Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 | /* * Intel MP v1.1/v1.4 specification support routines for multi-pentium * hosts. * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998 Ingo Molnar * * Supported by Caldera http://www.caldera.com. * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * * This code is released under the GNU public license version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIP report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Alan Cox : Added EBDA scanning * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. */ #include <linux/config.h> #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/delay.h> #include <linux/mc146818rtc.h> #include <linux/smp_lock.h> #include <linux/init.h> #include <asm/mtrr.h> #include <asm/msr.h> #include "irq.h" #define JIFFIE_TIMEOUT 100 extern void update_one_process( struct task_struct *p, unsigned long ticks, unsigned long user, unsigned long system, int cpu); /* * Some notes on processor bugs: * * Pentium and Pentium Pro (and all CPUs) have bugs. The Linux issues * for SMP are handled as follows. * * Pentium Pro * Occasional delivery of 'spurious interrupt' as trap #16. This * is very rare. The kernel logs the event and recovers * * Pentium * There is a marginal case where REP MOVS on 100MHz SMP * machines with B stepping processors can fail. XXX should provide * an L1cache=Writethrough or L1cache=off option. * * B stepping CPUs may hang. There are hardware work arounds * for this. We warn about it in case your board doesnt have the work * arounds. Basically thats so I can tell anyone with a B stepping * CPU and SMP problems "tough". * * Specific items [From Pentium Processor Specification Update] * * 1AP. Linux doesn't use remote read * 2AP. Linux doesn't trust APIC errors * 3AP. We work around this * 4AP. Linux never generated 3 interrupts of the same priority * to cause a lost local interrupt. * 5AP. Remote read is never used * 9AP. XXX NEED TO CHECK WE HANDLE THIS XXX * 10AP. XXX NEED TO CHECK WE HANDLE THIS XXX * 11AP. Linux reads the APIC between writes to avoid this, as per * the documentation. Make sure you preserve this as it affects * the C stepping chips too. * * If this sounds worrying believe me these bugs are ___RARE___ and * there's about nothing of note with C stepping upwards. */ /* Kernel spinlock */ spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED; /* * function prototypes: */ static void cache_APIC_registers (void); static void stop_this_cpu (void); static int smp_b_stepping = 0; /* Set if we find a B stepping CPU */ static int max_cpus = -1; /* Setup configured maximum number of CPUs to activate */ int smp_found_config=0; /* Have we found an SMP box */ unsigned long cpu_present_map = 0; /* Bitmask of physically existing CPUs */ unsigned long cpu_online_map = 0; /* Bitmask of currently online CPUs */ int smp_num_cpus = 1; /* Total count of live CPUs */ int smp_threads_ready=0; /* Set when the idlers are all forked */ volatile int cpu_number_map[NR_CPUS]; /* which CPU maps to which logical number */ volatile int __cpu_logical_map[NR_CPUS]; /* which logical number maps to which CPU */ static volatile unsigned long cpu_callin_map[NR_CPUS] = {0,}; /* We always use 0 the rest is ready for parallel delivery */ static volatile unsigned long cpu_callout_map[NR_CPUS] = {0,}; /* We always use 0 the rest is ready for parallel delivery */ volatile unsigned long smp_invalidate_needed; /* Used for the invalidate map that's also checked in the spinlock */ volatile unsigned long kstack_ptr; /* Stack vector for booting CPUs */ struct cpuinfo_x86 cpu_data[NR_CPUS]; /* Per CPU bogomips and other parameters */ static unsigned int num_processors = 1; /* Internal processor count */ unsigned long mp_ioapic_addr = 0xFEC00000; /* Address of the I/O apic (not yet used) */ unsigned char boot_cpu_id = 0; /* Processor that is doing the boot up */ static int smp_activated = 0; /* Tripped once we need to start cross invalidating */ int apic_version[NR_CPUS]; /* APIC version number */ unsigned long apic_retval; /* Just debugging the assembler.. */ volatile unsigned long kernel_counter=0; /* Number of times the processor holds the lock */ volatile unsigned long syscall_count=0; /* Number of times the processor holds the syscall lock */ volatile unsigned long ipi_count; /* Number of IPIs delivered */ const char lk_lockmsg[] = "lock from interrupt context at %p\n"; int mp_bus_id_to_type [MAX_MP_BUSSES] = { -1, }; extern int mp_irq_entries; extern struct mpc_config_intsrc mp_irqs [MAX_IRQ_SOURCES]; extern int mpc_default_type; int mp_bus_id_to_pci_bus [MAX_MP_BUSSES] = { -1, }; int mp_current_pci_id = 0; unsigned long mp_lapic_addr = 0; int skip_ioapic_setup = 0; /* 1 if "noapic" boot option passed */ /* #define SMP_DEBUG */ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif /* * IA s/w dev Vol 3, Section 7.4 */ #define APIC_DEFAULT_PHYS_BASE 0xfee00000 #define CLEAR_TSC wrmsr(0x10, 0x00001000, 0x00001000) /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ void __init smp_setup(char *str, int *ints) { if (ints && ints[0] > 0) max_cpus = ints[1]; else max_cpus = 0; } void ack_APIC_irq(void) { /* Clear the IPI */ /* Dummy read */ apic_read(APIC_SPIV); /* Docs say use 0 for future compatibility */ apic_write(APIC_EOI, 0); } /* * Intel MP BIOS table parsing routines: */ #ifndef CONFIG_X86_VISWS_APIC /* * Checksum an MP configuration block. */ static int mpf_checksum(unsigned char *mp, int len) { int sum=0; while(len--) sum+=*mp++; return sum&0xFF; } /* * Processor encoding in an MP configuration block */ static char *mpc_family(int family,int model) { static char n[32]; static char *model_defs[]= { "80486DX","80486DX", "80486SX","80486DX/2 or 80487", "80486SL","Intel5X2(tm)", "Unknown","Unknown", "80486DX/4" }; if (family==0x6) return("Pentium(tm) Pro"); if (family==0x5) return("Pentium(tm)"); if (family==0x0F && model==0x0F) return("Special controller"); if (family==0x04 && model<9) return model_defs[model]; sprintf(n,"Unknown CPU [%d:%d]",family, model); return n; } /* * Read the MPC */ static int __init smp_read_mpc(struct mp_config_table *mpc) { char str[16]; int count=sizeof(*mpc); int ioapics = 0; unsigned char *mpt=((unsigned char *)mpc)+count; if (memcmp(mpc->mpc_signature,MPC_SIGNATURE,4)) { panic("SMP mptable: bad signature [%c%c%c%c]!\n", mpc->mpc_signature[0], mpc->mpc_signature[1], mpc->mpc_signature[2], mpc->mpc_signature[3]); return 1; } if (mpf_checksum((unsigned char *)mpc,mpc->mpc_length)) { panic("SMP mptable: checksum error!\n"); return 1; } if (mpc->mpc_spec!=0x01 && mpc->mpc_spec!=0x04) { printk("Bad Config Table version (%d)!!\n",mpc->mpc_spec); return 1; } memcpy(str,mpc->mpc_oem,8); str[8]=0; memcpy(ioapic_OEM_ID,str,9); printk("OEM ID: %s ",str); memcpy(str,mpc->mpc_productid,12); str[12]=0; memcpy(ioapic_Product_ID,str,13); printk("Product ID: %s ",str); printk("APIC at: 0x%lX\n",mpc->mpc_lapic); /* save the local APIC address, it might be non-default */ mp_lapic_addr = mpc->mpc_lapic; /* * Now process the configuration blocks. */ while(count<mpc->mpc_length) { switch(*mpt) { case MP_PROCESSOR: { struct mpc_config_processor *m= (struct mpc_config_processor *)mpt; if (m->mpc_cpuflag&CPU_ENABLED) { printk("Processor #%d %s APIC version %d\n", m->mpc_apicid, mpc_family((m->mpc_cpufeature& CPU_FAMILY_MASK)>>8, (m->mpc_cpufeature& CPU_MODEL_MASK)>>4), m->mpc_apicver); #ifdef SMP_DEBUG if (m->mpc_featureflag&(1<<0)) printk(" Floating point unit present.\n"); if (m->mpc_featureflag&(1<<7)) printk(" Machine Exception supported.\n"); if (m->mpc_featureflag&(1<<8)) printk(" 64 bit compare & exchange supported.\n"); if (m->mpc_featureflag&(1<<9)) printk(" Internal APIC present.\n"); #endif if (m->mpc_cpuflag&CPU_BOOTPROCESSOR) { SMP_PRINTK((" Bootup CPU\n")); boot_cpu_id=m->mpc_apicid; } else /* Boot CPU already counted */ num_processors++; if (m->mpc_apicid>NR_CPUS) printk("Processor #%d unused. (Max %d processors).\n",m->mpc_apicid, NR_CPUS); else { int ver = m->mpc_apicver; cpu_present_map|=(1<<m->mpc_apicid); /* * Validate version */ if (ver == 0x0) { printk("BIOS bug, APIC version is 0 for CPU#%d! fixing up to 0x10. (tell your hw vendor)\n", m->mpc_apicid); ver = 0x10; } apic_version[m->mpc_apicid] = ver; } } mpt+=sizeof(*m); count+=sizeof(*m); break; } case MP_BUS: { struct mpc_config_bus *m= (struct mpc_config_bus *)mpt; memcpy(str,m->mpc_bustype,6); str[6]=0; SMP_PRINTK(("Bus #%d is %s\n", m->mpc_busid, str)); if (strncmp(m->mpc_bustype,"ISA",3) == 0) mp_bus_id_to_type[m->mpc_busid] = MP_BUS_ISA; else if (strncmp(m->mpc_bustype,"EISA",4) == 0) mp_bus_id_to_type[m->mpc_busid] = MP_BUS_EISA; if (strncmp(m->mpc_bustype,"PCI",3) == 0) { mp_bus_id_to_type[m->mpc_busid] = MP_BUS_PCI; mp_bus_id_to_pci_bus[m->mpc_busid] = mp_current_pci_id; mp_current_pci_id++; } mpt+=sizeof(*m); count+=sizeof(*m); break; } case MP_IOAPIC: { struct mpc_config_ioapic *m= (struct mpc_config_ioapic *)mpt; if (m->mpc_flags&MPC_APIC_USABLE) { ioapics++; printk("I/O APIC #%d Version %d at 0x%lX.\n", m->mpc_apicid,m->mpc_apicver, m->mpc_apicaddr); /* * we use the first one only currently */ if (ioapics == 1) mp_ioapic_addr = m->mpc_apicaddr; } mpt+=sizeof(*m); count+=sizeof(*m); break; } case MP_INTSRC: { struct mpc_config_intsrc *m= (struct mpc_config_intsrc *)mpt; mp_irqs [mp_irq_entries] = *m; if (++mp_irq_entries == MAX_IRQ_SOURCES) { printk("Max irq sources exceeded!!\n"); printk("Skipping remaining sources.\n"); --mp_irq_entries; } mpt+=sizeof(*m); count+=sizeof(*m); break; } case MP_LINTSRC: { struct mpc_config_intlocal *m= (struct mpc_config_intlocal *)mpt; mpt+=sizeof(*m); count+=sizeof(*m); break; } } } if (ioapics > 1) { printk("Warning: Multiple IO-APICs not yet supported.\n"); printk("Warning: switching to non APIC mode.\n"); skip_ioapic_setup=1; } return num_processors; } /* * Scan the memory blocks for an SMP configuration block. */ static int __init smp_scan_config(unsigned long base, unsigned long length) { unsigned long *bp=phys_to_virt(base); struct intel_mp_floating *mpf; SMP_PRINTK(("Scan SMP from %p for %ld bytes.\n", bp,length)); if (sizeof(*mpf)!=16) printk("Error: MPF size\n"); while (length>0) { if (*bp==SMP_MAGIC_IDENT) { mpf=(struct intel_mp_floating *)bp; if (mpf->mpf_length==1 && !mpf_checksum((unsigned char *)bp,16) && (mpf->mpf_specification == 1 || mpf->mpf_specification == 4) ) { printk("Intel MultiProcessor Specification v1.%d\n", mpf->mpf_specification); if (mpf->mpf_feature2&(1<<7)) printk(" IMCR and PIC compatibility mode.\n"); else printk(" Virtual Wire compatibility mode.\n"); smp_found_config=1; /* * Now see if we need to read further. */ if (mpf->mpf_feature1!=0) { unsigned long cfg; /* local APIC has default address */ mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; /* * We need to know what the local * APIC id of the boot CPU is! */ /* * * HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK * * It's not just a crazy hack. ;-) */ /* * Standard page mapping * functions don't work yet. * We know that page 0 is not * used. Steal it for now! */ cfg=pg0[0]; pg0[0] = (mp_lapic_addr | _PAGE_RW | _PAGE_PRESENT); local_flush_tlb(); boot_cpu_id = GET_APIC_ID(*((volatile unsigned long *) APIC_ID)); /* * Give it back */ pg0[0]= cfg; local_flush_tlb(); /* * * END OF HACK END OF HACK END OF HACK END OF HACK END OF HACK * */ /* * 2 CPUs, numbered 0 & 1. */ cpu_present_map=3; num_processors=2; printk("I/O APIC at 0xFEC00000.\n"); /* * Save the default type number, we * need it later to set the IO-APIC * up properly: */ mpc_default_type = mpf->mpf_feature1; printk("Bus #0 is "); } switch(mpf->mpf_feature1) { case 1: case 5: printk("ISA\n"); break; case 2: printk("EISA with no IRQ8 chaining\n"); break; case 6: case 3: printk("EISA\n"); break; case 4: case 7: printk("MCA\n"); break; case 0: break; default: printk("???\nUnknown standard configuration %d\n", mpf->mpf_feature1); return 1; } if (mpf->mpf_feature1>4) { printk("Bus #1 is PCI\n"); /* * Set local APIC version to * the integrated form. * It's initialized to zero * otherwise, representing * a discrete 82489DX. */ apic_version[0] = 0x10; apic_version[1] = 0x10; } /* * Read the physical hardware table. * Anything here will override the * defaults. */ if (mpf->mpf_physptr) smp_read_mpc((void *)mpf->mpf_physptr); __cpu_logical_map[0] = boot_cpu_id; global_irq_holder = boot_cpu_id; current->processor = boot_cpu_id; printk("Processors: %d\n", num_processors); /* * Only use the first configuration found. */ return 1; } } bp+=4; length-=16; } return 0; } void __init init_intel_smp (void) { /* * FIXME: Linux assumes you have 640K of base ram.. * this continues the error... * * 1) Scan the bottom 1K for a signature * 2) Scan the top 1K of base RAM * 3) Scan the 64K of bios */ if (!smp_scan_config(0x0,0x400) && !smp_scan_config(639*0x400,0x400) && !smp_scan_config(0xF0000,0x10000)) { /* * If it is an SMP machine we should know now, unless the * configuration is in an EISA/MCA bus machine with an * extended bios data area. * * there is a real-mode segmented pointer pointing to the * 4K EBDA area at 0x40E, calculate and scan it here. * * NOTE! There are Linux loaders that will corrupt the EBDA * area, and as such this kind of SMP config may be less * trustworthy, simply because the SMP table may have been * stomped on during early boot. These loaders are buggy and * should be fixed. */ unsigned int address; address = *(unsigned short *)phys_to_virt(0x40E); address<<=4; smp_scan_config(address, 0x1000); if (smp_found_config) printk(KERN_WARNING "WARNING: MP table in the EBDA can be UNSAFE, contact linux-smp@vger.rutgers.edu if you experience SMP problems!\n"); } } #else /* * The Visual Workstation is Intel MP compliant in the hardware * sense, but it doesnt have a BIOS(-configuration table). * No problem for Linux. */ void __init init_visws_smp(void) { smp_found_config = 1; cpu_present_map |= 2; /* or in id 1 */ apic_version[1] |= 0x10; /* integrated APIC */ apic_version[0] |= 0x10; mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; } #endif /* * - Intel MP Configuration Table * - or SGI Visual Workstation configuration */ void __init init_smp_config (void) { #ifndef CONFIG_VISWS init_intel_smp(); #else init_visws_smp(); #endif } /* * Trampoline 80x86 program as an array. */ extern unsigned char trampoline_data []; extern unsigned char trampoline_end []; static unsigned char *trampoline_base; /* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */ static unsigned long __init setup_trampoline(void) { memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); return virt_to_phys(trampoline_base); } /* * We are called very early to get the low memory for the * SMP bootup trampoline page. */ unsigned long __init smp_alloc_memory(unsigned long mem_base) { if (virt_to_phys((void *)mem_base) >= 0x9F000) panic("smp_alloc_memory: Insufficient low memory for kernel trampoline 0x%lx.", mem_base); trampoline_base = (void *)mem_base; return mem_base + PAGE_SIZE; } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ void __init smp_store_cpu_info(int id) { struct cpuinfo_x86 *c=&cpu_data[id]; *c = boot_cpu_data; c->pte_quick = 0; c->pgd_quick = 0; c->pgtable_cache_sz = 0; identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) smp_b_stepping=1; /* Remember we have B step Pentia with bugs */ } /* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */ static atomic_t smp_commenced = ATOMIC_INIT(0); void __init smp_commence(void) { /* * Lets the callins below out of their loop. */ SMP_PRINTK(("Setting commenced=1, go go go\n")); wmb(); atomic_set(&smp_commenced,1); } void __init enable_local_APIC(void) { unsigned long value; value = apic_read(APIC_SPIV); value |= (1<<8); /* Enable APIC (bit==1) */ value &= ~(1<<9); /* Enable focus processor (bit==0) */ value |= 0xff; /* Set spurious IRQ vector to 0xff */ apic_write(APIC_SPIV,value); /* * Set Task Priority to 'accept all' */ value = apic_read(APIC_TASKPRI); value &= ~APIC_TPRI_MASK; apic_write(APIC_TASKPRI,value); /* * Clear the logical destination ID, just to be safe. * also, put the APIC into flat delivery mode. */ value = apic_read(APIC_LDR); value &= ~APIC_LDR_MASK; apic_write(APIC_LDR,value); value = apic_read(APIC_DFR); value |= SET_APIC_DFR(0xf); apic_write(APIC_DFR, value); udelay(100); /* B safe */ } unsigned long __init init_smp_mappings(unsigned long memory_start) { unsigned long apic_phys; memory_start = PAGE_ALIGN(memory_start); if (smp_found_config) { apic_phys = mp_lapic_addr; } else { /* * set up a fake all zeroes page to simulate the * local APIC and another one for the IO-APIC. We * could use the real zero-page, but it's safer * this way if some buggy code writes to this page ... */ apic_phys = __pa(memory_start); memset((void *)memory_start, 0, PAGE_SIZE); memory_start += PAGE_SIZE; } set_fixmap(FIX_APIC_BASE,apic_phys); printk("mapped APIC to %08lx (%08lx)\n", APIC_BASE, apic_phys); #ifdef CONFIG_X86_IO_APIC { unsigned long ioapic_phys; if (smp_found_config) { ioapic_phys = mp_ioapic_addr; } else { ioapic_phys = __pa(memory_start); memset((void *)memory_start, 0, PAGE_SIZE); memory_start += PAGE_SIZE; } set_fixmap(FIX_IO_APIC_BASE,ioapic_phys); printk("mapped IOAPIC to %08lx (%08lx)\n", fix_to_virt(FIX_IO_APIC_BASE), ioapic_phys); } #endif return memory_start; } extern void calibrate_delay(void); void __init smp_callin(void) { int cpuid; unsigned long timeout; /* * (This works even if the APIC is not enabled.) */ cpuid = GET_APIC_ID(apic_read(APIC_ID)); SMP_PRINTK(("CPU#%d waiting for CALLOUT\n", cpuid)); /* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */ /* * Waiting 2s total for startup (udelay is not yet working) */ timeout = jiffies + 2*HZ; while (time_before(jiffies,timeout)) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (test_bit(cpuid, (unsigned long *)&cpu_callout_map[0])) break; } while (!time_before(jiffies,timeout)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); stop_this_cpu(); } /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ SMP_PRINTK(("CALLIN, before enable_local_APIC().\n")); enable_local_APIC(); /* * Set up our APIC timer. */ setup_APIC_clock(); __sti(); #ifdef CONFIG_MTRR /* Must be done before calibration delay is computed */ mtrr_init_secondary_cpu (); #endif /* * Get our bogomips. */ calibrate_delay(); SMP_PRINTK(("Stack at about %p\n",&cpuid)); /* * Save our processor parameters */ smp_store_cpu_info(cpuid); /* * Allow the master to continue. */ set_bit(cpuid, (unsigned long *)&cpu_callin_map[0]); } int cpucount = 0; extern int cpu_idle(void * unused); /* * Activate a secondary processor. */ int __init start_secondary(void *unused) { /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ smp_callin(); while (!atomic_read(&smp_commenced)) /* nothing */ ; return cpu_idle(NULL); } /* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */ void __init initialize_secondary(void) { struct thread_struct * p = ¤t->tss; /* * Load up the LDT and the task register. */ asm volatile("lldt %%ax": :"a" (p->ldt)); asm volatile("ltr %%ax": :"a" (p->tr)); stts(); /* * We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */ asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (p->esp),"r" (p->eip)); } extern struct { void * esp; unsigned short ss; } stack_start; static void __init do_boot_cpu(int i) { unsigned long cfg; pgd_t maincfg; struct task_struct *idle; unsigned long send_status, accept_status; int timeout, num_starts, j; unsigned long start_eip; /* * We need an idle process for each processor. */ kernel_thread(start_secondary, NULL, CLONE_PID); cpucount++; idle = task[cpucount]; if (!idle) panic("No idle process for CPU %d", i); idle->processor = i; __cpu_logical_map[cpucount] = i; cpu_number_map[i] = cpucount; idle->has_cpu = 1; /* we schedule the first task manually */ idle->tss.eip = (unsigned long) start_secondary; /* start_eip had better be page-aligned! */ start_eip = setup_trampoline(); printk("Booting processor %d eip %lx\n", i, start_eip); /* So we see what's up */ stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle); /* * This grunge runs the startup process for * the targeted processor. */ SMP_PRINTK(("Setting warm reset code and vector.\n")); CMOS_WRITE(0xa, 0xf); local_flush_tlb(); SMP_PRINTK(("1.\n")); *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4; SMP_PRINTK(("2.\n")); *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf; SMP_PRINTK(("3.\n")); maincfg=swapper_pg_dir[0]; ((unsigned long *)swapper_pg_dir)[0]=0x102007; /* * Be paranoid about clearing APIC errors. */ if ( apic_version[i] & 0xF0 ) { apic_write(APIC_ESR, 0); accept_status = (apic_read(APIC_ESR) & 0xEF); } /* * Status is now clean */ send_status = 0; accept_status = 0; /* * Starting actual IPI sequence... */ SMP_PRINTK(("Asserting INIT.\n")); /* * Turn INIT on */ cfg=apic_read(APIC_ICR2); cfg&=0x00FFFFFF; apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i)); /* Target chip */ cfg=apic_read(APIC_ICR); cfg&=~0xCDFFF; /* Clear bits */ cfg |= (APIC_DEST_LEVELTRIG | APIC_DEST_ASSERT | APIC_DEST_DM_INIT); apic_write(APIC_ICR, cfg); /* Send IPI */ udelay(200); SMP_PRINTK(("Deasserting INIT.\n")); cfg=apic_read(APIC_ICR2); cfg&=0x00FFFFFF; apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i)); /* Target chip */ cfg=apic_read(APIC_ICR); cfg&=~0xCDFFF; /* Clear bits */ cfg |= (APIC_DEST_LEVELTRIG | APIC_DEST_DM_INIT); apic_write(APIC_ICR, cfg); /* Send IPI */ /* * Should we send STARTUP IPIs ? * * Determine this based on the APIC version. * If we don't have an integrated APIC, don't * send the STARTUP IPIs. */ if ( apic_version[i] & 0xF0 ) num_starts = 2; else num_starts = 0; /* * Run STARTUP IPI loop. */ for (j = 1; !(send_status || accept_status) && (j <= num_starts) ; j++) { SMP_PRINTK(("Sending STARTUP #%d.\n",j)); apic_write(APIC_ESR, 0); SMP_PRINTK(("After apic_write.\n")); /* * STARTUP IPI */ cfg=apic_read(APIC_ICR2); cfg&=0x00FFFFFF; apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i)); /* Target chip */ cfg=apic_read(APIC_ICR); cfg&=~0xCDFFF; /* Clear bits */ cfg |= (APIC_DEST_DM_STARTUP | (start_eip >> 12)); /* Boot on the stack */ SMP_PRINTK(("Before start apic_write.\n")); apic_write(APIC_ICR, cfg); /* Kick the second */ SMP_PRINTK(("Startup point 1.\n")); timeout = 0; SMP_PRINTK(("Waiting for send to finish...\n")); do { SMP_PRINTK(("+")); udelay(100); send_status = apic_read(APIC_ICR) & 0x1000; } while (send_status && (timeout++ < 1000)); /* * Give the other CPU some time to accept the IPI. */ udelay(200); accept_status = (apic_read(APIC_ESR) & 0xEF); } SMP_PRINTK(("After Startup.\n")); if (send_status) /* APIC never delivered?? */ printk("APIC never delivered???\n"); if (accept_status) /* Send accept error */ printk("APIC delivery error (%lx).\n", accept_status); if ( !(send_status || accept_status) ) { /* * allow APs to start initializing. */ SMP_PRINTK(("Before Callout %d.\n", i)); set_bit(i, (unsigned long *)&cpu_callout_map[0]); SMP_PRINTK(("After Callout %d.\n", i)); for(timeout=0;timeout<50000;timeout++) { if (cpu_callin_map[0]&(1<<i)) break; /* It has booted */ udelay(100); /* Wait 5s total for a response */ } if (cpu_callin_map[0]&(1<<i)) { /* number CPUs logically, starting from 1 (BSP is 0) */ #if 0 cpu_number_map[i] = cpucount; __cpu_logical_map[cpucount] = i; #endif printk("OK.\n"); printk("CPU%d: ", i); print_cpu_info(&cpu_data[i]); } else { if (*((volatile unsigned char *)phys_to_virt(8192))==0xA5) printk("Stuck ??\n"); else printk("Not responding.\n"); } SMP_PRINTK(("CPU has booted.\n")); } else { __cpu_logical_map[cpucount] = -1; cpu_number_map[i] = -1; cpucount--; } swapper_pg_dir[0]=maincfg; local_flush_tlb(); /* mark "stuck" area as not stuck */ *((volatile unsigned long *)phys_to_virt(8192)) = 0; } cycles_t cacheflush_time; extern unsigned long cpu_hz; static void smp_tune_scheduling (void) { unsigned long cachesize; /* * Rough estimation for SMP scheduling, this is the number of * cycles it takes for a fully memory-limited process to flush * the SMP-local cache. * * (For a P5 this pretty much means we will choose another idle * CPU almost always at wakeup time (this is due to the small * L1 cache), on PIIs it's around 50-100 usecs, depending on * the cache size) */ if (!cpu_hz) { /* * this basically disables processor-affinity * scheduling on SMP without a TSC. */ cacheflush_time = 0; return; } else { cachesize = boot_cpu_data.x86_cache_size; if (cachesize == -1) cachesize = 8; /* Pentiums */ cacheflush_time = cpu_hz/1024*cachesize/5000; } printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n", (long)cacheflush_time/(cpu_hz/1000000), ((long)cacheflush_time*100/(cpu_hz/1000000)) % 100); } unsigned int prof_multiplier[NR_CPUS]; unsigned int prof_old_multiplier[NR_CPUS]; unsigned int prof_counter[NR_CPUS]; /* * Cycle through the processors sending APIC IPIs to boot each. */ void __init smp_boot_cpus(void) { int i; #ifdef CONFIG_MTRR /* Must be done before other processors booted */ mtrr_init_boot_cpu (); #endif init_idle(); /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */ for (i = 0; i < NR_CPUS; i++) { cpu_number_map[i] = -1; prof_counter[i] = 1; prof_old_multiplier[i] = 1; prof_multiplier[i] = 1; } /* * Setup boot CPU information */ smp_store_cpu_info(boot_cpu_id); /* Final full version of the data */ smp_tune_scheduling(); printk("CPU%d: ", boot_cpu_id); print_cpu_info(&cpu_data[boot_cpu_id]); /* * not necessary because the MP table should list the boot * CPU too, but we do it for the sake of robustness anyway. * (and for the case when a non-SMP board boots an SMP kernel) */ cpu_present_map |= (1 << hard_smp_processor_id()); cpu_number_map[boot_cpu_id] = 0; /* * If we couldnt find an SMP configuration at boot time, * get out of here now! */ if (!smp_found_config) { printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = cpu_present_map; goto smp_done; } /* * If SMP should be disabled, then really disable it! */ if (!max_cpus) { smp_found_config = 0; printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); } #ifdef SMP_DEBUG { int reg; /* * This is to verify that we're looking at * a real local APIC. Check these against * your board if the CPUs aren't getting * started for no apparent reason. */ reg = apic_read(APIC_VERSION); SMP_PRINTK(("Getting VERSION: %x\n", reg)); apic_write(APIC_VERSION, 0); reg = apic_read(APIC_VERSION); SMP_PRINTK(("Getting VERSION: %x\n", reg)); /* * The two version reads above should print the same * NON-ZERO!!! numbers. If the second one is zero, * there is a problem with the APIC write/read * definitions. * * The next two are just to see if we have sane values. * They're only really relevant if we're in Virtual Wire * compatibility mode, but most boxes are anymore. */ reg = apic_read(APIC_LVT0); SMP_PRINTK(("Getting LVT0: %x\n", reg)); reg = apic_read(APIC_LVT1); SMP_PRINTK(("Getting LVT1: %x\n", reg)); } #endif enable_local_APIC(); /* * Set up our local APIC timer: */ setup_APIC_clock (); /* * Now scan the CPU present map and fire up the other CPUs. */ /* * Add all detected CPUs. (later on we can down individual * CPUs which will change cpu_online_map but not necessarily * cpu_present_map. We are pretty much ready for hot-swap CPUs.) */ cpu_online_map = cpu_present_map; mb(); SMP_PRINTK(("CPU map: %lx\n", cpu_present_map)); for(i=0;i<NR_CPUS;i++) { /* * Don't even attempt to start the boot CPU! */ if (i == boot_cpu_id) continue; if ((cpu_online_map & (1 << i)) && (max_cpus < 0 || max_cpus > cpucount+1)) { do_boot_cpu(i); } /* * Make sure we unmap all failed CPUs */ if (cpu_number_map[i] == -1 && (cpu_online_map & (1 << i))) { printk("CPU #%d not responding. Removing from cpu_online_map.\n",i); cpu_online_map &= ~(1 << i); } } /* * Cleanup possible dangling ends... */ #ifndef CONFIG_VISWS { unsigned long cfg; /* * Install writable page 0 entry. */ cfg = pg0[0]; pg0[0] = _PAGE_RW | _PAGE_PRESENT; /* writeable, present, addr 0 */ local_flush_tlb(); /* * Paranoid: Set warm reset code and vector here back * to default values. */ CMOS_WRITE(0, 0xf); *((volatile long *) phys_to_virt(0x467)) = 0; /* * Restore old page 0 entry. */ pg0[0] = cfg; local_flush_tlb(); } #endif /* * Allow the user to impress friends. */ SMP_PRINTK(("Before bogomips.\n")); if (cpucount==0) { printk(KERN_ERR "Error: only one processor found.\n"); cpu_online_map = (1<<hard_smp_processor_id()); } else { unsigned long bogosum=0; for(i=0;i<32;i++) { if (cpu_online_map&(1<<i)) bogosum+=cpu_data[i].loops_per_sec; } printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount+1, (bogosum+2500)/500000, ((bogosum+2500)/5000)%100); SMP_PRINTK(("Before bogocount - setting activated=1.\n")); smp_activated=1; smp_num_cpus=cpucount+1; } if (smp_b_stepping) printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); SMP_PRINTK(("Boot done.\n")); cache_APIC_registers(); #ifndef CONFIG_VISWS /* * Here we can be sure that there is an IO-APIC in the system. Let's * go and set it up: */ if (!skip_ioapic_setup) setup_IO_APIC(); #endif smp_done: } /* * the following functions deal with sending IPIs between CPUs. * * We use 'broadcast', CPU->CPU IPIs and self-IPIs too. */ /* * Silly serialization to work around CPU bug in P5s. * We can safely turn it off on a 686. */ #ifdef CONFIG_X86_GOOD_APIC # define FORCE_APIC_SERIALIZATION 0 #else # define FORCE_APIC_SERIALIZATION 1 #endif static unsigned int cached_APIC_ICR; static unsigned int cached_APIC_ICR2; /* * Caches reserved bits, APIC reads are (mildly) expensive * and force otherwise unnecessary CPU synchronization. * * (We could cache other APIC registers too, but these are the * main ones used in RL.) */ #define slow_ICR (apic_read(APIC_ICR) & ~0xFDFFF) #define slow_ICR2 (apic_read(APIC_ICR2) & 0x00FFFFFF) void cache_APIC_registers (void) { cached_APIC_ICR = slow_ICR; cached_APIC_ICR2 = slow_ICR2; mb(); } static inline unsigned int __get_ICR (void) { #if FORCE_APIC_SERIALIZATION /* * Wait for the APIC to become ready - this should never occur. It's * a debugging check really. */ int count = 0; unsigned int cfg; while (count < 1000) { cfg = slow_ICR; if (!(cfg&(1<<12))) { if (count) atomic_add(count, (atomic_t*)&ipi_count); return cfg; } count++; udelay(10); } printk("CPU #%d: previous IPI still not cleared after 10mS\n", smp_processor_id()); return cfg; #else return cached_APIC_ICR; #endif } static inline unsigned int __get_ICR2 (void) { #if FORCE_APIC_SERIALIZATION return slow_ICR2; #else return cached_APIC_ICR2; #endif } static inline int __prepare_ICR (unsigned int shortcut, int vector) { unsigned int cfg; cfg = __get_ICR(); cfg |= APIC_DEST_DM_FIXED|shortcut|vector; return cfg; } static inline int __prepare_ICR2 (unsigned int dest) { unsigned int cfg; cfg = __get_ICR2(); cfg |= SET_APIC_DEST_FIELD(dest); return cfg; } static inline void __send_IPI_shortcut(unsigned int shortcut, int vector) { unsigned int cfg; /* * Subtle. In the case of the 'never do double writes' workaround we * have to lock out interrupts to be safe. Otherwise it's just one * single atomic write to the APIC, no need for cli/sti. */ #if FORCE_APIC_SERIALIZATION unsigned long flags; __save_flags(flags); __cli(); #endif /* * No need to touch the target chip field */ cfg = __prepare_ICR(shortcut, vector); /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write(APIC_ICR, cfg); #if FORCE_APIC_SERIALIZATION __restore_flags(flags); #endif } static inline void send_IPI_allbutself(int vector) { __send_IPI_shortcut(APIC_DEST_ALLBUT, vector); } static inline void send_IPI_all(int vector) { __send_IPI_shortcut(APIC_DEST_ALLINC, vector); } void send_IPI_self(int vector) { __send_IPI_shortcut(APIC_DEST_SELF, vector); } static inline void send_IPI_single(int dest, int vector) { unsigned long cfg; #if FORCE_APIC_SERIALIZATION unsigned long flags; __save_flags(flags); __cli(); #endif /* * prepare target chip field */ cfg = __prepare_ICR2(dest); apic_write(APIC_ICR2, cfg); /* * program the ICR */ cfg = __prepare_ICR(0, vector); /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write(APIC_ICR, cfg); #if FORCE_APIC_SERIALIZATION __restore_flags(flags); #endif } /* * This is fraught with deadlocks. Probably the situation is not that * bad as in the early days of SMP, so we might ease some of the * paranoia here. */ void smp_flush_tlb(void) { int cpu = smp_processor_id(); int stuck; unsigned long flags; /* * it's important that we do not generate any APIC traffic * until the AP CPUs have booted up! */ if (cpu_online_map) { /* * The assignment is safe because it's volatile so the * compiler cannot reorder it, because the i586 has * strict memory ordering and because only the kernel * lock holder may issue a tlb flush. If you break any * one of those three change this to an atomic bus * locked or. */ smp_invalidate_needed = cpu_online_map; /* * Processors spinning on some lock with IRQs disabled * will see this IRQ late. The smp_invalidate_needed * map will ensure they don't do a spurious flush tlb * or miss one. */ __save_flags(flags); __cli(); send_IPI_allbutself(INVALIDATE_TLB_VECTOR); /* * Spin waiting for completion */ stuck = 50000000; while (smp_invalidate_needed) { /* * Take care of "crossing" invalidates */ if (test_bit(cpu, &smp_invalidate_needed)) clear_bit(cpu, &smp_invalidate_needed); --stuck; if (!stuck) { printk("stuck on TLB IPI wait (CPU#%d)\n",cpu); break; } } __restore_flags(flags); } /* * Flush the local TLB */ local_flush_tlb(); } /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { send_IPI_single(cpu, RESCHEDULE_VECTOR); } /* * this function sends a 'stop' IPI to all other CPUs in the system. * it goes straight through. */ void smp_send_stop(void) { send_IPI_allbutself(STOP_CPU_VECTOR); } /* Structure and data for smp_call_function(). This is designed to minimise * static memory requirements. It also looks cleaner. */ struct smp_call_function_struct { void (*func) (void *info); void *info; atomic_t unstarted_count; atomic_t unfinished_count; int wait; }; static volatile struct smp_call_function_struct *smp_call_function_data = NULL; /* * this function sends a 'generic call function' IPI to all other CPUs * in the system. */ int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) /* [SUMMARY] Run a function on all other CPUs. <func> The function to run. This must be fast and non-blocking. <info> An arbitrary pointer to pass to the function. <retry> If true, keep retrying until ready. <wait> If true, wait until function has completed on other CPUs. [RETURNS] 0 on success, else a negative status code. Does not return until remote CPUs are nearly ready to execute <<func>> or are or have executed. */ { unsigned long timeout; struct smp_call_function_struct data; static spinlock_t lock = SPIN_LOCK_UNLOCKED; if (retry) { while (1) { if (smp_call_function_data) { schedule (); /* Give a mate a go */ continue; } spin_lock (&lock); if (smp_call_function_data) { spin_unlock (&lock); /* Bad luck */ continue; } /* Mine, all mine! */ break; } } else { if (smp_call_function_data) return -EBUSY; spin_lock (&lock); if (smp_call_function_data) { spin_unlock (&lock); return -EBUSY; } } smp_call_function_data = &data; spin_unlock (&lock); data.func = func; data.info = info; atomic_set (&data.unstarted_count, smp_num_cpus - 1); data.wait = wait; if (wait) atomic_set (&data.unfinished_count, smp_num_cpus - 1); /* Send a message to all other CPUs and wait for them to respond */ send_IPI_allbutself (CALL_FUNCTION_VECTOR); /* Wait for response */ timeout = jiffies + JIFFIE_TIMEOUT; while ( (atomic_read (&data.unstarted_count) > 0) && time_before (jiffies, timeout) ) barrier (); if (atomic_read (&data.unstarted_count) > 0) { smp_call_function_data = NULL; return -ETIMEDOUT; } if (wait) while (atomic_read (&data.unfinished_count) > 0) barrier (); smp_call_function_data = NULL; return 0; } static unsigned int calibration_result; void setup_APIC_timer(unsigned int clocks); /* * Local timer interrupt handler. It does both profiling and * process statistics/rescheduling. * * We do profiling in every local tick, statistics/rescheduling * happen only every 'profiling multiplier' ticks. The default * multiplier is 1 and it can be changed by writing the new multiplier * value into /proc/profile. */ void smp_local_timer_interrupt(struct pt_regs * regs) { int user = (user_mode(regs) != 0); int cpu = smp_processor_id(); /* * The profiling function is SMP safe. (nothing can mess * around with "current", and the profiling counters are * updated with atomic operations). This is especially * useful with a profiling multiplier != 1 */ if (!user) x86_do_profile(regs->eip); if (!--prof_counter[cpu]) { int system = 1 - user; struct task_struct * p = current; /* * The multiplier may have changed since the last time we got * to this point as a result of the user writing to * /proc/profile. In this case we need to adjust the APIC * timer accordingly. * * Interrupts are already masked off at this point. */ prof_counter[cpu] = prof_multiplier[cpu]; if (prof_counter[cpu] != prof_old_multiplier[cpu]) { setup_APIC_timer(calibration_result/prof_counter[cpu]); prof_old_multiplier[cpu] = prof_counter[cpu]; } /* * After doing the above, we need to make like * a normal interrupt - otherwise timer interrupts * ignore the global interrupt lock, which is the * WrongThing (tm) to do. */ irq_enter(cpu, 0); update_one_process(p, 1, user, system, cpu); if (p->pid) { p->counter -= 1; if (p->counter < 0) { p->counter = 0; p->need_resched = 1; } if (p->priority < DEF_PRIORITY) { kstat.cpu_nice += user; kstat.per_cpu_nice[cpu] += user; } else { kstat.cpu_user += user; kstat.per_cpu_user[cpu] += user; } kstat.cpu_system += system; kstat.per_cpu_system[cpu] += system; } irq_exit(cpu, 0); } /* * We take the 'long' return path, and there every subsystem * grabs the apropriate locks (kernel lock/ irq lock). * * we might want to decouple profiling from the 'long path', * and do the profiling totally in assembly. * * Currently this isn't too much of an issue (performance wise), * we can take more than 100K local irqs per second on a 100 MHz P5. */ } /* * Local APIC timer interrupt. This is the most natural way for doing * local interrupts, but local timer interrupts can be emulated by * broadcast interrupts too. [in case the hw doesnt support APIC timers] * * [ if a single-CPU system runs an SMP kernel then we call the local * interrupt as well. Thus we cannot inline the local irq ... ] */ void smp_apic_timer_interrupt(struct pt_regs * regs) { /* * NOTE! We'd better ACK the irq immediately, * because timer handling can be slow, and we * want to be able to accept NMI tlb invalidates * during this time. */ ack_APIC_irq(); smp_local_timer_interrupt(regs); } /* * Reschedule call back. Nothing to do, * all the work is done automatically when * we return from the interrupt. */ asmlinkage void smp_reschedule_interrupt(void) { ack_APIC_irq(); } /* * Invalidate call-back */ asmlinkage void smp_invalidate_interrupt(void) { if (test_and_clear_bit(smp_processor_id(), &smp_invalidate_needed)) local_flush_tlb(); ack_APIC_irq(); } static void stop_this_cpu (void) { /* * Remove this CPU: */ clear_bit(smp_processor_id(), &cpu_online_map); if (cpu_data[smp_processor_id()].hlt_works_ok) for(;;) __asm__("hlt"); for (;;); } /* * CPU halt call-back */ asmlinkage void smp_stop_cpu_interrupt(void) { stop_this_cpu(); } asmlinkage void smp_call_function_interrupt(void) { void (*func) (void *info) = smp_call_function_data->func; void *info = smp_call_function_data->info; int wait = smp_call_function_data->wait; ack_APIC_irq (); /* Notify initiating CPU that I've grabbed the data and am about to execute the function */ atomic_dec (&smp_call_function_data->unstarted_count); /* At this point the structure may be out of scope unless wait==1 */ (*func) (info); if (wait) atomic_dec (&smp_call_function_data->unfinished_count); } /* * This interrupt should _never_ happen with our APIC/SMP architecture */ asmlinkage void smp_spurious_interrupt(void) { ack_APIC_irq(); /* see sw-dev-man vol 3, chapter 7.4.13.5 */ printk("spurious APIC interrupt on CPU#%d, should never happen.\n", smp_processor_id()); } /* * This part sets up the APIC 32 bit clock in LVTT1, with HZ interrupts * per second. We assume that the caller has already set up the local * APIC. * * The APIC timer is not exactly sync with the external timer chip, it * closely follows bus clocks. */ /* * The timer chip is already set up at HZ interrupts per second here, * but we do not accept timer interrupts yet. We only allow the BP * to calibrate. */ static unsigned int __init get_8254_timer_count(void) { unsigned int count; outb_p(0x00, 0x43); count = inb_p(0x40); count |= inb_p(0x40) << 8; return count; } /* * This function sets up the local APIC timer, with a timeout of * 'clocks' APIC bus clock. During calibration we actually call * this function twice, once with a bogus timeout value, second * time for real. The other (noncalibrating) CPUs call this * function only once, with the real value. * * We are strictly in irqs off mode here, as we do not want to * get an APIC interrupt go off accidentally. * * We do reads before writes even if unnecessary, to get around the * APIC double write bug. */ #define APIC_DIVISOR 16 void setup_APIC_timer(unsigned int clocks) { unsigned long lvtt1_value; unsigned int tmp_value; /* * Unfortunately the local APIC timer cannot be set up into NMI * mode. With the IO APIC we can re-route the external timer * interrupt and broadcast it as an NMI to all CPUs, so no pain. */ tmp_value = apic_read(APIC_LVTT); lvtt1_value = APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR; apic_write(APIC_LVTT , lvtt1_value); /* * Divide PICLK by 16 */ tmp_value = apic_read(APIC_TDCR); apic_write(APIC_TDCR , (tmp_value & ~APIC_TDR_DIV_1 ) | APIC_TDR_DIV_16); tmp_value = apic_read(APIC_TMICT); apic_write(APIC_TMICT, clocks/APIC_DIVISOR); } void __init wait_8254_wraparound(void) { unsigned int curr_count, prev_count=~0; int delta; curr_count = get_8254_timer_count(); do { prev_count = curr_count; curr_count = get_8254_timer_count(); delta = curr_count-prev_count; /* * This limit for delta seems arbitrary, but it isn't, it's * slightly above the level of error a buggy Mercury/Neptune * chipset timer can cause. */ } while (delta<300); } /* * In this function we calibrate APIC bus clocks to the external * timer. Unfortunately we cannot use jiffies and the timer irq * to calibrate, since some later bootup code depends on getting * the first irq? Ugh. * * We want to do the calibration only once since we * want to have local timer irqs syncron. CPUs connected * by the same APIC bus have the very same bus frequency. * And we want to have irqs off anyways, no accidental * APIC irq that way. */ int __init calibrate_APIC_clock(void) { unsigned long long t1,t2; long tt1,tt2; long calibration_result; int i; printk("calibrating APIC timer ... "); /* * Put whatever arbitrary (but long enough) timeout * value into the APIC clock, we just want to get the * counter running for calibration. */ setup_APIC_timer(1000000000); /* * The timer chip counts down to zero. Let's wait * for a wraparound to start exact measurement: * (the current tick might have been already half done) */ wait_8254_wraparound (); /* * We wrapped around just now. Let's start: */ rdtscll(t1); tt1=apic_read(APIC_TMCCT); #define LOOPS (HZ/10) /* * Let's wait LOOPS wraprounds: */ for (i=0; i<LOOPS; i++) wait_8254_wraparound (); tt2=apic_read(APIC_TMCCT); rdtscll(t2); /* * The APIC bus clock counter is 32 bits only, it * might have overflown, but note that we use signed * longs, thus no extra care needed. * * underflown to be exact, as the timer counts down ;) */ calibration_result = (tt1-tt2)*APIC_DIVISOR/LOOPS; SMP_PRINTK(("\n..... %ld CPU clocks in 1 timer chip tick.", (unsigned long)(t2-t1)/LOOPS)); SMP_PRINTK(("\n..... %ld APIC bus clocks in 1 timer chip tick.", calibration_result)); printk("\n..... CPU clock speed is %ld.%04ld MHz.\n", ((long)(t2-t1)/LOOPS)/(1000000/HZ), ((long)(t2-t1)/LOOPS)%(1000000/HZ) ); printk("..... system bus clock speed is %ld.%04ld MHz.\n", calibration_result/(1000000/HZ), calibration_result%(1000000/HZ) ); #undef LOOPS return calibration_result; } void __init setup_APIC_clock(void) { unsigned long flags; static volatile int calibration_lock; __save_flags(flags); __cli(); SMP_PRINTK(("setup_APIC_clock() called.\n")); /* * [ setup_APIC_clock() is called from all CPUs, but we want * to do this part of the setup only once ... and it fits * here best ] */ if (!test_and_set_bit(0,&calibration_lock)) { calibration_result=calibrate_APIC_clock(); /* * Signal completion to the other CPU[s]: */ calibration_lock = 3; } else { /* * Other CPU is calibrating, wait for finish: */ SMP_PRINTK(("waiting for other CPU calibrating APIC ... ")); while (calibration_lock == 1); SMP_PRINTK(("done, continuing.\n")); } /* * Now set up the timer for real. */ setup_APIC_timer (calibration_result); /* * We ACK the APIC, just in case there is something pending. */ ack_APIC_irq (); __restore_flags(flags); } /* * the frequency of the profiling timer can be changed * by writing a multiplier value into /proc/profile. */ int setup_profiling_timer(unsigned int multiplier) { int i; /* * Sanity check. [at least 500 APIC cycles should be * between APIC interrupts as a rule of thumb, to avoid * irqs flooding us] */ if ( (!multiplier) || (calibration_result/multiplier < 500)) return -EINVAL; /* * Set the new multiplier for each CPU. CPUs don't start using the * new values until the next timer interrupt in which they do process * accounting. At that time they also adjust their APIC timers * accordingly. */ for (i = 0; i < NR_CPUS; ++i) prof_multiplier[i] = multiplier; return 0; } #undef APIC_DIVISOR |