Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | #ifndef _ASM_IA64_UACCESS_H #define _ASM_IA64_UACCESS_H /* * This file defines various macros to transfer memory areas across * the user/kernel boundary. This needs to be done carefully because * this code is executed in kernel mode and uses user-specified * addresses. Thus, we need to be careful not to let the user to * trick us into accessing kernel memory that would normally be * inaccessible. This code is also fairly performance sensitive, * so we want to spend as little time doing saftey checks as * possible. * * To make matters a bit more interesting, these macros sometimes also * called from within the kernel itself, in which case the address * validity check must be skipped. The get_fs() macro tells us what * to do: if get_fs()==USER_DS, checking is performed, if * get_fs()==KERNEL_DS, checking is bypassed. * * Note that even if the memory area specified by the user is in a * valid address range, it is still possible that we'll get a page * fault while accessing it. This is handled by filling out an * exception handler fixup entry for each instruction that has the * potential to fault. When such a fault occurs, the page fault * handler checks to see whether the faulting instruction has a fixup * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and * then resumes execution at the continuation point. * * Copyright (C) 1998, 1999 Hewlett-Packard Co * Copyright (C) 1998, 1999 David Mosberger-Tang <davidm@hpl.hp.com> */ #include <linux/errno.h> #include <linux/sched.h> /* * For historical reasons, the following macros are grossly misnamed: */ #define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */ #define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */ #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define get_ds() (KERNEL_DS) #define get_fs() (current->addr_limit) #define set_fs(x) (current->addr_limit = (x)) #define segment_eq(a,b) ((a).seg == (b).seg) /* * When accessing user memory, we need to make sure the entire area * really is in user-level space. In order to do this efficiently, we * make sure that the page at address TASK_SIZE is never valid (we do * this by selecting VMALLOC_START as TASK_SIZE+PAGE_SIZE). This way, * we can simply check whether the starting address is < TASK_SIZE * and, if so, start accessing the memory. If the user specified bad * length, we will fault on the NaT page and then return the * appropriate error. */ #define __access_ok(addr,size,segment) (((unsigned long) (addr)) <= (segment).seg) #define access_ok(type,addr,size) __access_ok((addr),(size),get_fs()) extern inline int verify_area (int type, const void *addr, unsigned long size) { return access_ok(type,addr,size) ? 0 : -EFAULT; } /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * Careful to not * (a) re-use the arguments for side effects (sizeof/typeof is ok) * (b) require any knowledge of processes at this stage */ #define put_user(x,ptr) __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs()) #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs()) /* * The "__xxx" versions do not do address space checking, useful when * doing multiple accesses to the same area (the programmer has to do the * checks by hand with "access_ok()") */ #define __put_user(x,ptr) __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) /* * The "xxx_ret" versions return constant specified in third argument, if * something bad happens. These macros can be optimized for the * case of just returning from the function xxx_ret is used. */ #define put_user_ret(x,ptr,ret) ({ if (put_user(x,ptr)) return ret; }) #define get_user_ret(x,ptr,ret) ({ if (get_user(x,ptr)) return ret; }) #define __put_user_ret(x,ptr,ret) ({ if (__put_user(x,ptr)) return ret; }) #define __get_user_ret(x,ptr,ret) ({ if (__get_user(x,ptr)) return ret; }) extern void __get_user_unknown (void); #define __get_user_nocheck(x,ptr,size) \ ({ \ register long __gu_err __asm__ ("r8") = 0; \ register long __gu_val __asm__ ("r9") = 0; \ switch (size) { \ case 1: __get_user_8(ptr); break; \ case 2: __get_user_16(ptr); break; \ case 4: __get_user_32(ptr); break; \ case 8: __get_user_64(ptr); break; \ default: __get_user_unknown(); break; \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) #define __get_user_check(x,ptr,size,segment) \ ({ \ register long __gu_err __asm__ ("r8") = -EFAULT; \ register long __gu_val __asm__ ("r9") = 0; \ const __typeof__(*(ptr)) *__gu_addr = (ptr); \ if (__access_ok((long)__gu_addr,size,segment)) { \ __gu_err = 0; \ switch (size) { \ case 1: __get_user_8(__gu_addr); break; \ case 2: __get_user_16(__gu_addr); break; \ case 4: __get_user_32(__gu_addr); break; \ case 8: __get_user_64(__gu_addr); break; \ default: __get_user_unknown(); break; \ } \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) #define __get_user_64(addr) \ __asm__ ("\n1:\tld8 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 (2b-1b)|1\n" \ "\t.previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_32(addr) \ __asm__ ("\n1:\tld4 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 (2b-1b)|1\n" \ "\t.previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_16(addr) \ __asm__ ("\n1:\tld2 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 (2b-1b)|1\n" \ "\t.previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_8(addr) \ __asm__ ("\n1:\tld1 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 (2b-1b)|1\n" \ "\t.previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)); extern void __put_user_unknown (void); #define __put_user_nocheck(x,ptr,size) \ ({ \ register long __pu_err __asm__ ("r8") = 0; \ switch (size) { \ case 1: __put_user_8(x,ptr); break; \ case 2: __put_user_16(x,ptr); break; \ case 4: __put_user_32(x,ptr); break; \ case 8: __put_user_64(x,ptr); break; \ default: __put_user_unknown(); break; \ } \ __pu_err; \ }) #define __put_user_check(x,ptr,size,segment) \ ({ \ register long __pu_err __asm__ ("r8") = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (__access_ok((long)__pu_addr,size,segment)) { \ __pu_err = 0; \ switch (size) { \ case 1: __put_user_8(x,__pu_addr); break; \ case 2: __put_user_16(x,__pu_addr); break; \ case 4: __put_user_32(x,__pu_addr); break; \ case 8: __put_user_64(x,__pu_addr); break; \ default: __put_user_unknown(); break; \ } \ } \ __pu_err; \ }) /* * The "__put_user_xx()" macros tell gcc they read from memory * instead of writing: this is because they do not write to * any memory gcc knows about, so there are no aliasing issues */ #define __put_user_64(x,addr) \ __asm__ __volatile__ ( \ "\n1:\tst8 %1=%r2\t// %0 gets overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 2b-1b\n" \ "\t.previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_32(x,addr) \ __asm__ __volatile__ ( \ "\n1:\tst4 %1=%r2\t// %0 gets overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 2b-1b\n" \ "\t.previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_16(x,addr) \ __asm__ __volatile__ ( \ "\n1:\tst2 %1=%r2\t// %0 gets overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 2b-1b\n" \ "\t.previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_8(x,addr) \ __asm__ __volatile__ ( \ "\n1:\tst1 %1=%r2\t// %0 gets overwritten by exception handler\n" \ "2:\n" \ "\t.section __ex_table,\"a\"\n" \ "\t\tdata4 @gprel(1b)\n" \ "\t\tdata4 2b-1b\n" \ "\t.previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) /* * Complex access routines */ extern unsigned long __copy_user (void *to, const void *from, unsigned long count); #define __copy_to_user(to,from,n) __copy_user((to), (from), (n)) #define __copy_from_user(to,from,n) __copy_user((to), (from), (n)) #define copy_to_user(to,from,n) __copy_tofrom_user((to), (from), (n), 1) #define copy_from_user(to,from,n) __copy_tofrom_user((to), (from), (n), 0) #define __copy_tofrom_user(to,from,n,check_to) \ ({ \ void *__cu_to = (to); \ const void *__cu_from = (from); \ long __cu_len = (n); \ \ if (__access_ok((long) ((check_to) ? __cu_to : __cu_from), __cu_len, get_fs())) { \ __cu_len = __copy_user(__cu_to, __cu_from, __cu_len); \ } \ __cu_len; \ }) #define copy_to_user_ret(to,from,n,retval) \ ({ \ if (copy_to_user(to,from,n)) \ return retval; \ }) #define copy_from_user_ret(to,from,n,retval) \ ({ \ if (copy_from_user(to,from,n)) \ return retval; \ }) extern unsigned long __do_clear_user (void *, unsigned long); #define __clear_user(to,n) \ ({ \ __do_clear_user(to,n); \ }) #define clear_user(to,n) \ ({ \ unsigned long __cu_len = (n); \ if (__access_ok((long) to, __cu_len, get_fs())) { \ __cu_len = __do_clear_user(to, __cu_len); \ } \ __cu_len; \ }) /* Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else strlen. */ extern long __strncpy_from_user (char *to, const char *from, long to_len); #define strncpy_from_user(to,from,n) \ ({ \ const char * __sfu_from = (from); \ long __sfu_ret = -EFAULT; \ if (__access_ok((long) __sfu_from, 0, get_fs())) \ __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \ __sfu_ret; \ }) /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ extern unsigned long __strlen_user (const char *); #define strlen_user(str) \ ({ \ const char *__su_str = (str); \ unsigned long __su_ret = 0; \ if (__access_ok((long) __su_str, 0, get_fs())) \ __su_ret = __strlen_user(__su_str); \ __su_ret; \ }) /* * Returns: 0 if exception before NUL or reaching the supplied limit * (N), a value greater than N if the limit would be exceeded, else * strlen. */ extern unsigned long __strnlen_user (const char *, long); #define strnlen_user(str, len) \ ({ \ const char *__su_str = (str); \ unsigned long __su_ret = 0; \ if (__access_ok((long) __su_str, 0, get_fs())) \ __su_ret = __strnlen_user(__su_str, len); \ __su_ret; \ }) struct exception_table_entry { int addr; /* gp-relative address of insn this fixup is for */ int skip; /* number of bytes to skip to get to the continuation point. Bit 0 tells us if r9 should be cleared to 0*/ }; extern const struct exception_table_entry *search_exception_table (unsigned long addr); #endif /* _ASM_IA64_UACCESS_H */ |