&virt_to_page(page_map->real)->flags);
free_page((unsigned long) page_map->real);
page_map->real = NULL;
return -ENOMEM;
}
CACHE_FLUSH();
for(i = 0; i < PAGE_SIZE / sizeof(unsigned long); i++) {
page_map->remapped[i] = agp_bridge.scratch_page;
}
return 0;
}
static void amd_free_page_map(amd_page_map *page_map)
{
iounmap(page_map->remapped);
clear_bit(PG_reserved,
&virt_to_page(page_map->real)->flags);
free_page((unsigned long) page_map->real);
}
static void amd_free_gatt_pages(void)
{
int i;
amd_page_map **tables;
amd_page_map *entry;
tables = amd_irongate_private.gatt_pages;
for(i = 0; i < amd_irongate_private.num_tables; i++) {
entry = tables[i];
if (entry != NULL) {
if (entry->real != NULL) {
amd_free_page_map(entry);
}
kfree(entry);
}
}
kfree(tables);
}
static int amd_create_gatt_pages(int nr_tables)
{
amd_page_map **tables;
amd_page_map *entry;
int retval = 0;
int i;
tables = kmalloc((nr_tables + 1) * sizeof(amd_page_map *),
GFP_KERNEL);
if (tables == NULL) {
return -ENOMEM;
}
memset(tables, 0, sizeof(amd_page_map *) * (nr_tables + 1));
for (i = 0; i < nr_tables; i++) {
entry = kmalloc(sizeof(amd_page_map), GFP_KERNEL);
if (entry == NULL) {
retval = -ENOMEM;
break;
}
memset(entry, 0, sizeof(amd_page_map));
tables[i] = entry;
retval = amd_create_page_map(entry);
if (retval != 0) break;
}
amd_irongate_private.num_tables = nr_tables;
amd_irongate_private.gatt_pages = tables;
if (retval != 0) amd_free_gatt_pages();
return retval;
}
/* Since we don't need contigious memory we just try
* to get the gatt table once
*/
#define GET_PAGE_DIR_OFF(addr) (addr >> 22)
#define GET_PAGE_DIR_IDX(addr) (GET_PAGE_DIR_OFF(addr) - \
GET_PAGE_DIR_OFF(agp_bridge.gart_bus_addr))
#define GET_GATT_OFF(addr) ((addr & 0x003ff000) >> 12)
#define GET_GATT(addr) (amd_irongate_private.gatt_pages[\
GET_PAGE_DIR_IDX(addr)]->remapped)
static int amd_create_gatt_table(void)
{
aper_size_info_lvl2 *value;
amd_page_map page_dir;
unsigned long addr;
int retval;
u32 temp;
int i;
value = A_SIZE_LVL2(agp_bridge.current_size);
retval = amd_create_page_map(&page_dir);
if (retval != 0) {
return retval;
}
retval = amd_create_gatt_pages(value->num_entries / 1024);
if (retval != 0) {
amd_free_page_map(&page_dir);
return retval;
}
agp_bridge.gatt_table_real = page_dir.real;
agp_bridge.gatt_table = page_dir.remapped;
agp_bridge.gatt_bus_addr = virt_to_bus(page_dir.real);
/* Get the address for the gart region.
* This is a bus address even on the alpha, b/c its
* used to program the agp master not the cpu
*/
pci_read_config_dword(agp_bridge.dev, AMD_APBASE, &temp);
addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
agp_bridge.gart_bus_addr = addr;
/* Calculate the agp offset */
for(i = 0; i < value->num_entries / 1024; i++, addr += 0x00400000) {
page_dir.remapped[GET_PAGE_DIR_OFF(addr)] =
virt_to_bus(amd_irongate_private.gatt_pages[i]->real);
page_dir.remapped[GET_PAGE_DIR_OFF(addr)] |= 0x00000001;
}
return 0;
}
static int amd_free_gatt_table(void)
{
amd_page_map page_dir;
page_dir.real = agp_bridge.gatt_table_real;
page_dir.remapped = agp_bridge.gatt_table;
amd_free_gatt_pages();
amd_free_page_map(&page_dir);
return 0;
}
static int amd_irongate_fetch_size(void)
{
int i;
u32 temp;
aper_size_info_lvl2 *values;
pci_read_config_dword(agp_bridge.dev, AMD_APSIZE, &temp);
temp = (temp & 0x0000000e);
values = A_SIZE_LVL2(agp_bridge.aperture_sizes);
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
if (temp == values[i].size_value) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + i);
agp_bridge.aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
static int amd_irongate_configure(void)
{
aper_size_info_lvl2 *current_size;
u32 temp;
u16 enable_reg;
current_size = A_SIZE_LVL2(agp_bridge.current_size);
/* Get the memory mapped registers */
pci_read_config_dword(agp_bridge.dev, AMD_MMBASE, &temp);
temp = (temp & PCI_BASE_ADDRESS_MEM_MASK);
amd_irongate_private.registers = (volatile u8 *) ioremap(temp, 4096);
/* Write out the address of the gatt table */
OUTREG32(amd_irongate_private.registers, AMD_ATTBASE,
agp_bridge.gatt_bus_addr);
/* Write the Sync register */
pci_write_config_byte(agp_bridge.dev, AMD_MODECNTL, 0x80);
/* Set indexing mode */
pci_write_config_byte(agp_bridge.dev, AMD_MODECNTL2, 0x00);
/* Write the enable register */
enable_reg = INREG16(amd_irongate_private.registers, AMD_GARTENABLE);
enable_reg = (enable_reg | 0x0004);
OUTREG16(amd_irongate_private.registers, AMD_GARTENABLE, enable_reg);
/* Write out the size register */
pci_read_config_dword(agp_bridge.dev, AMD_APSIZE, &temp);
temp = (((temp & ~(0x0000000e)) | current_size->size_value)
| 0x00000001);
pci_write_config_dword(agp_bridge.dev, AMD_APSIZE, temp);
/* Flush the tlb */
OUTREG32(amd_irongate_private.registers, AMD_TLBFLUSH, 0x00000001);
return 0;
}
static void amd_irongate_cleanup(void)
{
aper_size_info_lvl2 *previous_size;
u32 temp;
u16 enable_reg;
previous_size = A_SIZE_LVL2(agp_bridge.previous_size);
enable_reg = INREG16(amd_irongate_private.registers, AMD_GARTENABLE);
enable_reg = (enable_reg & ~(0x0004));
OUTREG16(amd_irongate_private.registers, AMD_GARTENABLE, enable_reg);
/* Write back the previous size and disable gart translation */
pci_read_config_dword(agp_bridge.dev, AMD_APSIZE, &temp);
temp = ((temp & ~(0x0000000f)) | previous_size->size_value);
pci_write_config_dword(agp_bridge.dev, AMD_APSIZE, temp);
iounmap((void *) amd_irongate_private.registers);
}
/*
* This routine could be implemented by taking the addresses
* written to the GATT, and flushing them individually. However
* currently it just flushes the whole table. Which is probably
* more efficent, since agp_memory blocks can be a large number of
* entries.
*/
static void amd_irongate_tlbflush(agp_memory * temp)
{
OUTREG32(amd_irongate_private.registers, AMD_TLBFLUSH, 0x00000001);
}
static unsigned long amd_irongate_mask_memory(unsigned long addr, int type)
{
/* Only type 0 is supported by the irongate */
return addr | agp_bridge.masks[0].mask;
}
static int amd_insert_memory(agp_memory * mem,
off_t pg_start, int type)
{
int i, j, num_entries;
unsigned long *cur_gatt;
unsigned long addr;
num_entries = A_SIZE_LVL2(agp_bridge.current_size)->num_entries;
if (type != 0 || mem->type != 0) {
return -EINVAL;
}
if ((pg_start + mem->page_count) > num_entries) {
return -EINVAL;
}
j = pg_start;
while (j < (pg_start + mem->page_count)) {
addr = (j * PAGE_SIZE) + agp_bridge.gart_bus_addr;
cur_gatt = GET_GATT(addr);
if (!PGE_EMPTY(cur_gatt[GET_GATT_OFF(addr)])) {
return -EBUSY;
}
j++;
}
if (mem->is_flushed == FALSE) {
CACHE_FLUSH();
mem->is_flushed = TRUE;
}
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
addr = (j * PAGE_SIZE) + agp_bridge.gart_bus_addr;
cur_gatt = GET_GATT(addr);
cur_gatt[GET_GATT_OFF(addr)] = mem->memory[i];
}
agp_bridge.tlb_flush(mem);
return 0;
}
static int amd_remove_memory(agp_memory * mem, off_t pg_start,
int type)
{
int i;
unsigned long *cur_gatt;
unsigned long addr;
if (type != 0 || mem->type != 0) {
return -EINVAL;
}
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
addr = (i * PAGE_SIZE) + agp_bridge.gart_bus_addr;
cur_gatt = GET_GATT(addr);
cur_gatt[GET_GATT_OFF(addr)] =
(unsigned long) agp_bridge.scratch_page;
}
agp_bridge.tlb_flush(mem);
return 0;
}
static aper_size_info_lvl2 amd_irongate_sizes[7] =
{
{2048, 524288, 0x0000000c},
{1024, 262144, 0x0000000a},
{512, 131072, 0x00000008},
{256, 65536, 0x00000006},
{128, 32768, 0x00000004},
{64, 16384, 0x00000002},
{32, 8192, 0x00000000}
};
static gatt_mask amd_irongate_masks[] =
{
{0x00000001, 0}
};
static int __init amd_irongate_setup (struct pci_dev *pdev)
{
agp_bridge.masks = amd_irongate_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) amd_irongate_sizes;
agp_bridge.size_type = LVL2_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = (void *) &amd_irongate_private;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = amd_irongate_configure;
agp_bridge.fetch_size = amd_irongate_fetch_size;
agp_bridge.cleanup = amd_irongate_cleanup;
agp_bridge.tlb_flush = amd_irongate_tlbflush;
agp_bridge.mask_memory = amd_irongate_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = amd_create_gatt_table;
agp_bridge.free_gatt_table = amd_free_gatt_table;
agp_bridge.insert_memory = amd_insert_memory;
agp_bridge.remove_memory = amd_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
(void) pdev; /* unused */
}
#endif /* CONFIG_AGP_AMD */
#ifdef CONFIG_AGP_ALI
static int ali_fetch_size(void)
{
int i;
u32 temp;
aper_size_info_32 *values;
pci_read_config_dword(agp_bridge.dev, ALI_ATTBASE, &temp);
temp &= ~(0xfffffff0);
values = A_SIZE_32(agp_bridge.aperture_sizes);
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
if (temp == values[i].size_value) {
agp_bridge.previous_size =
agp_bridge.current_size = (void *) (values + i);
agp_bridge.aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
static void ali_tlbflush(agp_memory * mem)
{
u32 temp;
pci_read_config_dword(agp_bridge.dev, ALI_TLBCTRL, &temp);
pci_write_config_dword(agp_bridge.dev, ALI_TLBCTRL,
((temp & 0xffffff00) | 0x00000090));
pci_write_config_dword(agp_bridge.dev, ALI_TLBCTRL,
((temp & 0xffffff00) | 0x00000010));
}
static void ali_cleanup(void)
{
aper_size_info_32 *previous_size;
u32 temp;
previous_size = A_SIZE_32(agp_bridge.previous_size);
pci_read_config_dword(agp_bridge.dev, ALI_TLBCTRL, &temp);
pci_write_config_dword(agp_bridge.dev, ALI_TLBCTRL,
((temp & 0xffffff00) | 0x00000090));
pci_write_config_dword(agp_bridge.dev, ALI_ATTBASE,
previous_size->size_value);
}
static int ali_configure(void)
{
u32 temp;
aper_size_info_32 *current_size;
current_size = A_SIZE_32(agp_bridge.current_size);
/* aperture size and gatt addr */
pci_write_config_dword(agp_bridge.dev, ALI_ATTBASE,
agp_bridge.gatt_bus_addr | current_size->size_value);
/* tlb control */
pci_read_config_dword(agp_bridge.dev, ALI_TLBCTRL, &temp);
pci_write_config_dword(agp_bridge.dev, ALI_TLBCTRL,
((temp & 0xffffff00) | 0x00000010));
/* address to map to */
pci_read_config_dword(agp_bridge.dev, ALI_APBASE, &temp);
agp_bridge.gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
return 0;
}
static unsigned long ali_mask_memory(unsigned long addr, int type)
{
/* Memory type is ignored */
return addr | agp_bridge.masks[0].mask;
}
/* Setup function */
static gatt_mask ali_generic_masks[] =
{
{0x00000000, 0}
};
static aper_size_info_32 ali_generic_sizes[7] =
{
{256, 65536, 6, 10},
{128, 32768, 5, 9},
{64, 16384, 4, 8},
{32, 8192, 3, 7},
{16, 4096, 2, 6},
{8, 2048, 1, 4},
{4, 1024, 0, 3}
};
static int __init ali_generic_setup (struct pci_dev *pdev)
{
agp_bridge.masks = ali_generic_masks;
agp_bridge.num_of_masks = 1;
agp_bridge.aperture_sizes = (void *) ali_generic_sizes;
agp_bridge.size_type = U32_APER_SIZE;
agp_bridge.num_aperture_sizes = 7;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = ali_configure;
agp_bridge.fetch_size = ali_fetch_size;
agp_bridge.cleanup = ali_cleanup;
agp_bridge.tlb_flush = ali_tlbflush;
agp_bridge.mask_memory = ali_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = agp_generic_create_gatt_table;
agp_bridge.free_gatt_table = agp_generic_free_gatt_table;
agp_bridge.insert_memory = agp_generic_insert_memory;
agp_bridge.remove_memory = agp_generic_remove_memory;
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
return 0;
(void) pdev; /* unused */
}
#endif /* CONFIG_AGP_ALI */
/* per-chipset initialization data.
* note -- all chipsets for a single vendor MUST be grouped together
*/
static struct {
unsigned short device_id; /* first, to make table easier to read */
unsigned short vendor_id;
enum chipset_type chipset;
const char *vendor_name;
const char *chipset_name;
int (*chipset_setup) (struct pci_dev *pdev);
} agp_bridge_info[] __initdata = {
#ifdef CONFIG_AGP_ALI
{ PCI_DEVICE_ID_AL_M1541_0,
PCI_VENDOR_ID_AL,
ALI_M1541,
"Ali",
"M1541",
ali_generic_setup },
{ 0,
PCI_VENDOR_ID_AL,
ALI_GENERIC,
"Ali",
"Generic",
ali_generic_setup },
#endif /* CONFIG_AGP_ALI */
#ifdef CONFIG_AGP_AMD
{ PCI_DEVICE_ID_AMD_IRONGATE_0,
PCI_VENDOR_ID_AMD,
AMD_IRONGATE,
"AMD",
"Irongate",
amd_irongate_setup },
{ 0,
PCI_VENDOR_ID_AMD,
AMD_GENERIC,
"AMD",
"Generic",
amd_irongate_setup },
#endif /* CONFIG_AGP_AMD */
#ifdef CONFIG_AGP_INTEL
{ PCI_DEVICE_ID_INTEL_82443LX_0,
PCI_VENDOR_ID_INTEL,
INTEL_LX,
"Intel",
"440LX",
intel_generic_setup },
{ PCI_DEVICE_ID_INTEL_82443BX_0,
PCI_VENDOR_ID_INTEL,
INTEL_BX,
"Intel",
"440BX",
intel_generic_setup },
{ PCI_DEVICE_ID_INTEL_82443GX_0,
PCI_VENDOR_ID_INTEL,
INTEL_GX,
"Intel",
"440GX",
intel_generic_setup },
/* could we add support for PCI_DEVICE_ID_INTEL_815_1 too ? */
{ PCI_DEVICE_ID_INTEL_815_0,
PCI_VENDOR_ID_INTEL,
INTEL_I815,
"Intel",
"i815",
intel_generic_setup },
{ PCI_DEVICE_ID_INTEL_840_0,
PCI_VENDOR_ID_INTEL,
INTEL_I840,
"Intel",
"i840",
intel_840_setup },
{ 0,
PCI_VENDOR_ID_INTEL,
INTEL_GENERIC,
"Intel",
"Generic",
intel_generic_setup },
#endif /* CONFIG_AGP_INTEL */
#ifdef CONFIG_AGP_SIS
{ PCI_DEVICE_ID_SI_630,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"630",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_540,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"540",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_620,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"620",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_530,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"530",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_630,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"Generic",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_540,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"Generic",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_620,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"Generic",
sis_generic_setup },
{ PCI_DEVICE_ID_SI_530,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"Generic",
sis_generic_setup },
{ 0,
PCI_VENDOR_ID_SI,
SIS_GENERIC,
"SiS",
"Generic",
sis_generic_setup },
#endif /* CONFIG_AGP_SIS */
#ifdef CONFIG_AGP_VIA
{ PCI_DEVICE_ID_VIA_8501_0,
PCI_VENDOR_ID_VIA,
VIA_MVP4,
"Via",
"MVP4",
via_generic_setup },
{ PCI_DEVICE_ID_VIA_82C597_0,
PCI_VENDOR_ID_VIA,
VIA_VP3,
"Via",
"VP3",
via_generic_setup },
{ PCI_DEVICE_ID_VIA_82C598_0,
PCI_VENDOR_ID_VIA,
VIA_MVP3,
"Via",
"MVP3",
via_generic_setup },
{ PCI_DEVICE_ID_VIA_82C691_0,
PCI_VENDOR_ID_VIA,
VIA_APOLLO_PRO,
"Via",
"Apollo Pro",
via_generic_setup },
{ PCI_DEVICE_ID_VIA_8371_0,
PCI_VENDOR_ID_VIA,
VIA_APOLLO_KX133,
"Via",
"Apollo Pro KX133",
via_generic_setup },
{ PCI_DEVICE_ID_VIA_8363_0,
PCI_VENDOR_ID_VIA,
VIA_APOLLO_KT133,
"Via",
"Apollo Pro KT133",
via_generic_setup },
{ 0,
PCI_VENDOR_ID_VIA,
VIA_GENERIC,
"Via",
"Generic",
via_generic_setup },
#endif /* CONFIG_AGP_VIA */
{ 0, }, /* dummy final entry, always present */
};
/* scan table above for supported devices */
static int __init agp_lookup_host_bridge (struct pci_dev *pdev)
{
int i;
for (i = 0; i < ARRAY_SIZE (agp_bridge_info); i++)
if (pdev->vendor == agp_bridge_info[i].vendor_id)
break;
if (i >= ARRAY_SIZE (agp_bridge_info)) {
printk (KERN_DEBUG PFX "unsupported bridge\n");
return -ENODEV;
}
while ((i < ARRAY_SIZE (agp_bridge_info)) &&
(agp_bridge_info[i].vendor_id == pdev->vendor)) {
if (pdev->device == agp_bridge_info[i].device_id) {
printk (KERN_INFO PFX "Detected %s %s chipset\n",
agp_bridge_info[i].vendor_name,
agp_bridge_info[i].chipset_name);
agp_bridge.type = agp_bridge_info[i].chipset;
return agp_bridge_info[i].chipset_setup (pdev);
}
i++;
}
i--; /* point to vendor generic entry (device_id == 0) */
/* try init anyway, if user requests it AND
* there is a 'generic' bridge entry for this vendor */
if (agp_try_unsupported && agp_bridge_info[i].device_id == 0) {
printk(KERN_WARNING PFX "Trying generic %s routines"
" for device id: %04x\n",
agp_bridge_info[i].vendor_name, pdev->device);
agp_bridge.type = agp_bridge_info[i].chipset;
return agp_bridge_info[i].chipset_setup (pdev);
}
printk(KERN_ERR PFX "Unsupported %s chipset (device id: %04x),"
" you might want to try agp_try_unsupported=1.\n",
agp_bridge_info[i].vendor_name, pdev->device);
return -ENODEV;
}
/* Supported Device Scanning routine */
static int __init agp_find_supported_device(void)
{
struct pci_dev *dev = NULL;
u8 cap_ptr = 0x00;
u32 cap_id, scratch;
if ((dev = pci_find_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) == NULL)
return -ENODEV;
agp_bridge.dev = dev;
/* Need to test for I810 here */
#ifdef CONFIG_AGP_I810
if (dev->vendor == PCI_VENDOR_ID_INTEL) {
struct pci_dev *i810_dev;
switch (dev->device) {
case PCI_DEVICE_ID_INTEL_810_0:
i810_dev = pci_find_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_810_1,
NULL);
if (i810_dev == NULL) {
printk(KERN_ERR PFX "Detected an Intel i810,"
" but could not find the secondary"
" device.\n");
return -ENODEV;
}
printk(KERN_INFO PFX "Detected an Intel "
"i810 Chipset.\n");
agp_bridge.type = INTEL_I810;
return intel_i810_setup (i810_dev);
case PCI_DEVICE_ID_INTEL_810_DC100_0:
i810_dev = pci_find_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_810_DC100_1,
NULL);
if (i810_dev == NULL) {
printk(KERN_ERR PFX "Detected an Intel i810 "
"DC100, but could not find the "
"secondary device.\n");
return -ENODEV;
}
printk(KERN_INFO PFX "Detected an Intel i810 "
"DC100 Chipset.\n");
agp_bridge.type = INTEL_I810;
return intel_i810_setup(i810_dev);
case PCI_DEVICE_ID_INTEL_810_E_0:
i810_dev = pci_find_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_810_E_1,
NULL);
if (i810_dev == NULL) {
printk(KERN_ERR PFX "Detected an Intel i810 E"
", but could not find the secondary "
"device.\n");
return -ENODEV;
}
printk(KERN_INFO PFX "Detected an Intel i810 E "
"Chipset.\n");
agp_bridge.type = INTEL_I810;
return intel_i810_setup(i810_dev);
case PCI_DEVICE_ID_INTEL_815_0:
/* The i815 can operate either as an i810 style
* integrated device, or as an AGP4X motherboard.
*
* This only addresses the first mode:
*/
i810_dev = pci_find_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_815_1,
NULL);
if (i810_dev == NULL) {
printk(KERN_ERR PFX "agpgart: Detected an "
"Intel i815, but could not find the"
" secondary device.\n");
agp_bridge.type = NOT_SUPPORTED;
return -ENODEV;
}
printk(KERN_INFO PFX "agpgart: Detected an Intel i815 "
"Chipset.\n");
agp_bridge.type = INTEL_I810;
return intel_i810_setup(i810_dev);
default:
break;
}
}
#endif /* CONFIG_AGP_I810 */
/* find capndx */
pci_read_config_dword(dev, 0x04, &scratch);
if (!(scratch & 0x00100000))
return -ENODEV;
pci_read_config_byte(dev, 0x34, &cap_ptr);
if (cap_ptr != 0x00) {
do {
pci_read_config_dword(dev, cap_ptr, &cap_id);
if ((cap_id & 0xff) != 0x02)
cap_ptr = (cap_id >> 8) & 0xff;
}
while (((cap_id & 0xff) != 0x02) && (cap_ptr != 0x00));
}
if (cap_ptr == 0x00)
return -ENODEV;
agp_bridge.capndx = cap_ptr;
/* Fill in the mode register */
pci_read_config_dword(agp_bridge.dev,
agp_bridge.capndx + 4,
&agp_bridge.mode);
/* probe for known chipsets */
return agp_lookup_host_bridge (dev);
}
struct agp_max_table {
int mem;
int agp;
};
static struct agp_max_table maxes_table[9] __initdata =
{
{0, 0},
{32, 4},
{64, 28},
{128, 96},
{256, 204},
{512, 440},
{1024, 942},
{2048, 1920},
{4096, 3932}
};
static int __init agp_find_max (void)
{
long memory, index, result;
memory = virt_to_phys(high_memory) >> 20;
index = 1;
while ((memory > maxes_table[index].mem) &&
(index < 8)) {
index++;
}
result = maxes_table[index - 1].agp +
( (memory - maxes_table[index - 1].mem) *
(maxes_table[index].agp - maxes_table[index - 1].agp)) /
(maxes_table[index].mem - maxes_table[index - 1].mem);
printk(KERN_INFO PFX "Maximum main memory to use "
"for agp memory: %ldM\n", result);
result = result << (20 - PAGE_SHIFT);
return result;
}
#define AGPGART_VERSION_MAJOR 0
#define AGPGART_VERSION_MINOR 99
static agp_version agp_current_version =
{
AGPGART_VERSION_MAJOR,
AGPGART_VERSION_MINOR
};
static int __init agp_backend_initialize(void)
{
int size_value, rc, got_gatt=0, got_keylist=0;
memset(&agp_bridge, 0, sizeof(struct agp_bridge_data));
agp_bridge.type = NOT_SUPPORTED;
agp_bridge.max_memory_agp = agp_find_max();
agp_bridge.version = &agp_current_version;
rc = agp_find_supported_device();
if (rc) {
/* not KERN_ERR because error msg should have already printed */
printk(KERN_DEBUG PFX "no supported devices found.\n");
return rc;
}
if (agp_bridge.needs_scratch_page == TRUE) {
agp_bridge.scratch_page = agp_alloc_page();
if (agp_bridge.scratch_page == 0) {
printk(KERN_ERR PFX "unable to get memory for "
"scratch page.\n");
return -ENOMEM;
}
agp_bridge.scratch_page =
virt_to_phys((void *) agp_bridge.scratch_page);
agp_bridge.scratch_page =
agp_bridge.mask_memory(agp_bridge.scratch_page, 0);
}
size_value = agp_bridge.fetch_size();
if (size_value == 0) {
printk(KERN_ERR PFX "unable to detrimine aperture size.\n");
rc = -EINVAL;
goto err_out;
}
if (agp_bridge.create_gatt_table()) {
printk(KERN_ERR PFX "unable to get memory for graphics "
"translation table.\n");
rc = -ENOMEM;
goto err_out;
}
got_gatt = 1;
agp_bridge.key_list = vmalloc(PAGE_SIZE * 4);
if (agp_bridge.key_list == NULL) {
printk(KERN_ERR PFX "error allocating memory for key lists.\n");
rc = -ENOMEM;
goto err_out;
}
got_keylist = 1;
/* FIXME vmalloc'd memory not guaranteed contiguous */
memset(agp_bridge.key_list, 0, PAGE_SIZE * 4);
if (agp_bridge.configure()) {
printk(KERN_ERR PFX "error configuring host chipset.\n");
rc = -EINVAL;
goto err_out;
}
printk(KERN_INFO PFX "AGP aperture is %dM @ 0x%lx\n",
size_value, agp_bridge.gart_bus_addr);
return 0;
err_out:
if (agp_bridge.needs_scratch_page == TRUE) {
agp_bridge.scratch_page &= ~(0x00000fff);
agp_destroy_page((unsigned long)
phys_to_virt(agp_bridge.scratch_page));
}
if (got_gatt)
agp_bridge.free_gatt_table();
if (got_keylist)
vfree(agp_bridge.key_list);
return rc;
}
/* cannot be __exit b/c as it could be called from __init code */
static void agp_backend_cleanup(void)
{
agp_bridge.cleanup();
agp_bridge.free_gatt_table();
vfree(agp_bridge.key_list);
if (agp_bridge.needs_scratch_page == TRUE) {
agp_bridge.scratch_page &= ~(0x00000fff);
agp_destroy_page((unsigned long)
phys_to_virt(agp_bridge.scratch_page));
}
}
extern int agp_frontend_initialize(void);
extern void agp_frontend_cleanup(void);
static const drm_agp_t drm_agp = {
&agp_free_memory,
&agp_allocate_memory,
&agp_bind_memory,
&agp_unbind_memory,
&agp_enable,
&agp_backend_acquire,
&agp_backend_release,
&agp_copy_info
};
static int __init agp_init(void)
{
int ret_val;
printk(KERN_INFO "Linux agpgart interface v%d.%d (c) Jeff Hartmann\n",
AGPGART_VERSION_MAJOR, AGPGART_VERSION_MINOR);
ret_val = agp_backend_initialize();
if (ret_val) {
agp_bridge.type = NOT_SUPPORTED;
return ret_val;
}
ret_val = agp_frontend_initialize();
if (ret_val) {
agp_bridge.type = NOT_SUPPORTED;
agp_backend_cleanup();
return ret_val;
}
inter_module_register("drm_agp", THIS_MODULE, &drm_agp);
return 0;
}
static void __exit agp_cleanup(void)
{
agp_frontend_cleanup();
agp_backend_cleanup();
inter_module_unregister("drm_agp");
}
module_init(agp_init);
module_exit(agp_cleanup);