Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
/*
 *	Intel MP v1.1/v1.4 specification support routines for multi-pentium
 *	hosts.
 *
 *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com>
 *	(c) 1998 Ingo Molnar
 *
 *	Supported by Caldera http://www.caldera.com.
 *	Much of the core SMP work is based on previous work by Thomas Radke, to
 *	whom a great many thanks are extended.
 *
 *	Thanks to Intel for making available several different Pentium,
 *	Pentium Pro and Pentium-II/Xeon MP machines.
 *
 *	This code is released under the GNU public license version 2 or
 *	later.
 *
 *	Fixes
 *		Felix Koop	:	NR_CPUS used properly
 *		Jose Renau	:	Handle single CPU case.
 *		Alan Cox	:	By repeated request 8) - Total BogoMIP report.
 *		Greg Wright	:	Fix for kernel stacks panic.
 *		Erich Boleyn	:	MP v1.4 and additional changes.
 *	Matthias Sattler	:	Changes for 2.1 kernel map.
 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
 *	Michael Chastain	:	Change trampoline.S to gnu as.
 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
 *		Ingo Molnar	:	Added APIC timers, based on code
 *					from Jose Renau
 *		Alan Cox	:	Added EBDA scanning
 *		Ingo Molnar	:	various cleanups and rewrites
 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <asm/mtrr.h>
#include <asm/msr.h>

#include "irq.h"

#define JIFFIE_TIMEOUT 100

extern void update_one_process( struct task_struct *p,
				unsigned long ticks, unsigned long user,
				unsigned long system, int cpu);
/*
 *	Some notes on processor bugs:
 *
 *	Pentium and Pentium Pro (and all CPUs) have bugs. The Linux issues
 *	for SMP are handled as follows.
 *
 *	Pentium Pro
 *		Occasional delivery of 'spurious interrupt' as trap #16. This
 *	is very rare. The kernel logs the event and recovers
 *
 *	Pentium
 *		There is a marginal case where REP MOVS on 100MHz SMP
 *	machines with B stepping processors can fail. XXX should provide
 *	an L1cache=Writethrough or L1cache=off option.
 *
 *		B stepping CPUs may hang. There are hardware work arounds
 *	for this. We warn about it in case your board doesnt have the work
 *	arounds. Basically thats so I can tell anyone with a B stepping
 *	CPU and SMP problems "tough".
 *
 *	Specific items [From Pentium Processor Specification Update]
 *
 *	1AP.	Linux doesn't use remote read
 *	2AP.	Linux doesn't trust APIC errors
 *	3AP.	We work around this
 *	4AP.	Linux never generated 3 interrupts of the same priority
 *		to cause a lost local interrupt.
 *	5AP.	Remote read is never used
 *	9AP.	XXX NEED TO CHECK WE HANDLE THIS XXX
 *	10AP.	XXX NEED TO CHECK WE HANDLE THIS XXX
 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 *		the documentation. Make sure you preserve this as it affects
 *		the C stepping chips too.
 *
 *	If this sounds worrying believe me these bugs are ___RARE___ and
 *	there's about nothing of note with C stepping upwards.
 */


/* Kernel spinlock */
spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;

/*
 * function prototypes:
 */
static void cache_APIC_registers (void);
static void stop_this_cpu (void);

static int smp_b_stepping = 0;				/* Set if we find a B stepping CPU			*/

static int max_cpus = -1;				/* Setup configured maximum number of CPUs to activate	*/
int smp_found_config=0;					/* Have we found an SMP box 				*/

unsigned long cpu_present_map = 0;			/* Bitmask of physically existing CPUs 				*/
unsigned long cpu_online_map = 0;			/* Bitmask of currently online CPUs 				*/
int smp_num_cpus = 1;					/* Total count of live CPUs 				*/
int smp_threads_ready=0;				/* Set when the idlers are all forked 			*/
volatile int cpu_number_map[NR_CPUS];			/* which CPU maps to which logical number		*/
volatile int __cpu_logical_map[NR_CPUS];			/* which logical number maps to which CPU		*/
static volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};	/* We always use 0 the rest is ready for parallel delivery */
static volatile unsigned long cpu_callout_map[NR_CPUS] = {0,};	/* We always use 0 the rest is ready for parallel delivery */
volatile unsigned long smp_invalidate_needed;		/* Used for the invalidate map that's also checked in the spinlock */
volatile unsigned long kstack_ptr;			/* Stack vector for booting CPUs			*/
struct cpuinfo_x86 cpu_data[NR_CPUS];			/* Per CPU bogomips and other parameters 		*/
static unsigned int num_processors = 1;			/* Internal processor count				*/
unsigned long mp_ioapic_addr = 0xFEC00000;		/* Address of the I/O apic (not yet used) 		*/
unsigned char boot_cpu_id = 0;				/* Processor that is doing the boot up 			*/
static int smp_activated = 0;				/* Tripped once we need to start cross invalidating 	*/
int apic_version[NR_CPUS];				/* APIC version number					*/
unsigned long apic_retval;				/* Just debugging the assembler.. 			*/

volatile unsigned long kernel_counter=0;		/* Number of times the processor holds the lock		*/
volatile unsigned long syscall_count=0;			/* Number of times the processor holds the syscall lock	*/

volatile unsigned long ipi_count;			/* Number of IPIs delivered				*/

const char lk_lockmsg[] = "lock from interrupt context at %p\n"; 

int mp_bus_id_to_type [MAX_MP_BUSSES] = { -1, };
extern int mp_irq_entries;
extern struct mpc_config_intsrc mp_irqs [MAX_IRQ_SOURCES];
extern int mpc_default_type;
int mp_bus_id_to_pci_bus [MAX_MP_BUSSES] = { -1, };
int mp_current_pci_id = 0;
unsigned long mp_lapic_addr = 0;
int skip_ioapic_setup = 0;				/* 1 if "noapic" boot option passed */

/* #define SMP_DEBUG */

#ifdef SMP_DEBUG
#define SMP_PRINTK(x)	printk x
#else
#define SMP_PRINTK(x)
#endif

/*
 * IA s/w dev Vol 3, Section 7.4
 */
#define APIC_DEFAULT_PHYS_BASE 0xfee00000

#define CLEAR_TSC wrmsr(0x10, 0x00001000, 0x00001000)

/*
 *	Setup routine for controlling SMP activation
 *
 *	Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 *      activation entirely (the MPS table probe still happens, though).
 *
 *	Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 *	greater than 0, limits the maximum number of CPUs activated in
 *	SMP mode to <NUM>.
 */

void __init smp_setup(char *str, int *ints)
{
	if (ints && ints[0] > 0)
		max_cpus = ints[1];
	else
		max_cpus = 0;
}

void ack_APIC_irq(void)
{
	/* Clear the IPI */

	/* Dummy read */
	apic_read(APIC_SPIV);

	/* Docs say use 0 for future compatibility */
	apic_write(APIC_EOI, 0);
}

/*
 * Intel MP BIOS table parsing routines:
 */

#ifndef CONFIG_X86_VISWS_APIC
/*
 *	Checksum an MP configuration block.
 */

static int mpf_checksum(unsigned char *mp, int len)
{
	int sum=0;
	while(len--)
		sum+=*mp++;
	return sum&0xFF;
}

/*
 *	Processor encoding in an MP configuration block
 */

static char *mpc_family(int family,int model)
{
	static char n[32];
	static char *model_defs[]=
	{
		"80486DX","80486DX",
		"80486SX","80486DX/2 or 80487",
		"80486SL","Intel5X2(tm)",
		"Unknown","Unknown",
		"80486DX/4"
	};
	if (family==0x6)
		return("Pentium(tm) Pro");
	if (family==0x5)
		return("Pentium(tm)");
	if (family==0x0F && model==0x0F)
		return("Special controller");
	if (family==0x04 && model<9)
		return model_defs[model];
	sprintf(n,"Unknown CPU [%d:%d]",family, model);
	return n;
}

/*
 *	Read the MPC
 */

static int __init smp_read_mpc(struct mp_config_table *mpc)
{
	char str[16];
	int count=sizeof(*mpc);
	int ioapics = 0;
	unsigned char *mpt=((unsigned char *)mpc)+count;

	if (memcmp(mpc->mpc_signature,MPC_SIGNATURE,4))
	{
		panic("SMP mptable: bad signature [%c%c%c%c]!\n",
			mpc->mpc_signature[0],
			mpc->mpc_signature[1],
			mpc->mpc_signature[2],
			mpc->mpc_signature[3]);
		return 1;
	}
	if (mpf_checksum((unsigned char *)mpc,mpc->mpc_length))
	{
		panic("SMP mptable: checksum error!\n");
		return 1;
	}
	if (mpc->mpc_spec!=0x01 && mpc->mpc_spec!=0x04)
	{
		printk("Bad Config Table version (%d)!!\n",mpc->mpc_spec);
		return 1;
	}
	memcpy(str,mpc->mpc_oem,8);
	str[8]=0;
	memcpy(ioapic_OEM_ID,str,9);
	printk("OEM ID: %s ",str);
	
	memcpy(str,mpc->mpc_productid,12);
	str[12]=0;
	memcpy(ioapic_Product_ID,str,13);
	printk("Product ID: %s ",str);

	printk("APIC at: 0x%lX\n",mpc->mpc_lapic);

	/* save the local APIC address, it might be non-default */
	mp_lapic_addr = mpc->mpc_lapic;

	/*
	 *	Now process the configuration blocks.
	 */
	
	while(count<mpc->mpc_length)
	{
		switch(*mpt)
		{
			case MP_PROCESSOR:
			{
				struct mpc_config_processor *m=
					(struct mpc_config_processor *)mpt;
				if (m->mpc_cpuflag&CPU_ENABLED)
				{
					printk("Processor #%d %s APIC version %d\n",
						m->mpc_apicid,
						mpc_family((m->mpc_cpufeature&
							CPU_FAMILY_MASK)>>8,
							(m->mpc_cpufeature&
								CPU_MODEL_MASK)>>4),
						m->mpc_apicver);
#ifdef SMP_DEBUG
					if (m->mpc_featureflag&(1<<0))
						printk("    Floating point unit present.\n");
					if (m->mpc_featureflag&(1<<7))
						printk("    Machine Exception supported.\n");
					if (m->mpc_featureflag&(1<<8))
						printk("    64 bit compare & exchange supported.\n");
					if (m->mpc_featureflag&(1<<9))
						printk("    Internal APIC present.\n");
#endif
					if (m->mpc_cpuflag&CPU_BOOTPROCESSOR)
					{
						SMP_PRINTK(("    Bootup CPU\n"));
						boot_cpu_id=m->mpc_apicid;
					}
					else	/* Boot CPU already counted */
						num_processors++;

					if (m->mpc_apicid>NR_CPUS)
						printk("Processor #%d unused. (Max %d processors).\n",m->mpc_apicid, NR_CPUS);
					else
					{
						int ver = m->mpc_apicver;

						cpu_present_map|=(1<<m->mpc_apicid);
						/*
						 * Validate version
						 */
						if (ver == 0x0) {
							printk("BIOS bug, APIC version is 0 for CPU#%d! fixing up to 0x10. (tell your hw vendor)\n", m->mpc_apicid);
							ver = 0x10;
						}
						apic_version[m->mpc_apicid] = ver;
					}
				}
				mpt+=sizeof(*m);
				count+=sizeof(*m);
				break;
			}
			case MP_BUS:
			{
				struct mpc_config_bus *m=
					(struct mpc_config_bus *)mpt;
				memcpy(str,m->mpc_bustype,6);
				str[6]=0;
				SMP_PRINTK(("Bus #%d is %s\n",
					m->mpc_busid,
					str));
				if (strncmp(m->mpc_bustype,"ISA",3) == 0)
					mp_bus_id_to_type[m->mpc_busid] =
						MP_BUS_ISA;
				else
				if (strncmp(m->mpc_bustype,"EISA",4) == 0)
					mp_bus_id_to_type[m->mpc_busid] =
						MP_BUS_EISA;
				if (strncmp(m->mpc_bustype,"PCI",3) == 0) {
					mp_bus_id_to_type[m->mpc_busid] =
						MP_BUS_PCI;
					mp_bus_id_to_pci_bus[m->mpc_busid] =
						mp_current_pci_id;
					mp_current_pci_id++;
				}
				mpt+=sizeof(*m);
				count+=sizeof(*m);
				break;
			}
			case MP_IOAPIC:
			{
				struct mpc_config_ioapic *m=
					(struct mpc_config_ioapic *)mpt;
				if (m->mpc_flags&MPC_APIC_USABLE)
				{
					ioapics++;
					printk("I/O APIC #%d Version %d at 0x%lX.\n",
						m->mpc_apicid,m->mpc_apicver,
						m->mpc_apicaddr);
					/*
					 * we use the first one only currently
					 */
					if (ioapics == 1)
						mp_ioapic_addr = m->mpc_apicaddr;
				}
				mpt+=sizeof(*m);
				count+=sizeof(*m);
				break;
			}
			case MP_INTSRC:
			{
				struct mpc_config_intsrc *m=
					(struct mpc_config_intsrc *)mpt;

				mp_irqs [mp_irq_entries] = *m;
				if (++mp_irq_entries == MAX_IRQ_SOURCES) {
					printk("Max irq sources exceeded!!\n");
					printk("Skipping remaining sources.\n");
					--mp_irq_entries;
				}

				mpt+=sizeof(*m);
				count+=sizeof(*m);
				break;
			}
			case MP_LINTSRC:
			{
				struct mpc_config_intlocal *m=
					(struct mpc_config_intlocal *)mpt;
				mpt+=sizeof(*m);
				count+=sizeof(*m);
				break;
			}
		}
	}
	if (ioapics > 1)
	{
		printk("Warning: Multiple IO-APICs not yet supported.\n");
		printk("Warning: switching to non APIC mode.\n");
		skip_ioapic_setup=1;
	}
	return num_processors;
}

/*
 *	Scan the memory blocks for an SMP configuration block.
 */

static int __init smp_scan_config(unsigned long base, unsigned long length)
{
	unsigned long *bp=phys_to_virt(base);
	struct intel_mp_floating *mpf;

	SMP_PRINTK(("Scan SMP from %p for %ld bytes.\n",
		bp,length));
	if (sizeof(*mpf)!=16)
		printk("Error: MPF size\n");

	while (length>0)
	{
		if (*bp==SMP_MAGIC_IDENT)
		{
			mpf=(struct intel_mp_floating *)bp;
			if (mpf->mpf_length==1 &&
				!mpf_checksum((unsigned char *)bp,16) &&
				(mpf->mpf_specification == 1
				 || mpf->mpf_specification == 4) )
			{
				printk("Intel MultiProcessor Specification v1.%d\n", mpf->mpf_specification);
				if (mpf->mpf_feature2&(1<<7))
					printk("    IMCR and PIC compatibility mode.\n");
				else
					printk("    Virtual Wire compatibility mode.\n");
				smp_found_config=1;
				/*
				 *	Now see if we need to read further.
				 */
				if (mpf->mpf_feature1!=0)
				{
					unsigned long cfg;

					/* local APIC has default address */
					mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
					/*
					 *	We need to know what the local
					 *	APIC id of the boot CPU is!
					 */

/*
 *
 *	HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK
 *
 *	It's not just a crazy hack.  ;-)
 */
					/*
					 *	Standard page mapping
					 *	functions don't work yet.
					 *	We know that page 0 is not
					 *	used.  Steal it for now!
					 */
			
					cfg=pg0[0];
					pg0[0] = (mp_lapic_addr | _PAGE_RW | _PAGE_PRESENT);
					local_flush_tlb();

					boot_cpu_id = GET_APIC_ID(*((volatile unsigned long *) APIC_ID));

					/*
					 *	Give it back
					 */

					pg0[0]= cfg;
					local_flush_tlb();

/*
 *
 *	END OF HACK   END OF HACK   END OF HACK   END OF HACK   END OF HACK
 *
 */
					/*
					 *	2 CPUs, numbered 0 & 1.
					 */
					cpu_present_map=3;
					num_processors=2;
					printk("I/O APIC at 0xFEC00000.\n");

					/*
					 * Save the default type number, we
					 * need it later to set the IO-APIC
					 * up properly:
					 */
					mpc_default_type = mpf->mpf_feature1;

					printk("Bus #0 is ");
				}
				switch(mpf->mpf_feature1)
				{
					case 1:
					case 5:
						printk("ISA\n");
						break;
					case 2:
						printk("EISA with no IRQ8 chaining\n");
						break;
					case 6:
					case 3:
						printk("EISA\n");
						break;
					case 4:
					case 7:
						printk("MCA\n");
						break;
					case 0:
						break;
					default:
						printk("???\nUnknown standard configuration %d\n",
							mpf->mpf_feature1);
						return 1;
				}
				if (mpf->mpf_feature1>4)
				{
					printk("Bus #1 is PCI\n");

					/*
					 *	Set local APIC version to
					 *	the integrated form.
					 *	It's initialized to zero
					 *	otherwise, representing
					 *	a discrete 82489DX.
					 */
					apic_version[0] = 0x10;
					apic_version[1] = 0x10;
				}
				/*
				 *	Read the physical hardware table.
				 *	Anything here will override the
				 *	defaults.
				 */
				if (mpf->mpf_physptr)
					smp_read_mpc((void *)mpf->mpf_physptr);

				__cpu_logical_map[0] = boot_cpu_id;
				global_irq_holder = boot_cpu_id;
				current->processor = boot_cpu_id;

				printk("Processors: %d\n", num_processors);
				/*
				 *	Only use the first configuration found.
				 */
				return 1;
			}
		}
		bp+=4;
		length-=16;
	}

	return 0;
}

void __init init_intel_smp (void)
{
	/*
	 * FIXME: Linux assumes you have 640K of base ram..
	 * this continues the error...
	 *
	 * 1) Scan the bottom 1K for a signature
	 * 2) Scan the top 1K of base RAM
	 * 3) Scan the 64K of bios
	 */
	if (!smp_scan_config(0x0,0x400) &&
	    !smp_scan_config(639*0x400,0x400) &&
	    !smp_scan_config(0xF0000,0x10000)) {
		/*
		 * If it is an SMP machine we should know now, unless the
		 * configuration is in an EISA/MCA bus machine with an
		 * extended bios data area. 
		 *
		 * there is a real-mode segmented pointer pointing to the
		 * 4K EBDA area at 0x40E, calculate and scan it here.
		 *
		 * NOTE! There are Linux loaders that will corrupt the EBDA
		 * area, and as such this kind of SMP config may be less
		 * trustworthy, simply because the SMP table may have been
		 * stomped on during early boot. These loaders are buggy and
		 * should be fixed.
		 */
		unsigned int address;

		address = *(unsigned short *)phys_to_virt(0x40E);
		address<<=4;
		smp_scan_config(address, 0x1000);
		if (smp_found_config)
			printk(KERN_WARNING "WARNING: MP table in the EBDA can be UNSAFE, contact linux-smp@vger.rutgers.edu if you experience SMP problems!\n");
	}
}

#else

/*
 * The Visual Workstation is Intel MP compliant in the hardware
 * sense, but it doesnt have a BIOS(-configuration table).
 * No problem for Linux.
 */
void __init init_visws_smp(void)
{
	smp_found_config = 1;

	cpu_present_map |= 2; /* or in id 1 */
	apic_version[1] |= 0x10; /* integrated APIC */
	apic_version[0] |= 0x10;

	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
} 

#endif

/*
 * - Intel MP Configuration Table
 * - or SGI Visual Workstation configuration
 */
void __init init_smp_config (void)
{
#ifndef CONFIG_VISWS
	init_intel_smp();
#else
	init_visws_smp();
#endif
}

/*
 *	Trampoline 80x86 program as an array.
 */

extern unsigned char trampoline_data [];
extern unsigned char trampoline_end  [];
static unsigned char *trampoline_base;

/*
 *	Currently trivial. Write the real->protected mode
 *	bootstrap into the page concerned. The caller
 *	has made sure it's suitably aligned.
 */

static unsigned long __init setup_trampoline(void)
{
	memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
	return virt_to_phys(trampoline_base);
}

/*
 *	We are called very early to get the low memory for the
 *	SMP bootup trampoline page.
 */
unsigned long __init smp_alloc_memory(unsigned long mem_base)
{
	if (virt_to_phys((void *)mem_base) >= 0x9F000)
		panic("smp_alloc_memory: Insufficient low memory for kernel trampoline 0x%lx.", mem_base);
	trampoline_base = (void *)mem_base;
	return mem_base + PAGE_SIZE;
}

/*
 *	The bootstrap kernel entry code has set these up. Save them for
 *	a given CPU
 */

void __init smp_store_cpu_info(int id)
{
	struct cpuinfo_x86 *c=&cpu_data[id];

	*c = boot_cpu_data;
	c->pte_quick = 0;
	c->pgd_quick = 0;
	c->pgtable_cache_sz = 0;
	identify_cpu(c);
	/*
	 *	Mask B, Pentium, but not Pentium MMX
	 */
	if (c->x86_vendor == X86_VENDOR_INTEL &&
	    c->x86 == 5 &&
	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
	    c->x86_model <= 3)
		smp_b_stepping=1;		/* Remember we have B step Pentia with bugs */
}

/*
 *	Architecture specific routine called by the kernel just before init is
 *	fired off. This allows the BP to have everything in order [we hope].
 *	At the end of this all the APs will hit the system scheduling and off
 *	we go. Each AP will load the system gdt's and jump through the kernel
 *	init into idle(). At this point the scheduler will one day take over
 * 	and give them jobs to do. smp_callin is a standard routine
 *	we use to track CPUs as they power up.
 */

static atomic_t smp_commenced = ATOMIC_INIT(0);

void __init smp_commence(void)
{
	/*
	 *	Lets the callins below out of their loop.
	 */
	SMP_PRINTK(("Setting commenced=1, go go go\n"));

	wmb();
	atomic_set(&smp_commenced,1);
}

void __init enable_local_APIC(void)
{
	unsigned long value;

 	value = apic_read(APIC_SPIV);
 	value |= (1<<8);		/* Enable APIC (bit==1) */
 	value &= ~(1<<9);		/* Enable focus processor (bit==0) */
	value |= 0xff;			/* Set spurious IRQ vector to 0xff */
 	apic_write(APIC_SPIV,value);

	/*
	 * Set Task Priority to 'accept all'
	 */
 	value = apic_read(APIC_TASKPRI);
 	value &= ~APIC_TPRI_MASK;
 	apic_write(APIC_TASKPRI,value);

	/*
	 * Clear the logical destination ID, just to be safe.
	 * also, put the APIC into flat delivery mode.
	 */
 	value = apic_read(APIC_LDR);
	value &= ~APIC_LDR_MASK;
 	apic_write(APIC_LDR,value);

 	value = apic_read(APIC_DFR);
	value |= SET_APIC_DFR(0xf);
 	apic_write(APIC_DFR, value);

	udelay(100);			/* B safe */
}

unsigned long __init init_smp_mappings(unsigned long memory_start)
{
	unsigned long apic_phys;

	memory_start = PAGE_ALIGN(memory_start);
	if (smp_found_config) {
		apic_phys = mp_lapic_addr;
	} else {
		/*
		 * set up a fake all zeroes page to simulate the
		 * local APIC and another one for the IO-APIC. We
		 * could use the real zero-page, but it's safer
		 * this way if some buggy code writes to this page ...
		 */
		apic_phys = __pa(memory_start);
		memset((void *)memory_start, 0, PAGE_SIZE);
		memory_start += PAGE_SIZE;
	}
	set_fixmap(FIX_APIC_BASE,apic_phys);
	printk("mapped APIC to %08lx (%08lx)\n", APIC_BASE, apic_phys);

#ifdef CONFIG_X86_IO_APIC
	{
		unsigned long ioapic_phys;

		if (smp_found_config) {
			ioapic_phys = mp_ioapic_addr;
		} else {
			ioapic_phys = __pa(memory_start);
			memset((void *)memory_start, 0, PAGE_SIZE);
			memory_start += PAGE_SIZE;
		}
		set_fixmap(FIX_IO_APIC_BASE,ioapic_phys);
		printk("mapped IOAPIC to %08lx (%08lx)\n",
				fix_to_virt(FIX_IO_APIC_BASE), ioapic_phys);
	}
#endif

	return memory_start;
}

extern void calibrate_delay(void);

void __init smp_callin(void)
{
	int cpuid;
	unsigned long timeout;

	/*
	 * (This works even if the APIC is not enabled.)
	 */
	cpuid = GET_APIC_ID(apic_read(APIC_ID));

	SMP_PRINTK(("CPU#%d waiting for CALLOUT\n", cpuid));

	/*
	 * STARTUP IPIs are fragile beasts as they might sometimes
	 * trigger some glue motherboard logic. Complete APIC bus
	 * silence for 1 second, this overestimates the time the
	 * boot CPU is spending to send the up to 2 STARTUP IPIs
	 * by a factor of two. This should be enough.
	 */

	/*
	 * Waiting 2s total for startup (udelay is not yet working)
	 */
	timeout = jiffies + 2*HZ;
	while (time_before(jiffies,timeout))
	{
		/*
		 * Has the boot CPU finished it's STARTUP sequence?
		 */
		if (test_bit(cpuid, (unsigned long *)&cpu_callout_map[0]))
			break;
	}

	while (!time_before(jiffies,timeout)) {
		printk("BUG: CPU%d started up but did not get a callout!\n",
			cpuid);
		stop_this_cpu();
	}

	/*
	 * the boot CPU has finished the init stage and is spinning
	 * on callin_map until we finish. We are free to set up this
	 * CPU, first the APIC. (this is probably redundant on most
	 * boards)
	 */
	
	SMP_PRINTK(("CALLIN, before enable_local_APIC().\n"));
	enable_local_APIC();

	/*
	 * Set up our APIC timer.
	 */
	setup_APIC_clock();

 	__sti();

#ifdef CONFIG_MTRR
	/*  Must be done before calibration delay is computed  */
	mtrr_init_secondary_cpu ();
#endif
	/*
	 *	Get our bogomips.
	 */
	calibrate_delay();
	SMP_PRINTK(("Stack at about %p\n",&cpuid));

	/*
	 *	Save our processor parameters
	 */
 	smp_store_cpu_info(cpuid);

	/*
	 *	Allow the master to continue.
	 */
	set_bit(cpuid, (unsigned long *)&cpu_callin_map[0]);
}

int cpucount = 0;

extern int cpu_idle(void * unused);

/*
 *	Activate a secondary processor.
 */
int __init start_secondary(void *unused)
{
	/*
	 * Dont put anything before smp_callin(), SMP
	 * booting is too fragile that we want to limit the
	 * things done here to the most necessary things.
	 */
	smp_callin();
	while (!atomic_read(&smp_commenced))
		/* nothing */ ;
	return cpu_idle(NULL);
}

/*
 * Everything has been set up for the secondary
 * CPUs - they just need to reload everything
 * from the task structure
 * This function must not return.
 */
void __init initialize_secondary(void)
{
	struct thread_struct * p = &current->tss;

	/*
	 * Load up the LDT and the task register.
	 */
	asm volatile("lldt %%ax": :"a" (p->ldt));
	asm volatile("ltr %%ax": :"a" (p->tr));
	stts();

	/*
	 * We don't actually need to load the full TSS,
	 * basically just the stack pointer and the eip.
	 */

	asm volatile(
		"movl %0,%%esp\n\t"
		"jmp *%1"
		:
		:"r" (p->esp),"r" (p->eip));
}

extern struct {
	void * esp;
	unsigned short ss;
} stack_start;

static void __init do_boot_cpu(int i)
{
	unsigned long cfg;
	pgd_t maincfg;
	struct task_struct *idle;
	unsigned long send_status, accept_status;
	int timeout, num_starts, j;
	unsigned long start_eip;

	/*
	 *	We need an idle process for each processor.
	 */
	kernel_thread(start_secondary, NULL, CLONE_PID);
	cpucount++;

	idle = task[cpucount];
	if (!idle)
		panic("No idle process for CPU %d", i);

	idle->processor = i;
	__cpu_logical_map[cpucount] = i;
	cpu_number_map[i] = cpucount;
	idle->has_cpu = 1; /* we schedule the first task manually */
	idle->tss.eip = (unsigned long) start_secondary;

	/* start_eip had better be page-aligned! */
	start_eip = setup_trampoline();

	printk("Booting processor %d eip %lx\n", i, start_eip);	/* So we see what's up   */
	stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle);

	/*
	 *	This grunge runs the startup process for
	 *	the targeted processor.
	 */

	SMP_PRINTK(("Setting warm reset code and vector.\n"));

	CMOS_WRITE(0xa, 0xf);
	local_flush_tlb();
	SMP_PRINTK(("1.\n"));
	*((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4;
	SMP_PRINTK(("2.\n"));
	*((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf;
	SMP_PRINTK(("3.\n"));

	maincfg=swapper_pg_dir[0];
	((unsigned long *)swapper_pg_dir)[0]=0x102007;

	/*
	 *	Be paranoid about clearing APIC errors.
	 */

	if ( apic_version[i] & 0xF0 )
	{
		apic_write(APIC_ESR, 0);
		accept_status = (apic_read(APIC_ESR) & 0xEF);
	}

	/*
	 *	Status is now clean
	 */
	
	send_status = 	0;
	accept_status = 0;

	/*
	 *	Starting actual IPI sequence...
	 */

	SMP_PRINTK(("Asserting INIT.\n"));

	/*
	 *	Turn INIT on
	 */
			
	cfg=apic_read(APIC_ICR2);
	cfg&=0x00FFFFFF;
	apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i)); 			/* Target chip     	*/
	cfg=apic_read(APIC_ICR);
	cfg&=~0xCDFFF;								/* Clear bits 		*/
	cfg |= (APIC_DEST_LEVELTRIG | APIC_DEST_ASSERT | APIC_DEST_DM_INIT);
	apic_write(APIC_ICR, cfg);						/* Send IPI */

	udelay(200);
	SMP_PRINTK(("Deasserting INIT.\n"));

	cfg=apic_read(APIC_ICR2);
	cfg&=0x00FFFFFF;
	apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i));			/* Target chip     	*/
	cfg=apic_read(APIC_ICR);
	cfg&=~0xCDFFF;								/* Clear bits 		*/
	cfg |= (APIC_DEST_LEVELTRIG | APIC_DEST_DM_INIT);
	apic_write(APIC_ICR, cfg);						/* Send IPI */

	/*
	 *	Should we send STARTUP IPIs ?
	 *
	 *	Determine this based on the APIC version.
	 *	If we don't have an integrated APIC, don't
	 *	send the STARTUP IPIs.
	 */

	if ( apic_version[i] & 0xF0 )
		num_starts = 2;
	else
		num_starts = 0;

	/*
	 *	Run STARTUP IPI loop.
	 */

	for (j = 1; !(send_status || accept_status)
		    && (j <= num_starts) ; j++)
	{
		SMP_PRINTK(("Sending STARTUP #%d.\n",j));
		apic_write(APIC_ESR, 0);
		SMP_PRINTK(("After apic_write.\n"));

		/*
		 *	STARTUP IPI
		 */

		cfg=apic_read(APIC_ICR2);
		cfg&=0x00FFFFFF;
		apic_write(APIC_ICR2, cfg|SET_APIC_DEST_FIELD(i));			/* Target chip     	*/
		cfg=apic_read(APIC_ICR);
		cfg&=~0xCDFFF;								/* Clear bits 		*/
		cfg |= (APIC_DEST_DM_STARTUP | (start_eip >> 12));						/* Boot on the stack 	*/
		SMP_PRINTK(("Before start apic_write.\n"));
		apic_write(APIC_ICR, cfg);						/* Kick the second 	*/

		SMP_PRINTK(("Startup point 1.\n"));

		timeout = 0;
		SMP_PRINTK(("Waiting for send to finish...\n"));
		do {
			SMP_PRINTK(("+"));
			udelay(100);
			send_status = apic_read(APIC_ICR) & 0x1000;
		} while (send_status && (timeout++ < 1000));

		/*
		 * Give the other CPU some time to accept the IPI.
		 */
		udelay(200);
		accept_status = (apic_read(APIC_ESR) & 0xEF);
	}
	SMP_PRINTK(("After Startup.\n"));

	if (send_status)		/* APIC never delivered?? */
		printk("APIC never delivered???\n");
	if (accept_status)		/* Send accept error */
		printk("APIC delivery error (%lx).\n", accept_status);

	if ( !(send_status || accept_status) )
	{
		/*
		 * allow APs to start initializing.
		 */
		SMP_PRINTK(("Before Callout %d.\n", i));
		set_bit(i, (unsigned long *)&cpu_callout_map[0]);
		SMP_PRINTK(("After Callout %d.\n", i));

		for(timeout=0;timeout<50000;timeout++)
		{
			if (cpu_callin_map[0]&(1<<i))
				break;				/* It has booted */
			udelay(100);				/* Wait 5s total for a response */
		}
		if (cpu_callin_map[0]&(1<<i))
		{
			/* number CPUs logically, starting from 1 (BSP is 0) */
#if 0
			cpu_number_map[i] = cpucount;
			__cpu_logical_map[cpucount] = i;
#endif
			printk("OK.\n");
			printk("CPU%d: ", i);
			print_cpu_info(&cpu_data[i]);
		}
		else
		{
			if (*((volatile unsigned char *)phys_to_virt(8192))==0xA5)
				printk("Stuck ??\n");
			else
				printk("Not responding.\n");
		}
	SMP_PRINTK(("CPU has booted.\n"));
	}
	else
	{
		__cpu_logical_map[cpucount] = -1;
		cpu_number_map[i] = -1;
		cpucount--;
	}

	swapper_pg_dir[0]=maincfg;
	local_flush_tlb();

	/* mark "stuck" area as not stuck */
	*((volatile unsigned long *)phys_to_virt(8192)) = 0;
}

cycles_t cacheflush_time;
extern unsigned long cpu_hz;

static void smp_tune_scheduling (void)
{
	unsigned long cachesize;
	/*
	 * Rough estimation for SMP scheduling, this is the number of
	 * cycles it takes for a fully memory-limited process to flush
	 * the SMP-local cache.
	 *
	 * (For a P5 this pretty much means we will choose another idle
	 *  CPU almost always at wakeup time (this is due to the small
	 *  L1 cache), on PIIs it's around 50-100 usecs, depending on
	 *  the cache size)
	 */

	if (!cpu_hz) {
		/*
		 * this basically disables processor-affinity
		 * scheduling on SMP without a TSC.
		 */
		cacheflush_time = 0;
		return;
	} else {
		cachesize = boot_cpu_data.x86_cache_size;
		if (cachesize == -1)
			cachesize = 8; /* Pentiums */

		cacheflush_time = cpu_hz/1024*cachesize/5000;
	}

	printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n",
		(long)cacheflush_time/(cpu_hz/1000000),
		((long)cacheflush_time*100/(cpu_hz/1000000)) % 100);
}

unsigned int prof_multiplier[NR_CPUS];
unsigned int prof_old_multiplier[NR_CPUS];
unsigned int prof_counter[NR_CPUS];

/*
 *	Cycle through the processors sending APIC IPIs to boot each.
 */

void __init smp_boot_cpus(void)
{
	int i;

#ifdef CONFIG_MTRR
	/*  Must be done before other processors booted  */
	mtrr_init_boot_cpu ();
#endif
	init_idle();
	/*
	 *	Initialize the logical to physical CPU number mapping
	 *	and the per-CPU profiling counter/multiplier
	 */

	for (i = 0; i < NR_CPUS; i++) {
		cpu_number_map[i] = -1;
		prof_counter[i] = 1;
		prof_old_multiplier[i] = 1;
		prof_multiplier[i] = 1;
	}

	/*
	 *	Setup boot CPU information
	 */

	smp_store_cpu_info(boot_cpu_id);			/* Final full version of the data */
	smp_tune_scheduling();
	printk("CPU%d: ", boot_cpu_id);
	print_cpu_info(&cpu_data[boot_cpu_id]);

	/*
	 * not necessary because the MP table should list the boot
	 * CPU too, but we do it for the sake of robustness anyway.
	 * (and for the case when a non-SMP board boots an SMP kernel)
	 */
	cpu_present_map |= (1 << hard_smp_processor_id());

	cpu_number_map[boot_cpu_id] = 0;

	/*
	 * If we couldnt find an SMP configuration at boot time,
	 * get out of here now!
	 */

	if (!smp_found_config)
	{
		printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n");
#ifndef CONFIG_VISWS
		io_apic_irqs = 0;
#endif
		cpu_online_map = cpu_present_map;
		goto smp_done;
	}

	/*
	 *	If SMP should be disabled, then really disable it!
	 */

	if (!max_cpus)
	{
		smp_found_config = 0;
		printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
	}

#ifdef SMP_DEBUG
	{
		int reg;

		/*
		 *	This is to verify that we're looking at
		 *	a real local APIC.  Check these against
		 *	your board if the CPUs aren't getting
		 *	started for no apparent reason.
		 */

		reg = apic_read(APIC_VERSION);
		SMP_PRINTK(("Getting VERSION: %x\n", reg));

		apic_write(APIC_VERSION, 0);
		reg = apic_read(APIC_VERSION);
		SMP_PRINTK(("Getting VERSION: %x\n", reg));

		/*
		 *	The two version reads above should print the same
		 *	NON-ZERO!!! numbers.  If the second one is zero,
		 *	there is a problem with the APIC write/read
		 *	definitions.
		 *
		 *	The next two are just to see if we have sane values.
		 *	They're only really relevant if we're in Virtual Wire
		 *	compatibility mode, but most boxes are anymore.
		 */


		reg = apic_read(APIC_LVT0);
		SMP_PRINTK(("Getting LVT0: %x\n", reg));

		reg = apic_read(APIC_LVT1);
		SMP_PRINTK(("Getting LVT1: %x\n", reg));
	}
#endif

	enable_local_APIC();

	/*
	 * Set up our local APIC timer:
	 */
	setup_APIC_clock ();

	/*
	 *	Now scan the CPU present map and fire up the other CPUs.
	 */

	/*
	 * Add all detected CPUs. (later on we can down individual
	 * CPUs which will change cpu_online_map but not necessarily
	 * cpu_present_map. We are pretty much ready for hot-swap CPUs.)
	 */
	cpu_online_map = cpu_present_map;
	mb();

	SMP_PRINTK(("CPU map: %lx\n", cpu_present_map));

	for(i=0;i<NR_CPUS;i++)
	{
		/*
		 *	Don't even attempt to start the boot CPU!
		 */
		if (i == boot_cpu_id)
			continue;

		if ((cpu_online_map & (1 << i))
		    && (max_cpus < 0 || max_cpus > cpucount+1))
		{
			do_boot_cpu(i);
		}

		/*
		 *	Make sure we unmap all failed CPUs
		 */
		
		if (cpu_number_map[i] == -1 && (cpu_online_map & (1 << i))) {
			printk("CPU #%d not responding. Removing from cpu_online_map.\n",i);
			cpu_online_map &= ~(1 << i);
                }
        }

	/*
	 *	Cleanup possible dangling ends...
	 */

#ifndef CONFIG_VISWS
	{
		unsigned long cfg;

		/*
		 *	Install writable page 0 entry.
		 */
		cfg = pg0[0];
		pg0[0] = _PAGE_RW | _PAGE_PRESENT;	/* writeable, present, addr 0 */
		local_flush_tlb();
	
		/*
		 *	Paranoid:  Set warm reset code and vector here back
		 *	to default values.
		 */

		CMOS_WRITE(0, 0xf);

		*((volatile long *) phys_to_virt(0x467)) = 0;

		/*
		 *	Restore old page 0 entry.
		 */

		pg0[0] = cfg;
		local_flush_tlb();
	}
#endif

	/*
	 *	Allow the user to impress friends.
	 */

	SMP_PRINTK(("Before bogomips.\n"));
	if (cpucount==0)
	{
		printk(KERN_ERR "Error: only one processor found.\n");
		cpu_online_map = (1<<hard_smp_processor_id());
	}
	else
	{
		unsigned long bogosum=0;
		for(i=0;i<32;i++)
		{
			if (cpu_online_map&(1<<i))
				bogosum+=cpu_data[i].loops_per_sec;
		}
		printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
			cpucount+1,
			(bogosum+2500)/500000,
			((bogosum+2500)/5000)%100);
		SMP_PRINTK(("Before bogocount - setting activated=1.\n"));
		smp_activated=1;
		smp_num_cpus=cpucount+1;
	}
	if (smp_b_stepping)
		printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
	SMP_PRINTK(("Boot done.\n"));

	cache_APIC_registers();
#ifndef CONFIG_VISWS
	/*
	 * Here we can be sure that there is an IO-APIC in the system. Let's
	 * go and set it up:
	 */
	if (!skip_ioapic_setup) 
		setup_IO_APIC();
#endif

smp_done:
}


/*
 * the following functions deal with sending IPIs between CPUs.
 *
 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
 */


/*
 * Silly serialization to work around CPU bug in P5s.
 * We can safely turn it off on a 686.
 */
#ifdef CONFIG_X86_GOOD_APIC
# define FORCE_APIC_SERIALIZATION 0
#else
# define FORCE_APIC_SERIALIZATION 1
#endif

static unsigned int cached_APIC_ICR;
static unsigned int cached_APIC_ICR2;

/*
 * Caches reserved bits, APIC reads are (mildly) expensive
 * and force otherwise unnecessary CPU synchronization.
 *
 * (We could cache other APIC registers too, but these are the
 * main ones used in RL.)
 */
#define slow_ICR (apic_read(APIC_ICR) & ~0xFDFFF)
#define slow_ICR2 (apic_read(APIC_ICR2) & 0x00FFFFFF)

void cache_APIC_registers (void)
{
	cached_APIC_ICR = slow_ICR;
	cached_APIC_ICR2 = slow_ICR2;
	mb();
}

static inline unsigned int __get_ICR (void)
{
#if FORCE_APIC_SERIALIZATION
	/*
	 * Wait for the APIC to become ready - this should never occur. It's
	 * a debugging check really.
	 */
	int count = 0;
	unsigned int cfg;

	while (count < 1000)
	{
		cfg = slow_ICR;
		if (!(cfg&(1<<12))) {
			if (count)
				atomic_add(count, (atomic_t*)&ipi_count);
			return cfg;
		}
		count++;
		udelay(10);
	}
	printk("CPU #%d: previous IPI still not cleared after 10mS\n",
			smp_processor_id());
	return cfg;
#else
	return cached_APIC_ICR;
#endif
}

static inline unsigned int __get_ICR2 (void)
{
#if FORCE_APIC_SERIALIZATION
	return slow_ICR2;
#else
	return cached_APIC_ICR2;
#endif
}

static inline int __prepare_ICR (unsigned int shortcut, int vector)
{
	unsigned int cfg;

	cfg = __get_ICR();
	cfg |= APIC_DEST_DM_FIXED|shortcut|vector;

	return cfg;
}

static inline int __prepare_ICR2 (unsigned int dest)
{
	unsigned int cfg;

	cfg = __get_ICR2();
	cfg |= SET_APIC_DEST_FIELD(dest);

	return cfg;
}

static inline void __send_IPI_shortcut(unsigned int shortcut, int vector)
{
	unsigned int cfg;
/*
 * Subtle. In the case of the 'never do double writes' workaround we
 * have to lock out interrupts to be safe. Otherwise it's just one
 * single atomic write to the APIC, no need for cli/sti.
 */
#if FORCE_APIC_SERIALIZATION
	unsigned long flags;

	__save_flags(flags);
	__cli();
#endif

	/*
	 * No need to touch the target chip field
	 */

	cfg = __prepare_ICR(shortcut, vector);

	/*
	 * Send the IPI. The write to APIC_ICR fires this off.
	 */
	apic_write(APIC_ICR, cfg);
#if FORCE_APIC_SERIALIZATION
	__restore_flags(flags);
#endif
}

static inline void send_IPI_allbutself(int vector)
{
	__send_IPI_shortcut(APIC_DEST_ALLBUT, vector);
}

static inline void send_IPI_all(int vector)
{
	__send_IPI_shortcut(APIC_DEST_ALLINC, vector);
}

void send_IPI_self(int vector)
{
	__send_IPI_shortcut(APIC_DEST_SELF, vector);
}

static inline void send_IPI_single(int dest, int vector)
{
	unsigned long cfg;
#if FORCE_APIC_SERIALIZATION
	unsigned long flags;

	__save_flags(flags);
	__cli();
#endif

	/*
	 * prepare target chip field
	 */

	cfg = __prepare_ICR2(dest);
	apic_write(APIC_ICR2, cfg);

	/*
	 * program the ICR 
	 */
	cfg = __prepare_ICR(0, vector);
	
	/*
	 * Send the IPI. The write to APIC_ICR fires this off.
	 */
	apic_write(APIC_ICR, cfg);
#if FORCE_APIC_SERIALIZATION
	__restore_flags(flags);
#endif
}

/*
 * This is fraught with deadlocks. Probably the situation is not that
 * bad as in the early days of SMP, so we might ease some of the
 * paranoia here.
 */

void smp_flush_tlb(void)
{
	int cpu = smp_processor_id();
	int stuck;
	unsigned long flags;

	/*
	 * it's important that we do not generate any APIC traffic
	 * until the AP CPUs have booted up!
	 */
	if (cpu_online_map) {
		/*
		 * The assignment is safe because it's volatile so the
		 * compiler cannot reorder it, because the i586 has
		 * strict memory ordering and because only the kernel
		 * lock holder may issue a tlb flush. If you break any
		 * one of those three change this to an atomic bus
		 * locked or.
		 */

		smp_invalidate_needed = cpu_online_map;

		/*
		 * Processors spinning on some lock with IRQs disabled
		 * will see this IRQ late. The smp_invalidate_needed
		 * map will ensure they don't do a spurious flush tlb
		 * or miss one.
		 */
	
		__save_flags(flags);
		__cli();

		send_IPI_allbutself(INVALIDATE_TLB_VECTOR);

		/*
		 * Spin waiting for completion
		 */

		stuck = 50000000;
		while (smp_invalidate_needed) {
			/*
			 * Take care of "crossing" invalidates
			 */
			if (test_bit(cpu, &smp_invalidate_needed))
			clear_bit(cpu, &smp_invalidate_needed);
			--stuck;
			if (!stuck) {
				printk("stuck on TLB IPI wait (CPU#%d)\n",cpu);
				break;
			}
		}
		__restore_flags(flags);
	}

	/*
	 *	Flush the local TLB
	 */
	local_flush_tlb();

}


/*
 * this function sends a 'reschedule' IPI to another CPU.
 * it goes straight through and wastes no time serializing
 * anything. Worst case is that we lose a reschedule ...
 */

void smp_send_reschedule(int cpu)
{
	send_IPI_single(cpu, RESCHEDULE_VECTOR);
}

/*
 * this function sends a 'stop' IPI to all other CPUs in the system.
 * it goes straight through.
 */

void smp_send_stop(void)
{
	send_IPI_allbutself(STOP_CPU_VECTOR);
}

/* Structure and data for smp_call_function(). This is designed to minimise
 * static memory requirements. It also looks cleaner.
 */
struct smp_call_function_struct {
	void (*func) (void *info);
	void *info;
	atomic_t unstarted_count;
	atomic_t unfinished_count;
	int wait;
};
static volatile struct smp_call_function_struct *smp_call_function_data = NULL;

/*
 * this function sends a 'generic call function' IPI to all other CPUs
 * in the system.
 */

int smp_call_function (void (*func) (void *info), void *info, int retry,
		       int wait)
/*  [SUMMARY] Run a function on all other CPUs.
    <func> The function to run. This must be fast and non-blocking.
    <info> An arbitrary pointer to pass to the function.
    <retry> If true, keep retrying until ready.
    <wait> If true, wait until function has completed on other CPUs.
    [RETURNS] 0 on success, else a negative status code. Does not return until
    remote CPUs are nearly ready to execute <<func>> or are or have executed.
*/
{
	unsigned long timeout;
	struct smp_call_function_struct data;
	static spinlock_t lock = SPIN_LOCK_UNLOCKED;

	if (retry) {
		while (1) {
			if (smp_call_function_data) {
				schedule ();  /*  Give a mate a go  */
				continue;
			}
			spin_lock (&lock);
			if (smp_call_function_data) {
				spin_unlock (&lock);  /*  Bad luck  */
				continue;
			}
			/*  Mine, all mine!  */
			break;
		}
	}
	else {
		if (smp_call_function_data) return -EBUSY;
		spin_lock (&lock);
		if (smp_call_function_data) {
			spin_unlock (&lock);
			return -EBUSY;
		}
	}
	smp_call_function_data = &data;
	spin_unlock (&lock);
	data.func = func;
	data.info = info;
	atomic_set (&data.unstarted_count, smp_num_cpus - 1);
	data.wait = wait;
	if (wait) atomic_set (&data.unfinished_count, smp_num_cpus - 1);
	/*  Send a message to all other CPUs and wait for them to respond  */
	send_IPI_allbutself (CALL_FUNCTION_VECTOR);
	/*  Wait for response  */
	timeout = jiffies + JIFFIE_TIMEOUT;
	while ( (atomic_read (&data.unstarted_count) > 0) &&
		time_before (jiffies, timeout) )
		barrier ();
	if (atomic_read (&data.unstarted_count) > 0) {
		smp_call_function_data = NULL;
		return -ETIMEDOUT;
	}
	if (wait)
		while (atomic_read (&data.unfinished_count) > 0)
			barrier ();
	smp_call_function_data = NULL;
	return 0;
}

static unsigned int calibration_result;

void setup_APIC_timer(unsigned int clocks);

/*
 * Local timer interrupt handler. It does both profiling and
 * process statistics/rescheduling.
 *
 * We do profiling in every local tick, statistics/rescheduling
 * happen only every 'profiling multiplier' ticks. The default
 * multiplier is 1 and it can be changed by writing the new multiplier
 * value into /proc/profile.
 */

void smp_local_timer_interrupt(struct pt_regs * regs)
{
	int user = (user_mode(regs) != 0);
	int cpu = smp_processor_id();

	/*
	 * The profiling function is SMP safe. (nothing can mess
	 * around with "current", and the profiling counters are
	 * updated with atomic operations). This is especially
	 * useful with a profiling multiplier != 1
	 */
	if (!user)
		x86_do_profile(regs->eip);

	if (!--prof_counter[cpu]) {
		int system = 1 - user;
		struct task_struct * p = current;

		/*
		 * The multiplier may have changed since the last time we got
		 * to this point as a result of the user writing to
		 * /proc/profile.  In this case we need to adjust the APIC
		 * timer accordingly.
		 *
		 * Interrupts are already masked off at this point.
		 */
               prof_counter[cpu] = prof_multiplier[cpu];
               if (prof_counter[cpu] != prof_old_multiplier[cpu]) {
                       setup_APIC_timer(calibration_result/prof_counter[cpu]);
                       prof_old_multiplier[cpu] = prof_counter[cpu];
               }

		/*
		 * After doing the above, we need to make like
		 * a normal interrupt - otherwise timer interrupts
		 * ignore the global interrupt lock, which is the
		 * WrongThing (tm) to do.
		 */

 		irq_enter(cpu, 0);
		update_one_process(p, 1, user, system, cpu);
		if (p->pid) {
			p->counter -= 1;
			if (p->counter < 0) {
				p->counter = 0;
				p->need_resched = 1;
			}
			if (p->priority < DEF_PRIORITY) {
				kstat.cpu_nice += user;
				kstat.per_cpu_nice[cpu] += user;
			} else {
				kstat.cpu_user += user;
				kstat.per_cpu_user[cpu] += user;
			}
			kstat.cpu_system += system;
			kstat.per_cpu_system[cpu] += system;

		}
		irq_exit(cpu, 0);
	}

	/*
	 * We take the 'long' return path, and there every subsystem
	 * grabs the apropriate locks (kernel lock/ irq lock).
	 *
	 * we might want to decouple profiling from the 'long path',
	 * and do the profiling totally in assembly.
	 *
	 * Currently this isn't too much of an issue (performance wise),
	 * we can take more than 100K local irqs per second on a 100 MHz P5.
	 */
}

/*
 * Local APIC timer interrupt. This is the most natural way for doing
 * local interrupts, but local timer interrupts can be emulated by
 * broadcast interrupts too. [in case the hw doesnt support APIC timers]
 *
 * [ if a single-CPU system runs an SMP kernel then we call the local
 *   interrupt as well. Thus we cannot inline the local irq ... ]
 */
void smp_apic_timer_interrupt(struct pt_regs * regs)
{
	/*
	 * NOTE! We'd better ACK the irq immediately,
	 * because timer handling can be slow, and we
	 * want to be able to accept NMI tlb invalidates
	 * during this time.
	 */
	ack_APIC_irq();
	smp_local_timer_interrupt(regs);
}

/*
 * Reschedule call back. Nothing to do,
 * all the work is done automatically when
 * we return from the interrupt.
 */
asmlinkage void smp_reschedule_interrupt(void)
{
	ack_APIC_irq();
}

/*
 * Invalidate call-back
 */
asmlinkage void smp_invalidate_interrupt(void)
{
	if (test_and_clear_bit(smp_processor_id(), &smp_invalidate_needed))
		local_flush_tlb();

	ack_APIC_irq();

}

static void stop_this_cpu (void)
{
	/*
	 * Remove this CPU:
	 */
	clear_bit(smp_processor_id(), &cpu_online_map);

	if (cpu_data[smp_processor_id()].hlt_works_ok)
		for(;;) __asm__("hlt");
	for (;;);
}

/*
 *	CPU halt call-back
 */
asmlinkage void smp_stop_cpu_interrupt(void)
{
	stop_this_cpu();
}

asmlinkage void smp_call_function_interrupt(void)
{
	void (*func) (void *info) = smp_call_function_data->func;
	void *info = smp_call_function_data->info;
	int wait = smp_call_function_data->wait;

	ack_APIC_irq ();
	/*  Notify initiating CPU that I've grabbed the data and am about to
	    execute the function  */
	atomic_dec (&smp_call_function_data->unstarted_count);
	/*  At this point the structure may be out of scope unless wait==1  */
	(*func) (info);
	if (wait) atomic_dec (&smp_call_function_data->unfinished_count);
}

/*
 * This interrupt should _never_ happen with our APIC/SMP architecture
 */
asmlinkage void smp_spurious_interrupt(void)
{
	ack_APIC_irq();
	/* see sw-dev-man vol 3, chapter 7.4.13.5 */
	printk("spurious APIC interrupt on CPU#%d, should never happen.\n",
			smp_processor_id());
}

/*
 * This part sets up the APIC 32 bit clock in LVTT1, with HZ interrupts
 * per second. We assume that the caller has already set up the local
 * APIC.
 *
 * The APIC timer is not exactly sync with the external timer chip, it
 * closely follows bus clocks.
 */

/*
 * The timer chip is already set up at HZ interrupts per second here,
 * but we do not accept timer interrupts yet. We only allow the BP
 * to calibrate.
 */
static unsigned int __init get_8254_timer_count(void)
{
	unsigned int count;

	outb_p(0x00, 0x43);
	count = inb_p(0x40);
	count |= inb_p(0x40) << 8;

	return count;
}

/*
 * This function sets up the local APIC timer, with a timeout of
 * 'clocks' APIC bus clock. During calibration we actually call
 * this function twice, once with a bogus timeout value, second
 * time for real. The other (noncalibrating) CPUs call this
 * function only once, with the real value.
 *
 * We are strictly in irqs off mode here, as we do not want to
 * get an APIC interrupt go off accidentally.
 *
 * We do reads before writes even if unnecessary, to get around the
 * APIC double write bug.
 */

#define APIC_DIVISOR 16

void setup_APIC_timer(unsigned int clocks)
{
	unsigned long lvtt1_value;
	unsigned int tmp_value;

	/*
	 * Unfortunately the local APIC timer cannot be set up into NMI
	 * mode. With the IO APIC we can re-route the external timer
	 * interrupt and broadcast it as an NMI to all CPUs, so no pain.
	 */
	tmp_value = apic_read(APIC_LVTT);
	lvtt1_value = APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR;
	apic_write(APIC_LVTT , lvtt1_value);

	/*
	 * Divide PICLK by 16
	 */
	tmp_value = apic_read(APIC_TDCR);
	apic_write(APIC_TDCR , (tmp_value & ~APIC_TDR_DIV_1 )
				 | APIC_TDR_DIV_16);

	tmp_value = apic_read(APIC_TMICT);
	apic_write(APIC_TMICT, clocks/APIC_DIVISOR);
}

void __init wait_8254_wraparound(void)
{
	unsigned int curr_count, prev_count=~0;
	int delta;

	curr_count = get_8254_timer_count();

	do {
		prev_count = curr_count;
		curr_count = get_8254_timer_count();
		delta = curr_count-prev_count;

	/*
	 * This limit for delta seems arbitrary, but it isn't, it's
	 * slightly above the level of error a buggy Mercury/Neptune
	 * chipset timer can cause.
	 */

	} while (delta<300);
}

/*
 * In this function we calibrate APIC bus clocks to the external
 * timer. Unfortunately we cannot use jiffies and the timer irq
 * to calibrate, since some later bootup code depends on getting
 * the first irq? Ugh.
 *
 * We want to do the calibration only once since we
 * want to have local timer irqs syncron. CPUs connected
 * by the same APIC bus have the very same bus frequency.
 * And we want to have irqs off anyways, no accidental
 * APIC irq that way.
 */

int __init calibrate_APIC_clock(void)
{
	unsigned long long t1,t2;
	long tt1,tt2;
	long calibration_result;
	int i;

	printk("calibrating APIC timer ... ");

	/*
	 * Put whatever arbitrary (but long enough) timeout
	 * value into the APIC clock, we just want to get the
	 * counter running for calibration.
	 */
	setup_APIC_timer(1000000000);

	/*
	 * The timer chip counts down to zero. Let's wait
	 * for a wraparound to start exact measurement:
	 * (the current tick might have been already half done)
	 */

	wait_8254_wraparound ();

	/*
	 * We wrapped around just now. Let's start:
	 */
	rdtscll(t1);
	tt1=apic_read(APIC_TMCCT);

#define LOOPS (HZ/10)
	/*
	 * Let's wait LOOPS wraprounds:
	 */
	for (i=0; i<LOOPS; i++)
		wait_8254_wraparound ();

	tt2=apic_read(APIC_TMCCT);
	rdtscll(t2);

	/*
	 * The APIC bus clock counter is 32 bits only, it
	 * might have overflown, but note that we use signed
	 * longs, thus no extra care needed.
	 *
	 * underflown to be exact, as the timer counts down ;)
	 */

	calibration_result = (tt1-tt2)*APIC_DIVISOR/LOOPS;

	SMP_PRINTK(("\n..... %ld CPU clocks in 1 timer chip tick.",
			 (unsigned long)(t2-t1)/LOOPS));

	SMP_PRINTK(("\n..... %ld APIC bus clocks in 1 timer chip tick.",
			 calibration_result));


	printk("\n..... CPU clock speed is %ld.%04ld MHz.\n",
		((long)(t2-t1)/LOOPS)/(1000000/HZ),
		((long)(t2-t1)/LOOPS)%(1000000/HZ)  );

	printk("..... system bus clock speed is %ld.%04ld MHz.\n",
		calibration_result/(1000000/HZ),
		calibration_result%(1000000/HZ)  );
#undef LOOPS

	return calibration_result;
}

void __init setup_APIC_clock(void)
{
	unsigned long flags;

	static volatile int calibration_lock;

	__save_flags(flags);
	__cli();

	SMP_PRINTK(("setup_APIC_clock() called.\n"));

	/*
	 * [ setup_APIC_clock() is called from all CPUs, but we want
	 *   to do this part of the setup only once ... and it fits
	 *   here best ]
	 */
	if (!test_and_set_bit(0,&calibration_lock)) {

		calibration_result=calibrate_APIC_clock();
		/*
	 	 * Signal completion to the other CPU[s]:
	 	 */
		calibration_lock = 3;

	} else {
		/*
		 * Other CPU is calibrating, wait for finish:
		 */
		SMP_PRINTK(("waiting for other CPU calibrating APIC ... "));
		while (calibration_lock == 1);
		SMP_PRINTK(("done, continuing.\n"));
	}

/*
 * Now set up the timer for real.
 */

	setup_APIC_timer (calibration_result);

	/*
	 * We ACK the APIC, just in case there is something pending.
	 */

	ack_APIC_irq ();

	__restore_flags(flags);
}

/*
 * the frequency of the profiling timer can be changed
 * by writing a multiplier value into /proc/profile.
 */
int setup_profiling_timer(unsigned int multiplier)
{
	int i;

	/*
	 * Sanity check. [at least 500 APIC cycles should be
	 * between APIC interrupts as a rule of thumb, to avoid
	 * irqs flooding us]
	 */
	if ( (!multiplier) || (calibration_result/multiplier < 500))
		return -EINVAL;

	/* 
	 * Set the new multiplier for each CPU.  CPUs don't start using the
	 * new values until the next timer interrupt in which they do process
	 * accounting.  At that time they also adjust their APIC timers
	 * accordingly.
	 */
	for (i = 0; i < NR_CPUS; ++i)
		prof_multiplier[i] = multiplier;

	return 0;
}

#undef APIC_DIVISOR