Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/* znet.c: An Zenith Z-Note ethernet driver for linux. */

static const char *version = "znet.c:v1.02 9/23/94 becker@cesdis.gsfc.nasa.gov\n";

/*
	Written by Donald Becker.

	The author may be reached as becker@cesdis.gsfc.nasa.gov.
	This driver is based on the Linux skeleton driver.  The copyright of the
	skeleton driver is held by the United States Government, as represented
	by DIRNSA, and it is released under the GPL.

	Thanks to Mike Hollick for alpha testing and suggestions.

  References:
	   The Crynwr packet driver.

	  "82593 CSMA/CD Core LAN Controller" Intel datasheet, 1992
	  Intel Microcommunications Databook, Vol. 1, 1990.
    As usual with Intel, the documentation is incomplete and inaccurate.
	I had to read the Crynwr packet driver to figure out how to actually
	use the i82593, and guess at what register bits matched the loosely
	related i82586.

					Theory of Operation

	The i82593 used in the Zenith Z-Note series operates using two(!) slave
	DMA	channels, one interrupt, and one 8-bit I/O port.

	While there	several ways to configure '593 DMA system, I chose the one
	that seemed commensurate with the highest system performance in the face
	of moderate interrupt latency: Both DMA channels are configured as
	recirculating ring buffers, with one channel (#0) dedicated to Rx and
	the other channel (#1) to Tx and configuration.  (Note that this is
	different than the Crynwr driver, where the Tx DMA channel is initialized
	before each operation.  That approach simplifies operation and Tx error
	recovery, but requires additional I/O in normal operation and precludes
	transmit buffer	chaining.)

	Both rings are set to 8192 bytes using {TX,RX}_RING_SIZE.  This provides
	a reasonable ring size for Rx, while simplifying DMA buffer allocation --
	DMA buffers must not cross a 128K boundary.  (In truth the size selection
	was influenced by my lack of '593 documentation.  I thus was constrained
	to use the Crynwr '593 initialization table, which sets the Rx ring size
	to 8K.)

	Despite my usual low opinion about Intel-designed parts, I must admit
	that the bulk data handling of the i82593 is a good design for
	an integrated system, like a laptop, where using two slave DMA channels
	doesn't pose a problem.  I still take issue with using only a single I/O
	port.  In the same controlled environment there are essentially no
	limitations on I/O space, and using multiple locations would eliminate
	the	need for multiple operations when looking at status registers,
	setting the Rx ring boundary, or switching to promiscuous mode.

	I also question Zenith's selection of the '593: one of the advertised
	advantages of earlier Intel parts was that if you figured out the magic
	initialization incantation you could use the same part on many different
	network types.  Zenith's use of the "FriendlyNet" (sic) connector rather
	than an	on-board transceiver leads me to believe that they were planning
	to take advantage of this.  But, uhmmm, the '593 omits all but ethernet
	functionality from the serial subsystem.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>

#ifndef ZNET_DEBUG
#define ZNET_DEBUG 1
#endif
static unsigned int znet_debug = ZNET_DEBUG;

/* The DMA modes we need aren't in <dma.h>. */
#define DMA_RX_MODE		0x14	/* Auto init, I/O to mem, ++, demand. */
#define DMA_TX_MODE		0x18	/* Auto init, Mem to I/O, ++, demand. */
#define dma_page_eq(ptr1, ptr2) ((long)(ptr1)>>17 == (long)(ptr2)>>17)
#define DMA_BUF_SIZE 8192
#define RX_BUF_SIZE 8192
#define TX_BUF_SIZE 8192

/* Commands to the i82593 channel 0. */
#define CMD0_CHNL_0			0x00
#define CMD0_CHNL_1			0x10		/* Switch to channel 1. */
#define CMD0_NOP (CMD0_CHNL_0)
#define CMD0_PORT_1	CMD0_CHNL_1
#define CMD1_PORT_0	1
#define CMD0_IA_SETUP		1
#define CMD0_CONFIGURE		2
#define CMD0_MULTICAST_LIST 3
#define CMD0_TRANSMIT		4
#define CMD0_DUMP			6
#define CMD0_DIAGNOSE		7
#define CMD0_Rx_ENABLE		8
#define CMD0_Rx_DISABLE		10
#define CMD0_Rx_STOP		11
#define CMD0_RETRANSMIT		12
#define CMD0_ABORT			13
#define CMD0_RESET			14

#define CMD0_ACK 0x80

#define CMD0_STAT0 (0 << 5)
#define CMD0_STAT1 (1 << 5)
#define CMD0_STAT2 (2 << 5)
#define CMD0_STAT3 (3 << 5)

#define TX_TIMEOUT	10

#define net_local znet_private
struct znet_private {
	int rx_dma, tx_dma;
	struct net_device_stats stats;
	spinlock_t lock;
	/* The starting, current, and end pointers for the packet buffers. */
	ushort *rx_start, *rx_cur, *rx_end;
	ushort *tx_start, *tx_cur, *tx_end;
	ushort tx_buf_len;			/* Tx buffer length, in words. */
};

/* Only one can be built-in;-> */
static struct znet_private zn;
static ushort dma_buffer1[DMA_BUF_SIZE/2];
static ushort dma_buffer2[DMA_BUF_SIZE/2];
static ushort dma_buffer3[DMA_BUF_SIZE/2 + 8];

/* The configuration block.  What an undocumented nightmare.  The first
   set of values are those suggested (without explanation) for ethernet
   in the Intel 82586 databook.	 The rest appear to be completely undocumented,
   except for cryptic notes in the Crynwr packet driver.  This driver uses
   the Crynwr values verbatim. */

static unsigned char i593_init[] = {
  0xAA,					/* 0: 16-byte input & 80-byte output FIFO. */
						/*	  threshold, 96-byte FIFO, 82593 mode. */
  0x88,					/* 1: Continuous w/interrupts, 128-clock DMA.*/
  0x2E,					/* 2: 8-byte preamble, NO address insertion, */
						/*	  6-byte Ethernet address, loopback off.*/
  0x00,					/* 3: Default priorities & backoff methods. */
  0x60,					/* 4: 96-bit interframe spacing. */
  0x00,					/* 5: 512-bit slot time (low-order). */
  0xF2,					/* 6: Slot time (high-order), 15 COLL retries. */
  0x00,					/* 7: Promisc-off, broadcast-on, default CRC. */
  0x00,					/* 8: Default carrier-sense, collision-detect. */
  0x40,					/* 9: 64-byte minimum frame length. */
  0x5F,					/* A: Type/length checks OFF, no CRC input,
						   "jabber" termination, etc. */
  0x00,					/* B: Full-duplex disabled. */
  0x3F,					/* C: Default multicast addresses & backoff. */
  0x07,					/* D: Default IFS retriggering. */
  0x31,					/* E: Internal retransmit, drop "runt" packets,
						   synchr. DRQ deassertion, 6 status bytes. */
  0x22,					/* F: Receive ring-buffer size (8K), 
						   receive-stop register enable. */
};

struct netidblk {
	char magic[8];		/* The magic number (string) "NETIDBLK" */
	unsigned char netid[8]; /* The physical station address */
	char nettype, globalopt;
	char vendor[8];		/* The machine vendor and product name. */
	char product[8];
	char irq1, irq2;		/* Interrupts, only one is currently used.	*/
	char dma1, dma2;
	short dma_mem_misc[8];		/* DMA buffer locations (unused in Linux). */
	short iobase1, iosize1;
	short iobase2, iosize2;		/* Second iobase unused. */
	char driver_options;			/* Misc. bits */
	char pad;
};

int znet_probe(struct net_device *dev);
static int	znet_open(struct net_device *dev);
static int	znet_send_packet(struct sk_buff *skb, struct net_device *dev);
static void	znet_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void	znet_rx(struct net_device *dev);
static int	znet_close(struct net_device *dev);
static struct net_device_stats *net_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void hardware_init(struct net_device *dev);
static void update_stop_hit(short ioaddr, unsigned short rx_stop_offset);
static void znet_tx_timeout (struct net_device *dev);

#ifdef notdef
static struct sigaction znet_sigaction = { &znet_interrupt, 0, 0, NULL, };
#endif


/* The Z-Note probe is pretty easy.  The NETIDBLK exists in the safe-to-probe
   BIOS area.  We just scan for the signature, and pull the vital parameters
   out of the structure. */

int __init znet_probe(struct net_device *dev)
{
	int i;
	struct netidblk *netinfo;
	char *p;

	/* This code scans the region 0xf0000 to 0xfffff for a "NETIDBLK". */
	for(p = (char *)phys_to_virt(0xf0000); p < (char *)phys_to_virt(0x100000); p++)
		if (*p == 'N'  &&  strncmp(p, "NETIDBLK", 8) == 0)
			break;

	if (p >= (char *)phys_to_virt(0x100000)) {
		if (znet_debug > 1)
			printk(KERN_INFO "No Z-Note ethernet adaptor found.\n");
		return -ENODEV;
	}
	netinfo = (struct netidblk *)p;
	dev->base_addr = netinfo->iobase1;
	dev->irq = netinfo->irq1;

	printk(KERN_INFO "%s: ZNET at %#3lx,", dev->name, dev->base_addr);

	/* The station address is in the "netidblk" at 0x0f0000. */
	for (i = 0; i < 6; i++)
		printk(" %2.2x", dev->dev_addr[i] = netinfo->netid[i]);

	printk(", using IRQ %d DMA %d and %d.\n", dev->irq, netinfo->dma1,
		netinfo->dma2);

	if (znet_debug > 1) {
		printk(KERN_INFO "%s: vendor '%16.16s' IRQ1 %d IRQ2 %d DMA1 %d DMA2 %d.\n",
			   dev->name, netinfo->vendor,
			   netinfo->irq1, netinfo->irq2,
			   netinfo->dma1, netinfo->dma2);
		printk(KERN_INFO "%s: iobase1 %#x size %d iobase2 %#x size %d net type %2.2x.\n",
			   dev->name, netinfo->iobase1, netinfo->iosize1,
			   netinfo->iobase2, netinfo->iosize2, netinfo->nettype);
	}

	if (znet_debug > 0)
		printk("%s%s", KERN_INFO, version);

	dev->priv = (void *) &zn;
	zn.rx_dma = netinfo->dma1;
	zn.tx_dma = netinfo->dma2;
	zn.lock = SPIN_LOCK_UNLOCKED;

	/* These should never fail.  You can't add devices to a sealed box! */
	if (request_irq(dev->irq, &znet_interrupt, 0, "ZNet", dev)
		|| request_dma(zn.rx_dma,"ZNet rx")
		|| request_dma(zn.tx_dma,"ZNet tx")) {
		printk(KERN_WARNING "%s: Not opened -- resource busy?!?\n", dev->name);
		return -EBUSY;
	}

	/* Allocate buffer memory.	We can cross a 128K boundary, so we
	   must be careful about the allocation.  It's easiest to waste 8K. */
	if (dma_page_eq(dma_buffer1, &dma_buffer1[RX_BUF_SIZE/2-1]))
	  zn.rx_start = dma_buffer1;
	else 
	  zn.rx_start = dma_buffer2;

	if (dma_page_eq(dma_buffer3, &dma_buffer3[RX_BUF_SIZE/2-1]))
	  zn.tx_start = dma_buffer3;
	else
	  zn.tx_start = dma_buffer2;
	zn.rx_end = zn.rx_start + RX_BUF_SIZE/2;
	zn.tx_buf_len = TX_BUF_SIZE/2;
	zn.tx_end = zn.tx_start + zn.tx_buf_len;

	/* The ZNET-specific entries in the device structure. */
	dev->open = &znet_open;
	dev->hard_start_xmit = &znet_send_packet;
	dev->stop = &znet_close;
	dev->get_stats	= net_get_stats;
	dev->set_multicast_list = &set_multicast_list;
	dev->tx_timeout = znet_tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;

	/* Fill in the 'dev' with ethernet-generic values. */
	ether_setup(dev);

	return 0;
}


static int znet_open(struct net_device *dev)
{
	int ioaddr = dev->base_addr;

	if (znet_debug > 2)
		printk(KERN_DEBUG "%s: znet_open() called.\n", dev->name);

	/* Turn on the 82501 SIA, using zenith-specific magic. */
	outb(0x10, 0xe6);					/* Select LAN control register */
	outb(inb(0xe7) | 0x84, 0xe7);		/* Turn on LAN power (bit 2). */
	/* According to the Crynwr driver we should wait 50 msec. for the
	   LAN clock to stabilize.  My experiments indicates that the '593 can
	   be initialized immediately.  The delay is probably needed for the
	   DC-to-DC converter to come up to full voltage, and for the oscillator
	   to be spot-on at 20Mhz before transmitting.
	   Until this proves to be a problem we rely on the higher layers for the
	   delay and save allocating a timer entry. */

	/* This follows the packet driver's lead, and checks for success. */
	if (inb(ioaddr) != 0x10 && inb(ioaddr) != 0x00)
		printk(KERN_WARNING "%s: Problem turning on the transceiver power.\n",
			   dev->name);

	hardware_init(dev);
	netif_start_queue (dev);

	return 0;
}


static void znet_tx_timeout (struct net_device *dev)
{
	int ioaddr = dev->base_addr;
	ushort event, tx_status, rx_offset, state;

	outb (CMD0_STAT0, ioaddr);
	event = inb (ioaddr);
	outb (CMD0_STAT1, ioaddr);
	tx_status = inw (ioaddr);
	outb (CMD0_STAT2, ioaddr);
	rx_offset = inw (ioaddr);
	outb (CMD0_STAT3, ioaddr);
	state = inb (ioaddr);
	printk (KERN_WARNING "%s: transmit timed out, status %02x %04x %04x %02x,"
	 " resetting.\n", dev->name, event, tx_status, rx_offset, state);
	if (tx_status == 0x0400)
		printk (KERN_WARNING "%s: Tx carrier error, check transceiver cable.\n",
			dev->name);
	outb (CMD0_RESET, ioaddr);
	hardware_init (dev);
	netif_start_queue (dev);
}

static int znet_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	int ioaddr = dev->base_addr;
	struct net_local *lp = (struct net_local *)dev->priv;
	unsigned long flags;

	if (znet_debug > 4)
		printk(KERN_DEBUG "%s: ZNet_send_packet.\n", dev->name);

	netif_stop_queue (dev);
	
	/* Check that the part hasn't reset itself, probably from suspend. */
	outb(CMD0_STAT0, ioaddr);
	if (inw(ioaddr) == 0x0010
		&& inw(ioaddr) == 0x0000
		&& inw(ioaddr) == 0x0010)
	  hardware_init(dev);

	if (1) {
		short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
		unsigned char *buf = (void *)skb->data;
		ushort *tx_link = zn.tx_cur - 1;
		ushort rnd_len = (length + 1)>>1;
		
		lp->stats.tx_bytes+=length;

		{
			short dma_port = ((zn.tx_dma&3)<<2) + IO_DMA2_BASE;
			unsigned addr = inb(dma_port);
			addr |= inb(dma_port) << 8;
			addr <<= 1;
			if (((int)zn.tx_cur & 0x1ffff) != addr)
			  printk(KERN_WARNING "Address mismatch at Tx: %#x vs %#x.\n",
					 (int)zn.tx_cur & 0xffff, addr);
			zn.tx_cur = (ushort *)(((int)zn.tx_cur & 0xfe0000) | addr);
		}

		if (zn.tx_cur >= zn.tx_end)
		  zn.tx_cur = zn.tx_start;
		*zn.tx_cur++ = length;
		if (zn.tx_cur + rnd_len + 1 > zn.tx_end) {
			int semi_cnt = (zn.tx_end - zn.tx_cur)<<1; /* Cvrt to byte cnt. */
			memcpy(zn.tx_cur, buf, semi_cnt);
			rnd_len -= semi_cnt>>1;
			memcpy(zn.tx_start, buf + semi_cnt, length - semi_cnt);
			zn.tx_cur = zn.tx_start + rnd_len;
		} else {
			memcpy(zn.tx_cur, buf, skb->len);
			zn.tx_cur += rnd_len;
		}
		*zn.tx_cur++ = 0;

		spin_lock_irqsave(&lp->lock, flags);
		{
			*tx_link = CMD0_TRANSMIT + CMD0_CHNL_1;
			/* Is this always safe to do? */
			outb(CMD0_TRANSMIT + CMD0_CHNL_1,ioaddr);
		}
		spin_unlock_irqrestore (&lp->lock, flags);

		dev->trans_start = jiffies;
		netif_start_queue (dev);

		if (znet_debug > 4)
		  printk(KERN_DEBUG "%s: Transmitter queued, length %d.\n", dev->name, length);
	}
	dev_kfree_skb(skb); 
	return 0;
}

/* The ZNET interrupt handler. */
static void	znet_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
	struct net_device *dev = dev_id;
	struct net_local *lp = (struct net_local *)dev->priv;
	int ioaddr;
	int boguscnt = 20;

	if (dev == NULL) {
		printk(KERN_WARNING "znet_interrupt(): IRQ %d for unknown device.\n", irq);
		return;
	}

	spin_lock (&lp->lock);
	
	ioaddr = dev->base_addr;

	outb(CMD0_STAT0, ioaddr);
	do {
		ushort status = inb(ioaddr);
		if (znet_debug > 5) {
			ushort result, rx_ptr, running;
			outb(CMD0_STAT1, ioaddr);
			result = inw(ioaddr);
			outb(CMD0_STAT2, ioaddr);
			rx_ptr = inw(ioaddr);
			outb(CMD0_STAT3, ioaddr);
			running = inb(ioaddr);
			printk(KERN_DEBUG "%s: interrupt, status %02x, %04x %04x %02x serial %d.\n",
				 dev->name, status, result, rx_ptr, running, boguscnt);
		}
		if ((status & 0x80) == 0)
			break;

		if ((status & 0x0F) == 4) {	/* Transmit done. */
			int tx_status;
			outb(CMD0_STAT1, ioaddr);
			tx_status = inw(ioaddr);
			/* It's undocumented, but tx_status seems to match the i82586. */
			if (tx_status & 0x2000) {
				lp->stats.tx_packets++;
				lp->stats.collisions += tx_status & 0xf;
			} else {
				if (tx_status & 0x0600)  lp->stats.tx_carrier_errors++;
				if (tx_status & 0x0100)  lp->stats.tx_fifo_errors++;
				if (!(tx_status & 0x0040)) lp->stats.tx_heartbeat_errors++;
				if (tx_status & 0x0020)  lp->stats.tx_aborted_errors++;
				/* ...and the catch-all. */
				if ((tx_status | 0x0760) != 0x0760)
				  lp->stats.tx_errors++;
			}
			netif_wake_queue (dev);
		}

		if ((status & 0x40)
			|| (status & 0x0f) == 11) {
			znet_rx(dev);
		}
		/* Clear the interrupts we've handled. */
		outb(CMD0_ACK,ioaddr);
	} while (boguscnt--);

	spin_unlock (&lp->lock);
	
	return;
}

static void znet_rx(struct net_device *dev)
{
	struct net_local *lp = (struct net_local *)dev->priv;
	int ioaddr = dev->base_addr;
	int boguscount = 1;
	short next_frame_end_offset = 0; 		/* Offset of next frame start. */
	short *cur_frame_end;
	short cur_frame_end_offset;

	outb(CMD0_STAT2, ioaddr);
	cur_frame_end_offset = inw(ioaddr);

	if (cur_frame_end_offset == zn.rx_cur - zn.rx_start) {
		printk(KERN_WARNING "%s: Interrupted, but nothing to receive, offset %03x.\n",
			   dev->name, cur_frame_end_offset);
		return;
	}

	/* Use same method as the Crynwr driver: construct a forward list in
	   the same area of the backwards links we now have.  This allows us to
	   pass packets to the upper layers in the order they were received --
	   important for fast-path sequential operations. */
	 while (zn.rx_start + cur_frame_end_offset != zn.rx_cur
			&& ++boguscount < 5) {
		unsigned short hi_cnt, lo_cnt, hi_status, lo_status;
		int count, status;

		if (cur_frame_end_offset < 4) {
			/* Oh no, we have a special case: the frame trailer wraps around
			   the end of the ring buffer.  We've saved space at the end of
			   the ring buffer for just this problem. */
			memcpy(zn.rx_end, zn.rx_start, 8);
			cur_frame_end_offset += (RX_BUF_SIZE/2);
		}
		cur_frame_end = zn.rx_start + cur_frame_end_offset - 4;

		lo_status = *cur_frame_end++;
		hi_status = *cur_frame_end++;
		status = ((hi_status & 0xff) << 8) + (lo_status & 0xff);
		lo_cnt = *cur_frame_end++;
		hi_cnt = *cur_frame_end++;
		count = ((hi_cnt & 0xff) << 8) + (lo_cnt & 0xff);

		if (znet_debug > 5)
		  printk(KERN_DEBUG "Constructing trailer at location %03x, %04x %04x %04x %04x"
				 " count %#x status %04x.\n",
				 cur_frame_end_offset<<1, lo_status, hi_status, lo_cnt, hi_cnt,
				 count, status);
		cur_frame_end[-4] = status;
		cur_frame_end[-3] = next_frame_end_offset;
		cur_frame_end[-2] = count;
		next_frame_end_offset = cur_frame_end_offset;
		cur_frame_end_offset -= ((count + 1)>>1) + 3;
		if (cur_frame_end_offset < 0)
		  cur_frame_end_offset += RX_BUF_SIZE/2;
	};

	/* Now step  forward through the list. */
	do {
		ushort *this_rfp_ptr = zn.rx_start + next_frame_end_offset;
		int status = this_rfp_ptr[-4];
		int pkt_len = this_rfp_ptr[-2];
	  
		if (znet_debug > 5)
		  printk(KERN_DEBUG "Looking at trailer ending at %04x status %04x length %03x"
				 " next %04x.\n", next_frame_end_offset<<1, status, pkt_len,
				 this_rfp_ptr[-3]<<1);
		/* Once again we must assume that the i82586 docs apply. */
		if ( ! (status & 0x2000)) {				/* There was an error. */
			lp->stats.rx_errors++;
			if (status & 0x0800) lp->stats.rx_crc_errors++;
			if (status & 0x0400) lp->stats.rx_frame_errors++;
			if (status & 0x0200) lp->stats.rx_over_errors++; /* Wrong. */
			if (status & 0x0100) lp->stats.rx_fifo_errors++;
			if (status & 0x0080) lp->stats.rx_length_errors++;
		} else if (pkt_len > 1536) {
			lp->stats.rx_length_errors++;
		} else {
			/* Malloc up new buffer. */
			struct sk_buff *skb;

			skb = dev_alloc_skb(pkt_len);
			if (skb == NULL) {
				if (znet_debug)
				  printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n", dev->name);
				lp->stats.rx_dropped++;
				break;
			}
			skb->dev = dev;

			if (&zn.rx_cur[(pkt_len+1)>>1] > zn.rx_end) {
				int semi_cnt = (zn.rx_end - zn.rx_cur)<<1;
				memcpy(skb_put(skb,semi_cnt), zn.rx_cur, semi_cnt);
				memcpy(skb_put(skb,pkt_len-semi_cnt), zn.rx_start,
					   pkt_len - semi_cnt);
			} else {
				memcpy(skb_put(skb,pkt_len), zn.rx_cur, pkt_len);
				if (znet_debug > 6) {
					unsigned int *packet = (unsigned int *) skb->data;
					printk(KERN_DEBUG "Packet data is %08x %08x %08x %08x.\n", packet[0],
						   packet[1], packet[2], packet[3]);
				}
		  }
		  skb->protocol=eth_type_trans(skb,dev);
		  netif_rx(skb);
		  lp->stats.rx_packets++;
		}
		zn.rx_cur = this_rfp_ptr;
		if (zn.rx_cur >= zn.rx_end)
			zn.rx_cur -= RX_BUF_SIZE/2;
		update_stop_hit(ioaddr, (zn.rx_cur - zn.rx_start)<<1);
		next_frame_end_offset = this_rfp_ptr[-3];
		if (next_frame_end_offset == 0)		/* Read all the frames? */
			break;			/* Done for now */
		this_rfp_ptr = zn.rx_start + next_frame_end_offset;
	} while (--boguscount);

	/* If any worth-while packets have been received, dev_rint()
	   has done a mark_bh(INET_BH) for us and will work on them
	   when we get to the bottom-half routine. */
	return;
}

/* The inverse routine to znet_open(). */
static int znet_close(struct net_device *dev)
{
	unsigned long flags;
	int ioaddr = dev->base_addr;

	netif_stop_queue (dev);

	outb(CMD0_RESET, ioaddr);			/* CMD0_RESET */

	flags=claim_dma_lock();
	disable_dma(zn.rx_dma);
	disable_dma(zn.tx_dma);
	release_dma_lock(flags);

	free_irq(dev->irq, dev);

	if (znet_debug > 1)
		printk(KERN_DEBUG "%s: Shutting down ethercard.\n", dev->name);
	/* Turn off transceiver power. */
	outb(0x10, 0xe6);					/* Select LAN control register */
	outb(inb(0xe7) & ~0x84, 0xe7);		/* Turn on LAN power (bit 2). */

	return 0;
}

/* Get the current statistics.	This may be called with the card open or
   closed. */
static struct net_device_stats *net_get_stats(struct net_device *dev)
{
		struct net_local *lp = (struct net_local *)dev->priv;

		return &lp->stats;
}

/* Set or clear the multicast filter for this adaptor.
   As a side effect this routine must also initialize the device parameters.
   This is taken advantage of in open().

   N.B. that we change i593_init[] in place.  This (properly) makes the
   mode change persistent, but must be changed if this code is moved to
   a multiple adaptor environment.
 */
static void set_multicast_list(struct net_device *dev)
{
	short ioaddr = dev->base_addr;

	if (dev->flags&IFF_PROMISC) {
		/* Enable promiscuous mode */
		i593_init[7] &= ~3;		i593_init[7] |= 1;
		i593_init[13] &= ~8;	i593_init[13] |= 8;
	} else if (dev->mc_list || (dev->flags&IFF_ALLMULTI)) {
		/* Enable accept-all-multicast mode */
		i593_init[7] &= ~3;		i593_init[7] |= 0;
		i593_init[13] &= ~8;	i593_init[13] |= 8;
	} else {					/* Enable normal mode. */
		i593_init[7] &= ~3;		i593_init[7] |= 0;
		i593_init[13] &= ~8;	i593_init[13] |= 0;
	}
	*zn.tx_cur++ = sizeof(i593_init);
	memcpy(zn.tx_cur, i593_init, sizeof(i593_init));
	zn.tx_cur += sizeof(i593_init)/2;
	outb(CMD0_CONFIGURE+CMD0_CHNL_1, ioaddr);
#ifdef not_tested
	if (num_addrs > 0) {
		int addrs_len = 6*num_addrs;
		*zn.tx_cur++ = addrs_len;
		memcpy(zn.tx_cur, addrs, addrs_len);
		outb(CMD0_MULTICAST_LIST+CMD0_CHNL_1, ioaddr);
		zn.tx_cur += addrs_len>>1;
	}
#endif
}

void show_dma(void)
{
	unsigned long flags;
	short dma_port = ((zn.tx_dma&3)<<2) + IO_DMA2_BASE;
	unsigned addr = inb(dma_port);
	addr |= inb(dma_port) << 8;

	flags=claim_dma_lock();
	printk("Addr: %04x cnt:%3x...", addr<<1, get_dma_residue(zn.tx_dma));
	release_dma_lock(flags);
}

/* Initialize the hardware.  We have to do this when the board is open()ed
   or when we come out of suspend mode. */
static void hardware_init(struct net_device *dev)
{
	unsigned long flags;
	short ioaddr = dev->base_addr;

	zn.rx_cur = zn.rx_start;
	zn.tx_cur = zn.tx_start;

	/* Reset the chip, and start it up. */
	outb(CMD0_RESET, ioaddr);

	flags=claim_dma_lock();
	disable_dma(zn.rx_dma); 		/* reset by an interrupting task. */
	clear_dma_ff(zn.rx_dma);
	set_dma_mode(zn.rx_dma, DMA_RX_MODE);
	set_dma_addr(zn.rx_dma, (unsigned int) zn.rx_start);
	set_dma_count(zn.rx_dma, RX_BUF_SIZE);
	enable_dma(zn.rx_dma);
	/* Now set up the Tx channel. */
	disable_dma(zn.tx_dma);
	clear_dma_ff(zn.tx_dma);
	set_dma_mode(zn.tx_dma, DMA_TX_MODE);
	set_dma_addr(zn.tx_dma, (unsigned int) zn.tx_start);
	set_dma_count(zn.tx_dma, zn.tx_buf_len<<1);
	enable_dma(zn.tx_dma);
	release_dma_lock(flags);
	
	if (znet_debug > 1)
	  printk(KERN_DEBUG "%s: Initializing the i82593, tx buf %p... ", dev->name,
			 zn.tx_start);
	/* Do an empty configure command, just like the Crynwr driver.  This
	   resets to chip to its default values. */
	*zn.tx_cur++ = 0;
	*zn.tx_cur++ = 0;
	printk("stat:%02x ", inb(ioaddr)); show_dma();
	outb(CMD0_CONFIGURE+CMD0_CHNL_1, ioaddr);
	*zn.tx_cur++ = sizeof(i593_init);
	memcpy(zn.tx_cur, i593_init, sizeof(i593_init));
	zn.tx_cur += sizeof(i593_init)/2;
	printk("stat:%02x ", inb(ioaddr)); show_dma();
	outb(CMD0_CONFIGURE+CMD0_CHNL_1, ioaddr);
	*zn.tx_cur++ = 6;
	memcpy(zn.tx_cur, dev->dev_addr, 6);
	zn.tx_cur += 3;
	printk("stat:%02x ", inb(ioaddr)); show_dma();
	outb(CMD0_IA_SETUP + CMD0_CHNL_1, ioaddr);
	printk("stat:%02x ", inb(ioaddr)); show_dma();

	update_stop_hit(ioaddr, 8192);
	if (znet_debug > 1)  printk("enabling Rx.\n");
	outb(CMD0_Rx_ENABLE+CMD0_CHNL_0, ioaddr);
	netif_start_queue (dev);
}

static void update_stop_hit(short ioaddr, unsigned short rx_stop_offset)
{
	outb(CMD0_PORT_1, ioaddr);
	if (znet_debug > 5)
	  printk(KERN_DEBUG "Updating stop hit with value %02x.\n",
			 (rx_stop_offset >> 6) | 0x80);
	outb((rx_stop_offset >> 6) | 0x80, ioaddr);
	outb(CMD1_PORT_0, ioaddr);
}

/*
 * Local variables:
 *  compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -m486 -c znet.c"
 *  version-control: t
 *  kept-new-versions: 5
 *  c-indent-level: 4
 *  tab-width: 4
 * End:
 */