Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 * Architecture-specific trap handling.
 *
 * Copyright (C) 1998-2000 Hewlett-Packard Co
 * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * 05/12/00 grao <goutham.rao@intel.com> : added isr in siginfo for SIGFPE
 */

#define FPSWA_DEBUG	1

/*
 * The fpu_fault() handler needs to be able to access and update all
 * floating point registers.  Those saved in pt_regs can be accessed
 * through that structure, but those not saved, will be accessed
 * directly.  To make this work, we need to ensure that the compiler
 * does not end up using a preserved floating point register on its
 * own.  The following achieves this by declaring preserved registers
 * that are not marked as "fixed" as global register variables.
 */
register double f2 asm ("f2"); register double f3 asm ("f3");
register double f4 asm ("f4"); register double f5 asm ("f5");

register long f16 asm ("f16"); register long f17 asm ("f17");
register long f18 asm ("f18"); register long f19 asm ("f19");
register long f20 asm ("f20"); register long f21 asm ("f21");
register long f22 asm ("f22"); register long f23 asm ("f23");

register double f24 asm ("f24"); register double f25 asm ("f25");
register double f26 asm ("f26"); register double f27 asm ("f27");
register double f28 asm ("f28"); register double f29 asm ("f29");
register double f30 asm ("f30"); register double f31 asm ("f31");

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>

#include <asm/ia32.h>
#include <asm/processor.h>
#include <asm/uaccess.h>

#include <asm/fpswa.h>

static fpswa_interface_t *fpswa_interface;

void __init
trap_init (void)
{
	printk("fpswa interface at %lx\n", ia64_boot_param.fpswa);
	if (ia64_boot_param.fpswa) {
#define OLD_FIRMWARE
#ifdef OLD_FIRMWARE
		/*
		 * HACK to work around broken firmware.  This code
		 * applies the label fixup to the FPSWA interface and
		 * works both with old and new (fixed) firmware.
		 */
		unsigned long addr = (unsigned long) __va(ia64_boot_param.fpswa);
		unsigned long gp_val = *(unsigned long *)(addr + 8);

		/* go indirect and indexed to get table address */
		addr = gp_val;
		gp_val = *(unsigned long *)(addr + 8);

		while (gp_val == *(unsigned long *)(addr + 8)) {
			*(unsigned long *)addr |= PAGE_OFFSET;
			*(unsigned long *)(addr + 8) |= PAGE_OFFSET;
			addr += 16;
		}
#endif
		/* FPSWA fixup: make the interface pointer a kernel virtual address: */
		fpswa_interface = __va(ia64_boot_param.fpswa);
	}
}

void
die_if_kernel (char *str, struct pt_regs *regs, long err)
{
	if (user_mode(regs)) {
#if 1
		/* XXX for debugging only */
		printk ("!!die_if_kernel: %s(%d): %s %ld\n",
			current->comm, current->pid, str, err);
		show_regs(regs);
#endif
		return;
	}

	printk("%s[%d]: %s %ld\n", current->comm, current->pid, str, err);

	show_regs(regs);

	if (current->thread.flags & IA64_KERNEL_DEATH) {
		printk("die_if_kernel recursion detected.\n");
		sti();
		while (1);
	}
	current->thread.flags |= IA64_KERNEL_DEATH;
	do_exit(SIGSEGV);
}

void
ia64_bad_break (unsigned long break_num, struct pt_regs *regs)
{
	siginfo_t siginfo;
	int sig, code;

	/* SIGILL, SIGFPE, SIGSEGV, and SIGBUS want these field initialized: */
	siginfo.si_addr = (void *) (regs->cr_iip + ia64_psr(regs)->ri);
	siginfo.si_imm = break_num;

	switch (break_num) {
	      case 0: /* unknown error */
		sig = SIGILL; code = ILL_ILLOPC;
		break;

	      case 1: /* integer divide by zero */
		sig = SIGFPE; code = FPE_INTDIV;
		break;

	      case 2: /* integer overflow */
		sig = SIGFPE; code = FPE_INTOVF;
		break;

	      case 3: /* range check/bounds check */
		sig = SIGFPE; code = FPE_FLTSUB;
		break;

	      case 4: /* null pointer dereference */
		sig = SIGSEGV; code = SEGV_MAPERR;
		break;

	      case 5: /* misaligned data */
		sig = SIGSEGV; code = BUS_ADRALN;
		break;

	      case 6: /* decimal overflow */
		sig = SIGFPE; code = __FPE_DECOVF;
		break;

	      case 7: /* decimal divide by zero */
		sig = SIGFPE; code = __FPE_DECDIV;
		break;

	      case 8: /* packed decimal error */
		sig = SIGFPE; code = __FPE_DECERR;
		break;

	      case 9: /* invalid ASCII digit */
		sig = SIGFPE; code = __FPE_INVASC;
		break;

	      case 10: /* invalid decimal digit */
		sig = SIGFPE; code = __FPE_INVDEC;
		break;

	      case 11: /* paragraph stack overflow */
		sig = SIGSEGV; code = __SEGV_PSTKOVF;
		break;

	      default:
		if (break_num < 0x40000 || break_num > 0x100000)
			die_if_kernel("Bad break", regs, break_num);

		if (break_num < 0x80000) {
			sig = SIGILL; code = __ILL_BREAK;
		} else {
			sig = SIGTRAP; code = TRAP_BRKPT;
		}
	}
	siginfo.si_signo = sig;
	siginfo.si_errno = 0;
	siginfo.si_code = code;
	force_sig_info(sig, &siginfo, current);
}

/*
 * Unimplemented system calls.  This is called only for stuff that
 * we're supposed to implement but haven't done so yet.  Everything
 * else goes to sys_ni_syscall.
 */
asmlinkage long
ia64_ni_syscall (unsigned long arg0, unsigned long arg1, unsigned long arg2, unsigned long arg3,
		 unsigned long arg4, unsigned long arg5, unsigned long arg6, unsigned long arg7,
		 unsigned long stack)
{
	struct pt_regs *regs = (struct pt_regs *) &stack;

	printk("<sc%ld(%lx,%lx,%lx,%lx)>\n", regs->r15, arg0, arg1, arg2, arg3);
	return -ENOSYS;
}

/*
 * disabled_fph_fault() is called when a user-level process attempts
 * to access one of the registers f32..f127 when it doesn't own the
 * fp-high register partition.  When this happens, we save the current
 * fph partition in the task_struct of the fpu-owner (if necessary)
 * and then load the fp-high partition of the current task (if
 * necessary).  Note that the kernel has access to fph by the time we
 * get here, as the IVT's "Diabled FP-Register" handler takes care of
 * clearing psr.dfh.
 */
static inline void
disabled_fph_fault (struct pt_regs *regs)
{
	struct ia64_psr *psr = ia64_psr(regs);

	/* first, grant user-level access to fph partition: */
	psr->dfh = 0;
#ifndef CONFIG_SMP
	{
		struct task_struct *fpu_owner = ia64_get_fpu_owner();

		if (fpu_owner == current)
			return;

		if (fpu_owner)
			ia64_flush_fph(fpu_owner);

		ia64_set_fpu_owner(current);
	}
#endif /* !CONFIG_SMP */
	if ((current->thread.flags & IA64_THREAD_FPH_VALID) != 0) {
		__ia64_load_fpu(current->thread.fph);
		psr->mfh = 0;
	} else {
		__ia64_init_fpu();
		/*
		 * Set mfh because the state in thread.fph does not match the state in
		 * the fph partition.
		 */
		psr->mfh = 1;
	}
}

static inline int
fp_emulate (int fp_fault, void *bundle, long *ipsr, long *fpsr, long *isr, long *pr, long *ifs,
	    struct pt_regs *regs)
{
	fp_state_t fp_state;
	fpswa_ret_t ret;
#ifdef FPSWA_BUG
	struct ia64_fpreg f6_15[10];
#endif

	if (!fpswa_interface)
		return -1;

	memset(&fp_state, 0, sizeof(fp_state_t));

	/*
	 * compute fp_state.  only FP registers f6 - f11 are used by the 
	 * kernel, so set those bits in the mask and set the low volatile
	 * pointer to point to these registers.
	 */
#ifndef FPSWA_BUG
	fp_state.bitmask_low64 = 0x3c0;  /* bit 6..9 */
	fp_state.fp_state_low_volatile = (fp_state_low_volatile_t *) &regs->f6;
#else
	fp_state.bitmask_low64 = 0xffc0;  /* bit6..bit15 */
	f6_15[0] = regs->f6;
	f6_15[1] = regs->f7;
	f6_15[2] = regs->f8;
	f6_15[3] = regs->f9;
 	__asm__ ("stf.spill %0=f10%P0" : "=m"(f6_15[4]));
 	__asm__ ("stf.spill %0=f11%P0" : "=m"(f6_15[5]));
 	__asm__ ("stf.spill %0=f12%P0" : "=m"(f6_15[6]));
 	__asm__ ("stf.spill %0=f13%P0" : "=m"(f6_15[7]));
 	__asm__ ("stf.spill %0=f14%P0" : "=m"(f6_15[8]));
 	__asm__ ("stf.spill %0=f15%P0" : "=m"(f6_15[9]));
	fp_state.fp_state_low_volatile = (fp_state_low_volatile_t *) f6_15;
#endif
        /*
	 * unsigned long (*EFI_FPSWA) (
	 *      unsigned long    trap_type,
	 *	void             *Bundle,
	 *	unsigned long    *pipsr,
	 *	unsigned long    *pfsr,
	 *	unsigned long    *pisr,
	 *	unsigned long    *ppreds,
	 *	unsigned long    *pifs,
	 *	void             *fp_state);
	 */
	ret = (*fpswa_interface->fpswa)((unsigned long) fp_fault, bundle,
					(unsigned long *) ipsr, (unsigned long *) fpsr,
					(unsigned long *) isr, (unsigned long *) pr,
					(unsigned long *) ifs, &fp_state);
#ifdef FPSWA_BUG
 	__asm__ ("ldf.fill f10=%0%P0" :: "m"(f6_15[4]));
 	__asm__ ("ldf.fill f11=%0%P0" :: "m"(f6_15[5]));
 	__asm__ ("ldf.fill f12=%0%P0" :: "m"(f6_15[6]));
 	__asm__ ("ldf.fill f13=%0%P0" :: "m"(f6_15[7]));
 	__asm__ ("ldf.fill f14=%0%P0" :: "m"(f6_15[8]));
 	__asm__ ("ldf.fill f15=%0%P0" :: "m"(f6_15[9]));
	regs->f6 = f6_15[0];
	regs->f7 = f6_15[1];
	regs->f8 = f6_15[2];
	regs->f9 = f6_15[3];
#endif
	return ret.status;
}

/*
 * Handle floating-point assist faults and traps.
 */
static int
handle_fpu_swa (int fp_fault, struct pt_regs *regs, unsigned long isr)
{
	long exception, bundle[2];
	unsigned long fault_ip;
	struct siginfo siginfo;
	static int fpu_swa_count = 0;
	static unsigned long last_time;

	fault_ip = regs->cr_iip;
	if (!fp_fault && (ia64_psr(regs)->ri == 0))
		fault_ip -= 16;
	if (copy_from_user(bundle, (void *) fault_ip, sizeof(bundle)))
		return -1;

#ifdef FPSWA_DEBUG
	if (fpu_swa_count > 5 && jiffies - last_time > 5*HZ)
		fpu_swa_count = 0;
	if (++fpu_swa_count < 5) {
		last_time = jiffies;
		printk("%s(%d): floating-point assist fault at ip %016lx\n",
		       current->comm, current->pid, regs->cr_iip + ia64_psr(regs)->ri);
	}
#endif
	exception = fp_emulate(fp_fault, bundle, &regs->cr_ipsr, &regs->ar_fpsr, &isr, &regs->pr,
 			       &regs->cr_ifs, regs);
	if (fp_fault) {
		if (exception == 0) {
			/* emulation was successful */
 			ia64_increment_ip(regs);
		} else if (exception == -1) {
			printk("handle_fpu_swa: fp_emulate() returned -1\n");
			return -1;
		} else {
			/* is next instruction a trap? */
			if (exception & 2) {
				ia64_increment_ip(regs);
			}
			siginfo.si_signo = SIGFPE;
			siginfo.si_errno = 0;
			siginfo.si_code = 0;
			siginfo.si_addr = (void *) (regs->cr_iip + ia64_psr(regs)->ri);
			if (isr & 0x11) {
				siginfo.si_code = FPE_FLTINV;
			} else if (isr & 0x44) {
				siginfo.si_code = FPE_FLTDIV;
			}
			siginfo.si_isr = isr;
			force_sig_info(SIGFPE, &siginfo, current);
		}
	} else {
		if (exception == -1) {
			printk("handle_fpu_swa: fp_emulate() returned -1\n");
			return -1;
		} else if (exception != 0) {
			/* raise exception */
			siginfo.si_signo = SIGFPE;
			siginfo.si_errno = 0;
			siginfo.si_code = 0;
			siginfo.si_addr = (void *) (regs->cr_iip + ia64_psr(regs)->ri);
			if (isr & 0x880) {
				siginfo.si_code = FPE_FLTOVF;
			} else if (isr & 0x1100) {
				siginfo.si_code = FPE_FLTUND;
			} else if (isr & 0x2200) {
				siginfo.si_code = FPE_FLTRES;
			}
			siginfo.si_isr = isr;
			force_sig_info(SIGFPE, &siginfo, current);
		}
	}
	return 0;
}

struct illegal_op_return {
	unsigned long fkt, arg1, arg2, arg3;
};

struct illegal_op_return
ia64_illegal_op_fault (unsigned long ec, unsigned long arg1, unsigned long arg2,
		       unsigned long arg3, unsigned long arg4, unsigned long arg5,
		       unsigned long arg6, unsigned long arg7, unsigned long stack)
{
	struct pt_regs *regs = (struct pt_regs *) &stack;
	struct illegal_op_return rv;
	struct siginfo si;
	char buf[128];

#ifdef CONFIG_IA64_BRL_EMU	
	{
		extern struct illegal_op_return ia64_emulate_brl (struct pt_regs *, unsigned long);

		rv = ia64_emulate_brl(regs, ec);
		if (rv.fkt != (unsigned long) -1)
			return rv;
	}
#endif

	sprintf(buf, "IA-64 Illegal operation fault");
	die_if_kernel(buf, regs, 0);

	memset(&si, 0, sizeof(si));
	si.si_signo = SIGILL;
	si.si_code = ILL_ILLOPC;
	si.si_addr = (void *) (regs->cr_iip + ia64_psr(regs)->ri);
	force_sig_info(SIGILL, &si, current);
	rv.fkt = 0;
	return rv;
}

void
ia64_fault (unsigned long vector, unsigned long isr, unsigned long ifa,
	    unsigned long iim, unsigned long itir, unsigned long arg5,
	    unsigned long arg6, unsigned long arg7, unsigned long stack)
{
	struct pt_regs *regs = (struct pt_regs *) &stack;
	unsigned long code, error = isr;
	struct siginfo siginfo;
	char buf[128];
	int result;
	static const char *reason[] = {
		"IA-64 Illegal Operation fault",
		"IA-64 Privileged Operation fault",
		"IA-64 Privileged Register fault",
		"IA-64 Reserved Register/Field fault",
		"Disabled Instruction Set Transition fault",
		"Unknown fault 5", "Unknown fault 6", "Unknown fault 7", "Illegal Hazard fault",
		"Unknown fault 9", "Unknown fault 10", "Unknown fault 11", "Unknown fault 12", 
		"Unknown fault 13", "Unknown fault 14", "Unknown fault 15"
	};

#if 0
	/* this is for minimal trust debugging; yeah this kind of stuff is useful at times... */

	if (vector != 25) {
		static unsigned long last_time;
		static char count;
		unsigned long n = vector;
		char buf[32], *cp;

		if (count > 5 && jiffies - last_time > 5*HZ)
			count = 0;

		if (count++ < 5) {
			last_time = jiffies;
			cp = buf + sizeof(buf);
			*--cp = '\0';
			while (n) {
				*--cp = "0123456789abcdef"[n & 0xf];
				n >>= 4;
			}
			printk("<0x%s>", cp);
		}
	}
#endif

	switch (vector) {
	      case 24: /* General Exception */
		code = (isr >> 4) & 0xf;
		sprintf(buf, "General Exception: %s%s", reason[code],
			(code == 3) ? ((isr & (1UL << 37))
				       ? " (RSE access)" : " (data access)") : "");
#ifndef CONFIG_ITANIUM_ASTEP_SPECIFIC
		if (code == 8) {
# ifdef CONFIG_IA64_PRINT_HAZARDS
			printk("%016lx:possible hazard, pr = %016lx\n", regs->cr_iip, regs->pr);
# endif
			return;
		}
#endif
		break;

	      case 25: /* Disabled FP-Register */
		if (isr & 2) {
			disabled_fph_fault(regs);
			return;
		}
		sprintf(buf, "Disabled FPL fault---not supposed to happen!");
		break;

	      case 29: /* Debug */
	      case 35: /* Taken Branch Trap */
	      case 36: /* Single Step Trap */
		switch (vector) {
		      case 29: 
			siginfo.si_code = TRAP_HWBKPT;
#ifdef CONFIG_ITANIUM
			/*
			 * Erratum 10 (IFA may contain incorrect address) now has
			 * "NoFix" status.  There are no plans for fixing this.
			 */
			if (ia64_psr(regs)->is == 0)
			  ifa = regs->cr_iip;
#endif
			siginfo.si_addr = (void *) ifa;
		        break;
		      case 35: siginfo.si_code = TRAP_BRANCH; break;
		      case 36: siginfo.si_code = TRAP_TRACE; break;
		}
		siginfo.si_signo = SIGTRAP;
		siginfo.si_errno = 0;
		force_sig_info(SIGTRAP, &siginfo, current);
		return;

	      case 32: /* fp fault */
	      case 33: /* fp trap */
		result = handle_fpu_swa((vector == 32) ? 1 : 0, regs, isr);
		if (result < 0) {
			siginfo.si_signo = SIGFPE;
			siginfo.si_errno = 0;
			siginfo.si_code = FPE_FLTINV;
			siginfo.si_addr = (void *) (regs->cr_iip + ia64_psr(regs)->ri);
			force_sig(SIGFPE, current);
		}
		return;

	      case 34:		/* Unimplemented Instruction Address Trap */
		if (user_mode(regs)) {
			printk("Woah! Unimplemented Instruction Address Trap!\n");
			siginfo.si_code = ILL_BADIADDR;
			siginfo.si_signo = SIGILL;
			siginfo.si_errno = 0;
			force_sig_info(SIGILL, &siginfo, current);
			return;
		}
		sprintf(buf, "Unimplemented Instruction Address fault");
		break;

	      case 45:
#ifdef CONFIG_IA32_SUPPORT
		if (ia32_exception(regs, isr) == 0)
			return;
#endif
		printk("Unexpected IA-32 exception (Trap 45)\n");
		printk("  iip - 0x%lx, ifa - 0x%lx, isr - 0x%lx\n", regs->cr_iip, ifa, isr);
		force_sig(SIGSEGV, current);
		break;

	      case 46:
		printk("Unexpected IA-32 intercept trap (Trap 46)\n");
		printk("  iip - 0x%lx, ifa - 0x%lx, isr - 0x%lx\n", regs->cr_iip, ifa, isr);
		force_sig(SIGSEGV, current);
		return;

	      case 47:
		sprintf(buf, "IA-32 Interruption Fault (int 0x%lx)", isr >> 16);
		break;

	      default:
		sprintf(buf, "Fault %lu", vector);
		break;
	}
	die_if_kernel(buf, regs, error);
	force_sig(SIGILL, current);
}