Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | /* $Id: pgalloc.h,v 1.3 2000/02/23 00:41:38 ralf Exp $ * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2000 by Ralf Baechle at alii * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #ifndef _ASM_PGALLOC_H #define _ASM_PGALLOC_H #include <linux/config.h> /* TLB flushing: * * - flush_tlb_all() flushes all processes TLB entries * - flush_tlb_mm(mm) flushes the specified mm context TLB entries * - flush_tlb_page(mm, vmaddr) flushes a single page * - flush_tlb_range(mm, start, end) flushes a range of pages */ extern void flush_tlb_all(void); extern void flush_tlb_mm(struct mm_struct *mm); extern void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern inline void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start, unsigned long end) { /* Nothing to do on MIPS. */ } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ #define pgd_quicklist (current_cpu_data.pgd_quick) #define pmd_quicklist ((unsigned long *)0) #define pte_quicklist (current_cpu_data.pte_quick) #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz) extern __inline__ pgd_t *get_pgd_slow(void) { pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init; if (ret) { init = pgd_offset(&init_mm, 0); pgd_init((unsigned long)ret); memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return ret; } extern __inline__ pgd_t *get_pgd_fast(void) { unsigned long *ret; if((ret = pgd_quicklist) != NULL) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } else ret = (unsigned long *)get_pgd_slow(); return (pgd_t *)ret; } extern __inline__ void free_pgd_fast(pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; pgtable_cache_size++; } extern __inline__ void free_pgd_slow(pgd_t *pgd) { free_page((unsigned long)pgd); } extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted); extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted); extern __inline__ pte_t *get_pte_fast(void) { unsigned long *ret; if((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pte_t *)ret; } extern __inline__ void free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; pgtable_cache_size++; } extern __inline__ void free_pte_slow(pte_t *pte) { free_page((unsigned long)pte); } /* We don't use pmd cache, so these are dummy routines */ extern __inline__ pmd_t *get_pmd_fast(void) { return (pmd_t *)0; } extern __inline__ void free_pmd_fast(pmd_t *pmd) { } extern __inline__ void free_pmd_slow(pmd_t *pmd) { } extern void __bad_pte(pmd_t *pmd); extern void __bad_pte_kernel(pmd_t *pmd); #define pte_free_kernel(pte) free_pte_fast(pte) #define pte_free(pte) free_pte_fast(pte) #define pgd_free(pgd) free_pgd_fast(pgd) #define pgd_alloc() get_pgd_fast() extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (page) { pmd_val(*pmd) = (unsigned long)page; return page + address; } return get_pte_kernel_slow(pmd, address); } if (pmd_bad(*pmd)) { __bad_pte_kernel(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (page) { pmd_val(*pmd) = (unsigned long)page; return page + address; } return get_pte_slow(pmd, address); } if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } #define pmd_free_kernel pmd_free #define pmd_alloc_kernel pmd_alloc extern int do_check_pgt_cache(int, int); extern inline void set_pgdir(unsigned long address, pgd_t entry) { struct task_struct * p; pgd_t *pgd; #ifdef CONFIG_SMP int i; #endif read_lock(&tasklist_lock); for_each_task(p) { if (!p->mm) continue; *pgd_offset(p->mm,address) = entry; } read_unlock(&tasklist_lock); #ifndef CONFIG_SMP for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #else /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can modify pgd caches of other CPUs as well. -jj */ for (i = 0; i < NR_CPUS; i++) for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #endif } #endif /* _ASM_PGALLOC_H */ |