Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
/*
 * This file is derived from various .h and .c files from the zlib-1.0.4
 * distribution by Jean-loup Gailly and Mark Adler, with some additions
 * by Paul Mackerras to aid in implementing Deflate compression and
 * decompression for PPP packets.  See zlib.h for conditions of
 * distribution and use.
 *
 * Changes that have been made include:
 * - added Z_PACKET_FLUSH (see zlib.h for details)
 * - added inflateIncomp and deflateOutputPending
 * - allow strm->next_out to be NULL, meaning discard the output
 *
 * $Id: zlib.c,v 1.3 1997/12/23 10:47:42 paulus Exp $
 */

/* 
 *  ==FILEVERSION 971210==
 *
 * This marker is used by the Linux installation script to determine
 * whether an up-to-date version of this file is already installed.
 */

#define NO_DUMMY_DECL
#define NO_ZCFUNCS
#define MY_ZCALLOC

#if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
#define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
#endif


/* +++ zutil.h */
/* zutil.h -- internal interface and configuration of the compression library
 * Copyright (C) 1995-1996 Jean-loup Gailly.
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */

#ifndef _Z_UTIL_H
#define _Z_UTIL_H

#include "zlib.h"

#if defined(KERNEL) || defined(_KERNEL)
/* Assume this is a *BSD or SVR4 kernel */
#include <sys/types.h>
#include <sys/time.h>
#include <sys/systm.h>
#  define HAVE_MEMCPY
#  define memcpy(d, s, n)	bcopy((s), (d), (n))
#  define memset(d, v, n)	bzero((d), (n))
#  define memcmp		bcmp

#else
#if defined(__KERNEL__)
/* Assume this is a Linux kernel */
#include <linux/string.h>
#define HAVE_MEMCPY

#else /* not kernel */

#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
#   include <stddef.h>
#   include <errno.h>
#else
    extern int errno;
#endif
#ifdef STDC
#  include <string.h>
#  include <stdlib.h>
#endif
#endif /* __KERNEL__ */
#endif /* _KERNEL || KERNEL */

#ifndef local
#  define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */

typedef unsigned char  uch;
typedef uch FAR uchf;
typedef unsigned short ush;
typedef ush FAR ushf;
typedef unsigned long  ulg;

extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
/* (size given to avoid silly warnings with Visual C++) */

#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]

#define ERR_RETURN(strm,err) \
  return (strm->msg = (char*)ERR_MSG(err), (err))
/* To be used only when the state is known to be valid */

        /* common constants */

#ifndef DEF_WBITS
#  define DEF_WBITS MAX_WBITS
#endif
/* default windowBits for decompression. MAX_WBITS is for compression only */

#if MAX_MEM_LEVEL >= 8
#  define DEF_MEM_LEVEL 8
#else
#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
#endif
/* default memLevel */

#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
/* The three kinds of block type */

#define MIN_MATCH  3
#define MAX_MATCH  258
/* The minimum and maximum match lengths */

#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */

        /* target dependencies */

#ifdef MSDOS
#  define OS_CODE  0x00
#  ifdef __TURBOC__
#    include <alloc.h>
#  else /* MSC or DJGPP */
#    include <malloc.h>
#  endif
#endif

#ifdef OS2
#  define OS_CODE  0x06
#endif

#ifdef WIN32 /* Window 95 & Windows NT */
#  define OS_CODE  0x0b
#endif

#if defined(VAXC) || defined(VMS)
#  define OS_CODE  0x02
#  define FOPEN(name, mode) \
     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
#endif

#ifdef AMIGA
#  define OS_CODE  0x01
#endif

#if defined(ATARI) || defined(atarist)
#  define OS_CODE  0x05
#endif

#ifdef MACOS
#  define OS_CODE  0x07
#endif

#ifdef __50SERIES /* Prime/PRIMOS */
#  define OS_CODE  0x0F
#endif

#ifdef TOPS20
#  define OS_CODE  0x0a
#endif

#if defined(_BEOS_) || defined(RISCOS)
#  define fdopen(fd,mode) NULL /* No fdopen() */
#endif

        /* Common defaults */

#ifndef OS_CODE
#  define OS_CODE  0x03  /* assume Unix */
#endif

#ifndef FOPEN
#  define FOPEN(name, mode) fopen((name), (mode))
#endif

         /* functions */

#ifdef HAVE_STRERROR
   extern char *strerror OF((int));
#  define zstrerror(errnum) strerror(errnum)
#else
#  define zstrerror(errnum) ""
#endif

#if defined(pyr)
#  define NO_MEMCPY
#endif
#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
 /* Use our own functions for small and medium model with MSC <= 5.0.
  * You may have to use the same strategy for Borland C (untested).
  */
#  define NO_MEMCPY
#endif
#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
#  define HAVE_MEMCPY
#endif
#ifdef HAVE_MEMCPY
#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
#    define zmemcpy _fmemcpy
#    define zmemcmp _fmemcmp
#    define zmemzero(dest, len) _fmemset(dest, 0, len)
#  else
#    define zmemcpy memcpy
#    define zmemcmp memcmp
#    define zmemzero(dest, len) memset(dest, 0, len)
#  endif
#else
   extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
   extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
   extern void zmemzero OF((Bytef* dest, uInt len));
#endif

/* Diagnostic functions */
#ifdef DEBUG_ZLIB
#  include <stdio.h>
#  ifndef verbose
#    define verbose 0
#  endif
   extern void z_error    OF((char *m));
#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
#  define Trace(x) fprintf x
#  define Tracev(x) {if (verbose) fprintf x ;}
#  define Tracevv(x) {if (verbose>1) fprintf x ;}
#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
#else
#  define Assert(cond,msg)
#  define Trace(x)
#  define Tracev(x)
#  define Tracevv(x)
#  define Tracec(c,x)
#  define Tracecv(c,x)
#endif


typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));

voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
void   zcfree  OF((voidpf opaque, voidpf ptr));

#define ZALLOC(strm, items, size) \
           (*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}

#endif /* _Z_UTIL_H */
/* --- zutil.h */

/* +++ deflate.h */
/* deflate.h -- internal compression state
 * Copyright (C) 1995-1996 Jean-loup Gailly
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */

#ifndef _DEFLATE_H
#define _DEFLATE_H

/* #include "zutil.h" */

/* ===========================================================================
 * Internal compression state.
 */

#define LENGTH_CODES 29
/* number of length codes, not counting the special END_BLOCK code */

#define LITERALS  256
/* number of literal bytes 0..255 */

#define L_CODES (LITERALS+1+LENGTH_CODES)
/* number of Literal or Length codes, including the END_BLOCK code */

#define D_CODES   30
/* number of distance codes */

#define BL_CODES  19
/* number of codes used to transfer the bit lengths */

#define HEAP_SIZE (2*L_CODES+1)
/* maximum heap size */

#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */

#define INIT_STATE    42
#define BUSY_STATE   113
#define FINISH_STATE 666
/* Stream status */


/* Data structure describing a single value and its code string. */
typedef struct ct_data_s {
    union {
        ush  freq;       /* frequency count */
        ush  code;       /* bit string */
    } fc;
    union {
        ush  dad;        /* father node in Huffman tree */
        ush  len;        /* length of bit string */
    } dl;
} FAR ct_data;

#define Freq fc.freq
#define Code fc.code
#define Dad  dl.dad
#define Len  dl.len

typedef struct static_tree_desc_s  static_tree_desc;

typedef struct tree_desc_s {
    ct_data *dyn_tree;           /* the dynamic tree */
    int     max_code;            /* largest code with non zero frequency */
    static_tree_desc *stat_desc; /* the corresponding static tree */
} FAR tree_desc;

typedef ush Pos;
typedef Pos FAR Posf;
typedef unsigned IPos;

/* A Pos is an index in the character window. We use short instead of int to
 * save space in the various tables. IPos is used only for parameter passing.
 */

typedef struct deflate_state {
    z_streamp strm;      /* pointer back to this zlib stream */
    int   status;        /* as the name implies */
    Bytef *pending_buf;  /* output still pending */
    ulg   pending_buf_size; /* size of pending_buf */
    Bytef *pending_out;  /* next pending byte to output to the stream */
    int   pending;       /* nb of bytes in the pending buffer */
    int   noheader;      /* suppress zlib header and adler32 */
    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
    Byte  method;        /* STORED (for zip only) or DEFLATED */
    int   last_flush;    /* value of flush param for previous deflate call */

                /* used by deflate.c: */

    uInt  w_size;        /* LZ77 window size (32K by default) */
    uInt  w_bits;        /* log2(w_size)  (8..16) */
    uInt  w_mask;        /* w_size - 1 */

    Bytef *window;
    /* Sliding window. Input bytes are read into the second half of the window,
     * and move to the first half later to keep a dictionary of at least wSize
     * bytes. With this organization, matches are limited to a distance of
     * wSize-MAX_MATCH bytes, but this ensures that IO is always
     * performed with a length multiple of the block size. Also, it limits
     * the window size to 64K, which is quite useful on MSDOS.
     * To do: use the user input buffer as sliding window.
     */

    ulg window_size;
    /* Actual size of window: 2*wSize, except when the user input buffer
     * is directly used as sliding window.
     */

    Posf *prev;
    /* Link to older string with same hash index. To limit the size of this
     * array to 64K, this link is maintained only for the last 32K strings.
     * An index in this array is thus a window index modulo 32K.
     */

    Posf *head; /* Heads of the hash chains or NIL. */

    uInt  ins_h;          /* hash index of string to be inserted */
    uInt  hash_size;      /* number of elements in hash table */
    uInt  hash_bits;      /* log2(hash_size) */
    uInt  hash_mask;      /* hash_size-1 */

    uInt  hash_shift;
    /* Number of bits by which ins_h must be shifted at each input
     * step. It must be such that after MIN_MATCH steps, the oldest
     * byte no longer takes part in the hash key, that is:
     *   hash_shift * MIN_MATCH >= hash_bits
     */

    long block_start;
    /* Window position at the beginning of the current output block. Gets
     * negative when the window is moved backwards.
     */

    uInt match_length;           /* length of best match */
    IPos prev_match;             /* previous match */
    int match_available;         /* set if previous match exists */
    uInt strstart;               /* start of string to insert */
    uInt match_start;            /* start of matching string */
    uInt lookahead;              /* number of valid bytes ahead in window */

    uInt prev_length;
    /* Length of the best match at previous step. Matches not greater than this
     * are discarded. This is used in the lazy match evaluation.
     */

    uInt max_chain_length;
    /* To speed up deflation, hash chains are never searched beyond this
     * length.  A higher limit improves compression ratio but degrades the
     * speed.
     */

    uInt max_lazy_match;
    /* Attempt to find a better match only when the current match is strictly
     * smaller than this value. This mechanism is used only for compression
     * levels >= 4.
     */
#   define max_insert_length  max_lazy_match
    /* Insert new strings in the hash table only if the match length is not
     * greater than this length. This saves time but degrades compression.
     * max_insert_length is used only for compression levels <= 3.
     */

    int level;    /* compression level (1..9) */
    int strategy; /* favor or force Huffman coding*/

    uInt good_match;
    /* Use a faster search when the previous match is longer than this */

    int nice_match; /* Stop searching when current match exceeds this */

                /* used by trees.c: */
    /* Didn't use ct_data typedef below to supress compiler warning */
    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */

    struct tree_desc_s l_desc;               /* desc. for literal tree */
    struct tree_desc_s d_desc;               /* desc. for distance tree */
    struct tree_desc_s bl_desc;              /* desc. for bit length tree */

    ush bl_count[MAX_BITS+1];
    /* number of codes at each bit length for an optimal tree */

    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    int heap_len;               /* number of elements in the heap */
    int heap_max;               /* element of largest frequency */
    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
     * The same heap array is used to build all trees.
     */

    uch depth[2*L_CODES+1];
    /* Depth of each subtree used as tie breaker for trees of equal frequency
     */

    uchf *l_buf;          /* buffer for literals or lengths */

    uInt  lit_bufsize;
    /* Size of match buffer for literals/lengths.  There are 4 reasons for
     * limiting lit_bufsize to 64K:
     *   - frequencies can be kept in 16 bit counters
     *   - if compression is not successful for the first block, all input
     *     data is still in the window so we can still emit a stored block even
     *     when input comes from standard input.  (This can also be done for
     *     all blocks if lit_bufsize is not greater than 32K.)
     *   - if compression is not successful for a file smaller than 64K, we can
     *     even emit a stored file instead of a stored block (saving 5 bytes).
     *     This is applicable only for zip (not gzip or zlib).
     *   - creating new Huffman trees less frequently may not provide fast
     *     adaptation to changes in the input data statistics. (Take for
     *     example a binary file with poorly compressible code followed by
     *     a highly compressible string table.) Smaller buffer sizes give
     *     fast adaptation but have of course the overhead of transmitting
     *     trees more frequently.
     *   - I can't count above 4
     */

    uInt last_lit;      /* running index in l_buf */

    ushf *d_buf;
    /* Buffer for distances. To simplify the code, d_buf and l_buf have
     * the same number of elements. To use different lengths, an extra flag
     * array would be necessary.
     */

    ulg opt_len;        /* bit length of current block with optimal trees */
    ulg static_len;     /* bit length of current block with static trees */
    ulg compressed_len; /* total bit length of compressed file */
    uInt matches;       /* number of string matches in current block */
    int last_eob_len;   /* bit length of EOB code for last block */

#ifdef DEBUG_ZLIB
    ulg bits_sent;      /* bit length of the compressed data */
#endif

    ush bi_buf;
    /* Output buffer. bits are inserted starting at the bottom (least
     * significant bits).
     */
    int bi_valid;
    /* Number of valid bits in bi_buf.  All bits above the last valid bit
     * are always zero.
     */

} FAR deflate_state;

/* Output a byte on the stream.
 * IN assertion: there is enough room in pending_buf.
 */
#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}


#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
 * See deflate.c for comments about the MIN_MATCH+1.
 */

#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
/* In order to simplify the code, particularly on 16 bit machines, match
 * distances are limited to MAX_DIST instead of WSIZE.
 */

        /* in trees.c */
void _tr_init         OF((deflate_state *s));
int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
			  int eof));
void _tr_align        OF((deflate_state *s));
void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
                          int eof));
void _tr_stored_type_only OF((deflate_state *));

#endif
/* --- deflate.h */

/* +++ deflate.c */
/* deflate.c -- compress data using the deflation algorithm
 * Copyright (C) 1995-1996 Jean-loup Gailly.
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process depends on being able to identify portions
 *      of the input text which are identical to earlier input (within a
 *      sliding window trailing behind the input currently being processed).
 *
 *      The most straightforward technique turns out to be the fastest for
 *      most input files: try all possible matches and select the longest.
 *      The key feature of this algorithm is that insertions into the string
 *      dictionary are very simple and thus fast, and deletions are avoided
 *      completely. Insertions are performed at each input character, whereas
 *      string matches are performed only when the previous match ends. So it
 *      is preferable to spend more time in matches to allow very fast string
 *      insertions and avoid deletions. The matching algorithm for small
 *      strings is inspired from that of Rabin & Karp. A brute force approach
 *      is used to find longer strings when a small match has been found.
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
 *      (by Leonid Broukhis).
 *         A previous version of this file used a more sophisticated algorithm
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
 *      time, but has a larger average cost, uses more memory and is patented.
 *      However the F&G algorithm may be faster for some highly redundant
 *      files if the parameter max_chain_length (described below) is too large.
 *
 *  ACKNOWLEDGEMENTS
 *
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
 *      I found it in 'freeze' written by Leonid Broukhis.
 *      Thanks to many people for bug reports and testing.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
 *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
 *
 *      A description of the Rabin and Karp algorithm is given in the book
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 *
 *      Fiala,E.R., and Greene,D.H.
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 *
 */

/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */

/* #include "deflate.h" */

char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
 */

/* ===========================================================================
 *  Function prototypes.
 */
typedef enum {
    need_more,      /* block not completed, need more input or more output */
    block_done,     /* block flush performed */
    finish_started, /* finish started, need only more output at next deflate */
    finish_done     /* finish done, accept no more input or output */
} block_state;

typedef block_state (*compress_func) OF((deflate_state *s, int flush));
/* Compression function. Returns the block state after the call. */

local void fill_window    OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast   OF((deflate_state *s, int flush));
local block_state deflate_slow   OF((deflate_state *s, int flush));
local void lm_init        OF((deflate_state *s));
local void putShortMSB    OF((deflate_state *s, uInt b));
local void flush_pending  OF((z_streamp strm));
local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
#ifdef ASMV
      void match_init OF((void)); /* asm code initialization */
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
#else
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
#endif

#ifdef DEBUG_ZLIB
local  void check_match OF((deflate_state *s, IPos start, IPos match,
                            int length));
#endif

/* ===========================================================================
 * Local data
 */

#define NIL 0
/* Tail of hash chains */

#ifndef TOO_FAR
#  define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */

#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
 * See deflate.c for comments about the MIN_MATCH+1.
 */

/* Values for max_lazy_match, good_match and max_chain_length, depending on
 * the desired pack level (0..9). The values given below have been tuned to
 * exclude worst case performance for pathological files. Better values may be
 * found for specific files.
 */
typedef struct config_s {
   ush good_length; /* reduce lazy search above this match length */
   ush max_lazy;    /* do not perform lazy search above this match length */
   ush nice_length; /* quit search above this match length */
   ush max_chain;
   compress_func func;
} config;

local config configuration_table[10] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
/* 2 */ {4,    5, 16,    8, deflate_fast},
/* 3 */ {4,    6, 32,   32, deflate_fast},

/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
/* 5 */ {8,   16, 32,   32, deflate_slow},
/* 6 */ {8,   16, 128, 128, deflate_slow},
/* 7 */ {8,   32, 128, 256, deflate_slow},
/* 8 */ {32, 128, 258, 1024, deflate_slow},
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */

/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 * meaning.
 */

#define EQUAL 0
/* result of memcmp for equal strings */

#ifndef NO_DUMMY_DECL
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
#endif

/* ===========================================================================
 * Update a hash value with the given input byte
 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
 *    input characters, so that a running hash key can be computed from the
 *    previous key instead of complete recalculation each time.
 */
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)


/* ===========================================================================
 * Insert string str in the dictionary and set match_head to the previous head
 * of the hash chain (the most recent string with same hash key). Return
 * the previous length of the hash chain.
 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
 *    input characters and the first MIN_MATCH bytes of str are valid
 *    (except for the last MIN_MATCH-1 bytes of the input file).
 */
#define INSERT_STRING(s, str, match_head) \
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
    s->head[s->ins_h] = (Pos)(str))

/* ===========================================================================
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 * prev[] will be initialized on the fly.
 */
#define CLEAR_HASH(s) \
    s->head[s->hash_size-1] = NIL; \
    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));

/* ========================================================================= */
int deflateInit_(strm, level, version, stream_size)
    z_streamp strm;
    int level;
    const char *version;
    int stream_size;
{
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
			 Z_DEFAULT_STRATEGY, version, stream_size);
    /* To do: ignore strm->next_in if we use it as window */
}

/* ========================================================================= */
int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
		  version, stream_size)
    z_streamp strm;
    int  level;
    int  method;
    int  windowBits;
    int  memLevel;
    int  strategy;
    const char *version;
    int stream_size;
{
    deflate_state *s;
    int noheader = 0;
    static char* my_version = ZLIB_VERSION;

    ushf *overlay;
    /* We overlay pending_buf and d_buf+l_buf. This works since the average
     * output size for (length,distance) codes is <= 24 bits.
     */

    if (version == Z_NULL || version[0] != my_version[0] ||
        stream_size != sizeof(z_stream)) {
	return Z_VERSION_ERROR;
    }
    if (strm == Z_NULL) return Z_STREAM_ERROR;

    strm->msg = Z_NULL;
#ifndef NO_ZCFUNCS
    if (strm->zalloc == Z_NULL) {
	strm->zalloc = zcalloc;
	strm->opaque = (voidpf)0;
    }
    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
#endif

    if (level == Z_DEFAULT_COMPRESSION) level = 6;

    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
        noheader = 1;
        windowBits = -windowBits;
    }
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
        return Z_STREAM_ERROR;
    }
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    if (s == Z_NULL) return Z_MEM_ERROR;
    strm->state = (struct internal_state FAR *)s;
    s->strm = strm;

    s->noheader = noheader;
    s->w_bits = windowBits;
    s->w_size = 1 << s->w_bits;
    s->w_mask = s->w_size - 1;

    s->hash_bits = memLevel + 7;
    s->hash_size = 1 << s->hash_bits;
    s->hash_mask = s->hash_size - 1;
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);

    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));

    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
    s->pending_buf = (uchf *) overlay;
    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);

    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
        s->pending_buf == Z_NULL) {
        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
        deflateEnd (strm);
        return Z_MEM_ERROR;
    }
    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;

    s->level = level;
    s->strategy = strategy;
    s->method = (Byte)method;

    return deflateReset(strm);
}

/* ========================================================================= */
int deflateSetDictionary (strm, dictionary, dictLength)
    z_streamp strm;
    const Bytef *dictionary;
    uInt  dictLength;
{
    deflate_state *s;
    uInt length = dictLength;
    uInt n;
    IPos hash_head = 0;

    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
	return Z_STREAM_ERROR;

    s = (deflate_state *) strm->state;
    if (s->status != INIT_STATE) return Z_STREAM_ERROR;

    strm->adler = adler32(strm->adler, dictionary, dictLength);

    if (length < MIN_MATCH) return Z_OK;
    if (length > MAX_DIST(s)) {
	length = MAX_DIST(s);
#ifndef USE_DICT_HEAD
	dictionary += dictLength - length; /* use the tail of the dictionary */
#endif
    }
    zmemcpy((charf *)s->window, dictionary, length);
    s->strstart = length;
    s->block_start = (long)length;

    /* Insert all strings in the hash table (except for the last two bytes).
     * s->lookahead stays null, so s->ins_h will be recomputed at the next
     * call of fill_window.
     */
    s->ins_h = s->window[0];
    UPDATE_HASH(s, s->ins_h, s->window[1]);
    for (n = 0; n <= length - MIN_MATCH; n++) {
	INSERT_STRING(s, n, hash_head);
    }
    if (hash_head) hash_head = 0;  /* to make compiler happy */
    return Z_OK;
}

/* ========================================================================= */
int deflateReset (strm)
    z_streamp strm;
{
    deflate_state *s;
    
    if (strm == Z_NULL || strm->state == Z_NULL ||
        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;

    strm->total_in = strm->total_out = 0;
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    strm->data_type = Z_UNKNOWN;

    s = (deflate_state *)strm->state;
    s->pending = 0;
    s->pending_out = s->pending_buf;

    if (s->noheader < 0) {
        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
    }
    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
    strm->adler = 1;
    s->last_flush = Z_NO_FLUSH;

    _tr_init(s);
    lm_init(s);

    return Z_OK;
}

/* ========================================================================= */
int deflateParams(strm, level, strategy)
    z_streamp strm;
    int level;
    int strategy;
{
    deflate_state *s;
    compress_func func;
    int err = Z_OK;

    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    s = (deflate_state *) strm->state;

    if (level == Z_DEFAULT_COMPRESSION) {
	level = 6;
    }
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
	return Z_STREAM_ERROR;
    }
    func = configuration_table[s->level].func;

    if (func != configuration_table[level].func && strm->total_in != 0) {
	/* Flush the last buffer: */
	err = deflate(strm, Z_PARTIAL_FLUSH);
    }
    if (s->level != level) {
	s->level = level;
	s->max_lazy_match   = configuration_table[level].max_lazy;
	s->good_match       = configuration_table[level].good_length;
	s->nice_match       = configuration_table[level].nice_length;
	s->max_chain_length = configuration_table[level].max_chain;
    }
    s->strategy = strategy;
    return err;
}

/* =========================================================================
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 * IN assertion: the stream state is correct and there is enough room in
 * pending_buf.
 */
local void putShortMSB (s, b)
    deflate_state *s;
    uInt b;
{
    put_byte(s, (Byte)(b >> 8));
    put_byte(s, (Byte)(b & 0xff));
}   

/* =========================================================================
 * Flush as much pending output as possible. All deflate() output goes
 * through this function so some applications may wish to modify it
 * to avoid allocating a large strm->next_out buffer and copying into it.
 * (See also read_buf()).
 */
local void flush_pending(strm)
    z_streamp strm;
{
    deflate_state *s = (deflate_state *) strm->state;
    unsigned len = s->pending;

    if (len > strm->avail_out) len = strm->avail_out;
    if (len == 0) return;

    if (strm->next_out != Z_NULL) {
	zmemcpy(strm->next_out, s->pending_out, len);
	strm->next_out += len;
    }
    s->pending_out += len;
    strm->total_out += len;
    strm->avail_out  -= len;
    s->pending -= len;
    if (s->pending == 0) {
        s->pending_out = s->pending_buf;
    }
}

/* ========================================================================= */
int deflate (strm, flush)
    z_streamp strm;
    int flush;
{
    int old_flush; /* value of flush param for previous deflate call */
    deflate_state *s;

    if (strm == Z_NULL || strm->state == Z_NULL ||
	flush > Z_FINISH || flush < 0) {
        return Z_STREAM_ERROR;
    }
    s = (deflate_state *) strm->state;

    if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
	(s->status == FINISH_STATE && flush != Z_FINISH)) {
        ERR_RETURN(strm, Z_STREAM_ERROR);
    }
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);

    s->strm = strm; /* just in case */
    old_flush = s->last_flush;
    s->last_flush = flush;

    /* Write the zlib header */
    if (s->status == INIT_STATE) {

        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
        uInt level_flags = (s->level-1) >> 1;

        if (level_flags > 3) level_flags = 3;
        header |= (level_flags << 6);
	if (s->strstart != 0) header |= PRESET_DICT;
        header += 31 - (header % 31);

        s->status = BUSY_STATE;
        putShortMSB(s, header);

	/* Save the adler32 of the preset dictionary: */
	if (s->strstart != 0) {
	    putShortMSB(s, (uInt)(strm->adler >> 16));
	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
	}
	strm->adler = 1L;
    }

    /* Flush as much pending output as possible */
    if (s->pending != 0) {
        flush_pending(strm);
        if (strm->avail_out == 0) {
	    /* Since avail_out is 0, deflate will be called again with
	     * more output space, but possibly with both pending and
	     * avail_in equal to zero. There won't be anything to do,
	     * but this is not an error situation so make sure we
	     * return OK instead of BUF_ERROR at next call of deflate:
             */
	    s->last_flush = -1;
	    return Z_OK;
	}

    /* Make sure there is something to do and avoid duplicate consecutive
     * flushes. For repeated and useless calls with Z_FINISH, we keep
     * returning Z_STREAM_END instead of Z_BUFF_ERROR.
     */
    } else if (strm->avail_in == 0 && flush <= old_flush &&
	       flush != Z_FINISH) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* User must not provide more input after the first FINISH: */
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* Start a new block or continue the current one.
     */
    if (strm->avail_in != 0 || s->lookahead != 0 ||
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
        block_state bstate;

	bstate = (*(configuration_table[s->level].func))(s, flush);

        if (bstate == finish_started || bstate == finish_done) {
            s->status = FINISH_STATE;
        }
        if (bstate == need_more || bstate == finish_started) {
	    if (strm->avail_out == 0) {
	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
	    }
	    return Z_OK;
	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
	     * of deflate should use the same flush parameter to make sure
	     * that the flush is complete. So we don't have to output an
	     * empty block here, this will be done at next call. This also
	     * ensures that for a very small output buffer, we emit at most
	     * one empty block.
	     */
	}
        if (bstate == block_done) {
            if (flush == Z_PARTIAL_FLUSH) {
                _tr_align(s);
	    } else if (flush == Z_PACKET_FLUSH) {
		/* Output just the 3-bit `stored' block type value,
		   but not a zero length. */
		_tr_stored_type_only(s);
            } else { /* FULL_FLUSH or SYNC_FLUSH */
                _tr_stored_block(s, (char*)0, 0L, 0);
                /* For a full flush, this empty block will be recognized
                 * as a special marker by inflate_sync().
                 */
                if (flush == Z_FULL_FLUSH) {
                    CLEAR_HASH(s);             /* forget history */
                }
            }
            flush_pending(strm);
	    if (strm->avail_out == 0) {
	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
	      return Z_OK;
	    }
        }
    }
    Assert(strm->avail_out > 0, "bug2");

    if (flush != Z_FINISH) return Z_OK;
    if (s->noheader) return Z_STREAM_END;

    /* Write the zlib trailer (adler32) */
    putShortMSB(s, (uInt)(strm->adler >> 16));
    putShortMSB(s, (uInt)(strm->adler & 0xffff));
    flush_pending(strm);
    /* If avail_out is zero, the application will call deflate again
     * to flush the rest.
     */
    s->noheader = -1; /* write the trailer only once! */
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
}

/* ========================================================================= */
int deflateEnd (strm)
    z_streamp strm;
{
    int status;
    deflate_state *s;

    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    s = (deflate_state *) strm->state;

    status = s->status;
    if (status != INIT_STATE && status != BUSY_STATE &&
	status != FINISH_STATE) {
      return Z_STREAM_ERROR;
    }

    /* Deallocate in reverse order of allocations: */
    TRY_FREE(strm, s->pending_buf);
    TRY_FREE(strm, s->head);
    TRY_FREE(strm, s->prev);
    TRY_FREE(strm, s->window);

    ZFREE(strm, s);
    strm->state = Z_NULL;

    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
}

/* =========================================================================
 * Copy the source state to the destination state.
 */
int deflateCopy (dest, source)
    z_streamp dest;
    z_streamp source;
{
    deflate_state *ds;
    deflate_state *ss;
    ushf *overlay;

    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
        return Z_STREAM_ERROR;
    ss = (deflate_state *) source->state;

    *dest = *source;

    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
    if (ds == Z_NULL) return Z_MEM_ERROR;
    dest->state = (struct internal_state FAR *) ds;
    *ds = *ss;
    ds->strm = dest;

    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
    ds->pending_buf = (uchf *) overlay;

    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
        ds->pending_buf == Z_NULL) {
        deflateEnd (dest);
        return Z_MEM_ERROR;
    }
    /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);

    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;

    ds->l_desc.dyn_tree = ds->dyn_ltree;
    ds->d_desc.dyn_tree = ds->dyn_dtree;
    ds->bl_desc.dyn_tree = ds->bl_tree;

    return Z_OK;
}

/* ===========================================================================
 * Return the number of bytes of output which are immediately available
 * for output from the decompressor.
 */
int deflateOutputPending (strm)
    z_streamp strm;
{
    if (strm == Z_NULL || strm->state == Z_NULL) return 0;
    
    return ((deflate_state *)(strm->state))->pending;
}

/* ===========================================================================
 * Read a new buffer from the current input stream, update the adler32
 * and total number of bytes read.  All deflate() input goes through
 * this function so some applications may wish to modify it to avoid
 * allocating a large strm->next_in buffer and copying from it.
 * (See also flush_pending()).
 */
local int read_buf(strm, buf, size)
    z_streamp strm;
    charf *buf;
    unsigned size;
{
    unsigned len = strm->avail_in;

    if (len > size) len = size;
    if (len == 0) return 0;

    strm->avail_in  -= len;

    if (!((deflate_state *)(strm->state))->noheader) {
        strm->adler = adler32(strm->adler, strm->next_in, len);
    }
    zmemcpy(buf, strm->next_in, len);
    strm->next_in  += len;
    strm->total_in += len;

    return (int)len;
}

/* ===========================================================================
 * Initialize the "longest match" routines for a new zlib stream
 */
local void lm_init (s)
    deflate_state *s;
{
    s->window_size = (ulg)2L*s->w_size;

    CLEAR_HASH(s);

    /* Set the default configuration parameters:
     */
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
    s->good_match       = configuration_table[s->level].good_length;
    s->nice_match       = configuration_table[s->level].nice_length;
    s->max_chain_length = configuration_table[s->level].max_chain;

    s->strstart = 0;
    s->block_start = 0L;
    s->lookahead = 0;
    s->match_length = s->prev_length = MIN_MATCH-1;
    s->match_available = 0;
    s->ins_h = 0;
#ifdef ASMV
    match_init(); /* initialize the asm code */
#endif
}

/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 * OUT assertion: the match length is not greater than s->lookahead.
 */
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 * match.S. The code will be functionally equivalent.
 */
local uInt longest_match(s, cur_match)
    deflate_state *s;
    IPos cur_match;                             /* current match */
{
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
    register Bytef *scan = s->window + s->strstart; /* current string */
    register Bytef *match;                       /* matched string */
    register int len;                           /* length of current match */
    int best_len = s->prev_length;              /* best match length so far */
    int nice_match = s->nice_match;             /* stop if match long enough */
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
        s->strstart - (IPos)MAX_DIST(s) : NIL;
    /* Stop when cur_match becomes <= limit. To simplify the code,
     * we prevent matches with the string of window index 0.
     */
    Posf *prev = s->prev;
    uInt wmask = s->w_mask;

#ifdef UNALIGNED_OK
    /* Compare two bytes at a time. Note: this is not always beneficial.
     * Try with and without -DUNALIGNED_OK to check.
     */
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
    register ush scan_start = *(ushf*)scan;
    register ush scan_end   = *(ushf*)(scan+best_len-1);
#else
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
    register Byte scan_end1  = scan[best_len-1];
    register Byte scan_end   = scan[best_len];
#endif

    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
     * It is easy to get rid of this optimization if necessary.
     */
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

    /* Do not waste too much time if we already have a good match: */
    if (s->prev_length >= s->good_match) {
        chain_length >>= 2;
    }
    /* Do not look for matches beyond the end of the input. This is necessary
     * to make deflate deterministic.
     */
    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;

    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

    do {
        Assert(cur_match < s->strstart, "no future");
        match = s->window + cur_match;

        /* Skip to next match if the match length cannot increase
         * or if the match length is less than 2:
         */
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
        /* This code assumes sizeof(unsigned short) == 2. Do not use
         * UNALIGNED_OK if your compiler uses a different size.
         */
        if (*(ushf*)(match+best_len-1) != scan_end ||
            *(ushf*)match != scan_start) continue;

        /* It is not necessary to compare scan[2] and match[2] since they are
         * always equal when the other bytes match, given that the hash keys
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
         * lookahead only every 4th comparison; the 128th check will be made
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
         * necessary to put more guard bytes at the end of the window, or
         * to check more often for insufficient lookahead.
         */
        Assert(scan[2] == match[2], "scan[2]?");
        scan++, match++;
        do {
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 scan < strend);
        /* The funny "do {}" generates better code on most compilers */

        /* Here, scan <= window+strstart+257 */
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
        if (*scan == *match) scan++;

        len = (MAX_MATCH - 1) - (int)(strend-scan);
        scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */

        if (match[best_len]   != scan_end  ||
            match[best_len-1] != scan_end1 ||
            *match            != *scan     ||
            *++match          != scan[1])      continue;

        /* The check at best_len-1 can be removed because it will be made
         * again later. (This heuristic is not always a win.)
         * It is not necessary to compare scan[2] and match[2] since they
         * are always equal when the other bytes match, given that
         * the hash keys are equal and that HASH_BITS >= 8.
         */
        scan += 2, match++;
        Assert(*scan == *match, "match[2]?");

        /* We check for insufficient lookahead only every 8th comparison;
         * the 256th check will be made at strstart+258.
         */
        do {
        } while (*++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 scan < strend);

        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

        len = MAX_MATCH - (int)(strend - scan);
        scan = strend - MAX_MATCH;

#endif /* UNALIGNED_OK */

        if (len > best_len) {
            s->match_start = cur_match;
            best_len = len;
            if (len >= nice_match) break;
#ifdef UNALIGNED_OK
            scan_end = *(ushf*)(scan+best_len-1);
#else
            scan_end1  = scan[best_len-1];
            scan_end   = scan[best_len];
#endif
        }
    } while ((cur_match = prev[cur_match & wmask]) > limit
             && --chain_length != 0);

    if ((uInt)best_len <= s->lookahead) return best_len;
    return s->lookahead;
}
#endif /* ASMV */

#ifdef DEBUG_ZLIB
/* ===========================================================================
 * Check that the match at match_start is indeed a match.
 */
local void check_match(s, start, match, length)
    deflate_state *s;
    IPos start, match;
    int length;
{
    /* check that the match is indeed a match */
    if (zmemcmp((charf *)s->window + match,
                (charf *)s->window + start, length) != EQUAL) {
        fprintf(stderr, " start %u, match %u, length %d\n",
		start, match, length);
        do {
	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
	} while (--length != 0);
        z_error("invalid match");
    }
    if (z_verbose > 1) {
        fprintf(stderr,"\\[%d,%d]", start-match, length);
        do { putc(s->window[start++], stderr); } while (--length != 0);
    }
}
#else
#  define check_match(s, start, match, length)
#endif

/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or avail_in == 0; reads are
 *    performed for at least two bytes (required for the zip translate_eol
 *    option -- not supported here).
 */
local void fill_window(s)
    deflate_state *s;
{
    register unsigned n, m;
    register Posf *p;
    unsigned more;    /* Amount of free space at the end of the window. */
    uInt wsize = s->w_size;

    do {
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);

        /* Deal with !@#$% 64K limit: */
        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
            more = wsize;

        } else if (more == (unsigned)(-1)) {
            /* Very unlikely, but possible on 16 bit machine if strstart == 0
             * and lookahead == 1 (input done one byte at time)
             */
            more--;

        /* If the window is almost full and there is insufficient lookahead,
         * move the upper half to the lower one to make room in the upper half.
         */
        } else if (s->strstart >= wsize+MAX_DIST(s)) {

            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
                   (unsigned)wsize);
            s->match_start -= wsize;
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
            s->block_start -= (long) wsize;

            /* Slide the hash table (could be avoided with 32 bit values
               at the expense of memory usage). We slide even when level == 0
               to keep the hash table consistent if we switch back to level > 0
               later. (Using level 0 permanently is not an optimal usage of
               zlib, so we don't care about this pathological case.)
             */
            n = s->hash_size;
            p = &s->head[n];
            do {
                m = *--p;
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
            } while (--n);

            n = wsize;
            p = &s->prev[n];
            do {
                m = *--p;
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
                /* If n is not on any hash chain, prev[n] is garbage but
                 * its value will never be used.
                 */
            } while (--n);
            more += wsize;
        }
        if (s->strm->avail_in == 0) return;

        /* If there was no sliding:
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
         *    more == window_size - lookahead - strstart
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
         * => more >= window_size - 2*WSIZE + 2
         * In the BIG_MEM or MMAP case (not yet supported),
         *   window_size == input_size + MIN_LOOKAHEAD  &&
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
         * Otherwise, window_size == 2*WSIZE so more >= 2.
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
         */
        Assert(more >= 2, "more < 2");

        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
                     more);
        s->lookahead += n;

        /* Initialize the hash value now that we have some input: */
        if (s->lookahead >= MIN_MATCH) {
            s->ins_h = s->window[s->strstart];
            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
            Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
        }
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
         * but this is not important since only literal bytes will be emitted.
         */

    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
}

/* ===========================================================================
 * Flush the current block, with given end-of-file flag.
 * IN assertion: strstart is set to the end of the current match.
 */
#define FLUSH_BLOCK_ONLY(s, eof) { \
   _tr_flush_block(s, (s->block_start >= 0L ? \
                   (charf *)&s->window[(unsigned)s->block_start] : \
                   (charf *)Z_NULL), \
		(ulg)((long)s->strstart - s->block_start), \
		(eof)); \
   s->block_start = s->strstart; \
   flush_pending(s->strm); \
   Tracev((stderr,"[FLUSH]")); \
}

/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, eof) { \
   FLUSH_BLOCK_ONLY(s, eof); \
   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
}

/* ===========================================================================
 * Copy without compression as much as possible from the input stream, return
 * the current block state.
 * This function does not insert new strings in the dictionary since
 * uncompressible data is probably not useful. This function is used
 * only for the level=0 compression option.
 * NOTE: this function should be optimized to avoid extra copying from
 * window to pending_buf.
 */
local block_state deflate_stored(s, flush)
    deflate_state *s;
    int flush;
{
    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
     * to pending_buf_size, and each stored block has a 5 byte header:
     */
    ulg max_block_size = 0xffff;
    ulg max_start;

    if (max_block_size > s->pending_buf_size - 5) {
        max_block_size = s->pending_buf_size - 5;
    }

    /* Copy as much as possible from input to output: */
    for (;;) {
        /* Fill the window as much as possible: */
        if (s->lookahead <= 1) {

            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
		   s->block_start >= (long)s->w_size, "slide too late");

            fill_window(s);
            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;

            if (s->lookahead == 0) break; /* flush the current block */
        }
	Assert(s->block_start >= 0L, "block gone");

	s->strstart += s->lookahead;
	s->lookahead = 0;

	/* Emit a stored block if pending_buf will be full: */
 	max_start = s->block_start + max_block_size;
        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
	    /* strstart == 0 is possible when wraparound on 16-bit machine */
	    s->lookahead = (uInt)(s->strstart - max_start);
	    s->strstart = (uInt)max_start;
            FLUSH_BLOCK(s, 0);
	}
	/* Flush if we may have to slide, otherwise block_start may become
         * negative and the data will be gone:
         */
        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
            FLUSH_BLOCK(s, 0);
	}
    }
    FLUSH_BLOCK(s, flush == Z_FINISH);
    return flush == Z_FINISH ? finish_done : block_done;
}

/* ===========================================================================
 * Compress as much as possible from the input stream, return the current
 * block state.
 * This function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
local block_state deflate_fast(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head = NIL; /* head of the hash chain */
    int bflush;           /* set if current block must be flushed */

    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
	        return need_more;
	    }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         * At this point we have always match_length < MIN_MATCH
         */
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            if (s->strategy != Z_HUFFMAN_ONLY) {
                s->match_length = longest_match (s, hash_head);
            }
            /* longest_match() sets match_start */
        }
        if (s->match_length >= MIN_MATCH) {
            check_match(s, s->strstart, s->match_start, s->match_length);

            bflush = _tr_tally(s, s->strstart - s->match_start,
                               s->match_length - MIN_MATCH);

            s->lookahead -= s->match_length;

            /* Insert new strings in the hash table only if the match length
             * is not too large. This saves time but degrades compression.
             */
            if (s->match_length <= s->max_insert_length &&
                s->lookahead >= MIN_MATCH) {
                s->match_length--; /* string at strstart already in hash table */
                do {
                    s->strstart++;
                    INSERT_STRING(s, s->strstart, hash_head);
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                     * always MIN_MATCH bytes ahead.
                     */
                } while (--s->match_length != 0);
                s->strstart++; 
            } else {
                s->strstart += s->match_length;
                s->match_length = 0;
                s->ins_h = s->window[s->strstart];
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
                Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                 * matter since it will be recomputed at next deflate call.
                 */
            }
        } else {
            /* No match, output a literal byte */
            Tracevv((stderr,"%c", s->window[s->strstart]));
            bflush = _tr_tally (s, 0, s->window[s->strstart]);
            s->lookahead--;
            s->strstart++; 
        }
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    FLUSH_BLOCK(s, flush == Z_FINISH);
    return flush == Z_FINISH ? finish_done : block_done;
}

/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
local block_state deflate_slow(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head = NIL;    /* head of hash chain */
    int bflush;              /* set if current block must be flushed */

    /* Process the input block. */
    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
	        return need_more;
	    }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         */
        s->prev_length = s->match_length, s->prev_match = s->match_start;
        s->match_length = MIN_MATCH-1;

        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
            s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            if (s->strategy != Z_HUFFMAN_ONLY) {
                s->match_length = longest_match (s, hash_head);
            }
            /* longest_match() sets match_start */

            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
                 (s->match_length == MIN_MATCH &&
                  s->strstart - s->match_start > TOO_FAR))) {

                /* If prev_match is also MIN_MATCH, match_start is garbage
                 * but we will ignore the current match anyway.
                 */
                s->match_length = MIN_MATCH-1;
            }
        }
        /* If there was a match at the previous step and the current
         * match is not better, output the previous match:
         */
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
            /* Do not insert strings in hash table beyond this. */

            check_match(s, s->strstart-1, s->prev_match, s->prev_length);

            bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
                               s->prev_length - MIN_MATCH);

            /* Insert in hash table all strings up to the end of the match.
             * strstart-1 and strstart are already inserted. If there is not
             * enough lookahead, the last two strings are not inserted in
             * the hash table.
             */
            s->lookahead -= s->prev_length-1;
            s->prev_length -= 2;
            do {
                if (++s->strstart <= max_insert) {
                    INSERT_STRING(s, s->strstart, hash_head);
                }
            } while (--s->prev_length != 0);
            s->match_available = 0;
            s->match_length = MIN_MATCH-1;
            s->strstart++;

            if (bflush) FLUSH_BLOCK(s, 0);

        } else if (s->match_available) {
            /* If there was no match at the previous position, output a
             * single literal. If there was a match but the current match
             * is longer, truncate the previous match to a single literal.
             */
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
            if (_tr_tally (s, 0, s->window[s->strstart-1])) {
                FLUSH_BLOCK_ONLY(s, 0);
            }
            s->strstart++;
            s->lookahead--;
            if (s->strm->avail_out == 0) return need_more;
        } else {
            /* There is no previous match to compare with, wait for
             * the next step to decide.
             */
            s->match_available = 1;
            s->strstart++;
            s->lookahead--;
        }
    }
    Assert (flush != Z_NO_FLUSH, "no flush?");
    if (s->match_available) {
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
        _tr_tally (s, 0, s->window[s->strstart-1]);
        s->match_available = 0;
    }
    FLUSH_BLOCK(s, flush == Z_FINISH);
    return flush == Z_FINISH ? finish_done : block_done;
}
/* --- deflate.c */

/* +++ trees.c */
/* trees.c -- output deflated data using Huffman coding
 * Copyright (C) 1995-1996 Jean-loup Gailly
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process uses several Huffman trees. The more
 *      common source values are represented by shorter bit sequences.
 *
 *      Each code tree is stored in a compressed form which is itself
 * a Huffman encoding of the lengths of all the code strings (in
 * ascending order by source values).  The actual code strings are
 * reconstructed from the lengths in the inflate process, as described
 * in the deflate specification.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 *
 *      Storer, James A.
 *          Data Compression:  Methods and Theory, pp. 49-50.
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 *
 *      Sedgewick, R.
 *          Algorithms, p290.
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 */

/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */

/* #include "deflate.h" */

#ifdef DEBUG_ZLIB
#  include <ctype.h>
#endif

/* ===========================================================================
 * Constants
 */

#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */

#define END_BLOCK 256
/* end of block literal code */

#define REP_3_6      16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */

#define REPZ_3_10    17
/* repeat a zero length 3-10 times  (3 bits of repeat count) */

#define REPZ_11_138  18
/* repeat a zero length 11-138 times  (7 bits of repeat count) */

local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};

local int extra_dbits[D_CODES] /* extra bits for each distance code */
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};

local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};

local uch bl_order[BL_CODES]
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */

#define Buf_size (8 * 2*sizeof(char))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
 * more than 16 bits on some systems.)
 */

/* ===========================================================================
 * Local data. These are initialized only once.
 */

local ct_data static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 * below).
 */

local ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */

local uch dist_code[512];
/* distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */

local uch length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */

local int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */

local int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */

struct static_tree_desc_s {
    ct_data *static_tree;        /* static tree or NULL */
    intf    *extra_bits;         /* extra bits for each code or NULL */
    int     extra_base;          /* base index for extra_bits */
    int     elems;               /* max number of elements in the tree */
    int     max_length;          /* max bit length for the codes */
};

local static_tree_desc  static_l_desc =
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};

local static_tree_desc  static_d_desc =
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};

local static_tree_desc  static_bl_desc =
{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};

/* ===========================================================================
 * Local (static) routines in this file.
 */

local void tr_static_init OF((void));
local void init_block     OF((deflate_state *s));
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
local void build_tree     OF((deflate_state *s, tree_desc *desc));
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
local int  build_bl_tree  OF((deflate_state *s));
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                              int blcodes));
local void compress_block OF((deflate_state *s, ct_data *ltree,
                              ct_data *dtree));
local void set_data_type  OF((deflate_state *s));
local unsigned bi_reverse OF((unsigned value, int length));
local void bi_windup      OF((deflate_state *s));
local void bi_flush       OF((deflate_state *s));
local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
                              int header));

#ifndef DEBUG_ZLIB
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   /* Send a code of the given tree. c and tree must not have side effects */

#else /* DEBUG_ZLIB */
#  define send_code(s, c, tree) \
     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
       send_bits(s, tree[c].Code, tree[c].Len); }
#endif

#define d_code(dist) \
   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
 * must not have side effects. dist_code[256] and dist_code[257] are never
 * used.
 */

/* ===========================================================================
 * Output a short LSB first on the stream.
 * IN assertion: there is enough room in pendingBuf.
 */
#define put_short(s, w) { \
    put_byte(s, (uch)((w) & 0xff)); \
    put_byte(s, (uch)((ush)(w) >> 8)); \
}

/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
#ifdef DEBUG_ZLIB
local void send_bits      OF((deflate_state *s, int value, int length));

local void send_bits(s, value, length)
    deflate_state *s;
    int value;  /* value to send */
    int length; /* number of bits */
{
    Tracevv((stderr," l %2d v %4x ", length, value));
    Assert(length > 0 && length <= 15, "invalid length");
    s->bits_sent += (ulg)length;

    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
     * unused bits in value.
     */
    if (s->bi_valid > (int)Buf_size - length) {
        s->bi_buf |= (value << s->bi_valid);
        put_short(s, s->bi_buf);
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
        s->bi_valid += length - Buf_size;
    } else {
        s->bi_buf |= value << s->bi_valid;
        s->bi_valid += length;
    }
}
#else /* !DEBUG_ZLIB */

#define send_bits(s, value, length) \
{ int len = length;\
  if (s->bi_valid > (int)Buf_size - len) {\
    int val = value;\
    s->bi_buf |= (val << s->bi_valid);\
    put_short(s, s->bi_buf);\
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    s->bi_valid += len - Buf_size;\
  } else {\
    s->bi_buf |= (value) << s->bi_valid;\
    s->bi_valid += len;\
  }\
}
#endif /* DEBUG_ZLIB */


#define MAX(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */

/* ===========================================================================
 * Initialize the various 'constant' tables. In a multi-threaded environment,
 * this function may be called by two threads concurrently, but this is
 * harmless since both invocations do exactly the same thing.
 */
local void tr_static_init()
{
    static int static_init_done = 0;
    int n;        /* iterates over tree elements */
    int bits;     /* bit counter */
    int length;   /* length value */
    int code;     /* code value */
    int dist;     /* distance index */
    ush bl_count[MAX_BITS+1];
    /* number of codes at each bit length for an optimal tree */

    if (static_init_done) return;

    /* Initialize the mapping length (0..255) -> length code (0..28) */
    length = 0;
    for (code = 0; code < LENGTH_CODES-1; code++) {
        base_length[code] = length;
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
            length_code[length++] = (uch)code;
        }
    }
    Assert (length == 256, "tr_static_init: length != 256");
    /* Note that the length 255 (match length 258) can be represented
     * in two different ways: code 284 + 5 bits or code 285, so we
     * overwrite length_code[255] to use the best encoding:
     */
    length_code[length-1] = (uch)code;

    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    dist = 0;
    for (code = 0 ; code < 16; code++) {
        base_dist[code] = dist;
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
            dist_code[dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "tr_static_init: dist != 256");
    dist >>= 7; /* from now on, all distances are divided by 128 */
    for ( ; code < D_CODES; code++) {
        base_dist[code] = dist << 7;
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
            dist_code[256 + dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "tr_static_init: 256+dist != 512");

    /* Construct the codes of the static literal tree */
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    n = 0;
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    /* Codes 286 and 287 do not exist, but we must include them in the
     * tree construction to get a canonical Huffman tree (longest code
     * all ones)
     */
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);

    /* The static distance tree is trivial: */
    for (n = 0; n < D_CODES; n++) {
        static_dtree[n].Len = 5;
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    }
    static_init_done = 1;
}

/* ===========================================================================
 * Initialize the tree data structures for a new zlib stream.
 */
void _tr_init(s)
    deflate_state *s;
{
    tr_static_init();

    s->compressed_len = 0L;

    s->l_desc.dyn_tree = s->dyn_ltree;
    s->l_desc.stat_desc = &static_l_desc;

    s->d_desc.dyn_tree = s->dyn_dtree;
    s->d_desc.stat_desc = &static_d_desc;

    s->bl_desc.dyn_tree = s->bl_tree;
    s->bl_desc.stat_desc = &static_bl_desc;

    s->bi_buf = 0;
    s->bi_valid = 0;
    s->last_eob_len = 8; /* enough lookahead for inflate */
#ifdef DEBUG_ZLIB
    s->bits_sent = 0L;
#endif

    /* Initialize the first block of the first file: */
    init_block(s);
}

/* ===========================================================================
 * Initialize a new block.
 */
local void init_block(s)
    deflate_state *s;
{
    int n; /* iterates over tree elements */

    /* Initialize the trees. */
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;

    s->dyn_ltree[END_BLOCK].Freq = 1;
    s->opt_len = s->static_len = 0L;
    s->last_lit = s->matches = 0;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
 * Remove the smallest element from the heap and recreate the heap with
 * one less element. Updates heap and heap_len.
 */
#define pqremove(s, tree, top) \
{\
    top = s->heap[SMALLEST]; \
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    pqdownheap(s, tree, SMALLEST); \
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
#define smaller(tree, n, m, depth) \
   (tree[n].Freq < tree[m].Freq || \
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
local void pqdownheap(s, tree, k)
    deflate_state *s;
    ct_data *tree;  /* the tree to restore */
    int k;               /* node to move down */
{
    int v = s->heap[k];
    int j = k << 1;  /* left son of k */
    while (j <= s->heap_len) {
        /* Set j to the smallest of the two sons: */
        if (j < s->heap_len &&
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
            j++;
        }
        /* Exit if v is smaller than both sons */
        if (smaller(tree, v, s->heap[j], s->depth)) break;

        /* Exchange v with the smallest son */
        s->heap[k] = s->heap[j];  k = j;

        /* And continue down the tree, setting j to the left son of k */
        j <<= 1;
    }
    s->heap[k] = v;
}

/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
local void gen_bitlen(s, desc)
    deflate_state *s;
    tree_desc *desc;    /* the tree descriptor */
{
    ct_data *tree  = desc->dyn_tree;
    int max_code   = desc->max_code;
    ct_data *stree = desc->stat_desc->static_tree;
    intf *extra    = desc->stat_desc->extra_bits;
    int base       = desc->stat_desc->extra_base;
    int max_length = desc->stat_desc->max_length;
    int h;              /* heap index */
    int n, m;           /* iterate over the tree elements */
    int bits;           /* bit length */
    int xbits;          /* extra bits */
    ush f;              /* frequency */
    int overflow = 0;   /* number of elements with bit length too large */

    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;

    /* In a first pass, compute the optimal bit lengths (which may
     * overflow in the case of the bit length tree).
     */
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */

    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
        n = s->heap[h];
        bits = tree[tree[n].Dad].Len + 1;
        if (bits > max_length) bits = max_length, overflow++;
        tree[n].Len = (ush)bits;
        /* We overwrite tree[n].Dad which is no longer needed */

        if (n > max_code) continue; /* not a leaf node */

        s->bl_count[bits]++;
        xbits = 0;
        if (n >= base) xbits = extra[n-base];
        f = tree[n].Freq;
        s->opt_len += (ulg)f * (bits + xbits);
        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
    }
    if (overflow == 0) return;

    Trace((stderr,"\nbit length overflow\n"));
    /* This happens for example on obj2 and pic of the Calgary corpus */

    /* Find the first bit length which could increase: */
    do {
        bits = max_length-1;
        while (s->bl_count[bits] == 0) bits--;
        s->bl_count[bits]--;      /* move one leaf down the tree */
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
        s->bl_count[max_length]--;
        /* The brother of the overflow item also moves one step up,
         * but this does not affect bl_count[max_length]
         */
        overflow -= 2;
    } while (overflow > 0);

    /* Now recompute all bit lengths, scanning in increasing frequency.
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     * lengths instead of fixing only the wrong ones. This idea is taken
     * from 'ar' written by Haruhiko Okumura.)
     */
    for (bits = max_length; bits != 0; bits--) {
        n = s->bl_count[bits];
        while (n != 0) {
            m = s->heap[--h];
            if (m > max_code) continue;
            if (tree[m].Len != (unsigned) bits) {
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                s->opt_len += ((long)bits - (long)tree[m].Len)
                              *(long)tree[m].Freq;
                tree[m].Len = (ush)bits;
            }
            n--;
        }
    }
}

/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
local void gen_codes (tree, max_code, bl_count)
    ct_data *tree;             /* the tree to decorate */
    int max_code;              /* largest code with non zero frequency */
    ushf *bl_count;            /* number of codes at each bit length */
{
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    ush code = 0;              /* running code value */
    int bits;                  /* bit index */
    int n;                     /* code index */

    /* The distribution counts are first used to generate the code values
     * without bit reversal.
     */
    for (bits = 1; bits <= MAX_BITS; bits++) {
        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
    }
    /* Check that the bit counts in bl_count are consistent. The last code
     * must be all ones.
     */
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
            "inconsistent bit counts");
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

    for (n = 0;  n <= max_code; n++) {
        int len = tree[n].Len;
        if (len == 0) continue;
        /* Now reverse the bits */
        tree[n].Code = bi_reverse(next_code[len]++, len);

        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    }
}

/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
local void build_tree(s, desc)
    deflate_state *s;
    tree_desc *desc; /* the tree descriptor */
{
    ct_data *tree   = desc->dyn_tree;
    ct_data *stree  = desc->stat_desc->static_tree;
    int elems       = desc->stat_desc->elems;
    int n, m;          /* iterate over heap elements */
    int max_code = -1; /* largest code with non zero frequency */
    int node;          /* new node being created */

    /* Construct the initial heap, with least frequent element in
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     * heap[0] is not used.
     */
    s->heap_len = 0, s->heap_max = HEAP_SIZE;

    for (n = 0; n < elems; n++) {
        if (tree[n].Freq != 0) {
            s->heap[++(s->heap_len)] = max_code = n;
            s->depth[n] = 0;
        } else {
            tree[n].Len = 0;
        }
    }

    /* The pkzip format requires that at least one distance code exists,
     * and that at least one bit should be sent even if there is only one
     * possible code. So to avoid special checks later on we force at least
     * two codes of non zero frequency.
     */
    while (s->heap_len < 2) {
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
        tree[node].Freq = 1;
        s->depth[node] = 0;
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
        /* node is 0 or 1 so it does not have extra bits */
    }
    desc->max_code = max_code;

    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     * establish sub-heaps of increasing lengths:
     */
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);

    /* Construct the Huffman tree by repeatedly combining the least two
     * frequent nodes.
     */
    node = elems;              /* next internal node of the tree */
    do {
        pqremove(s, tree, n);  /* n = node of least frequency */
        m = s->heap[SMALLEST]; /* m = node of next least frequency */

        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
        s->heap[--(s->heap_max)] = m;

        /* Create a new node father of n and m */
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
        tree[n].Dad = tree[m].Dad = (ush)node;
#ifdef DUMP_BL_TREE
        if (tree == s->bl_tree) {
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
        }
#endif
        /* and insert the new node in the heap */
        s->heap[SMALLEST] = node++;
        pqdownheap(s, tree, SMALLEST);

    } while (s->heap_len >= 2);

    s->heap[--(s->heap_max)] = s->heap[SMALLEST];

    /* At this point, the fields freq and dad are set. We can now
     * generate the bit lengths.
     */
    gen_bitlen(s, (tree_desc *)desc);

    /* The field len is now set, we can generate the bit codes */
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
}

/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree.
 */
local void scan_tree (s, tree, max_code)
    deflate_state *s;
    ct_data *tree;   /* the tree to be scanned */
    int max_code;    /* and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    if (nextlen == 0) max_count = 138, min_count = 3;
    tree[max_code+1].Len = (ush)0xffff; /* guard */

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            s->bl_tree[curlen].Freq += count;
        } else if (curlen != 0) {
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
            s->bl_tree[REP_3_6].Freq++;
        } else if (count <= 10) {
            s->bl_tree[REPZ_3_10].Freq++;
        } else {
            s->bl_tree[REPZ_11_138].Freq++;
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
local void send_tree (s, tree, max_code)
    deflate_state *s;
    ct_data *tree; /* the tree to be scanned */
    int max_code;       /* and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    /* tree[max_code+1].Len = -1; */  /* guard already set */
    if (nextlen == 0) max_count = 138, min_count = 3;

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);

        } else if (curlen != 0) {
            if (curlen != prevlen) {
                send_code(s, curlen, s->bl_tree); count--;
            }
            Assert(count >= 3 && count <= 6, " 3_6?");
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);

        } else if (count <= 10) {
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);

        } else {
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
local int build_bl_tree(s)
    deflate_state *s;
{
    int max_blindex;  /* index of last bit length code of non zero freq */

    /* Determine the bit length frequencies for literal and distance trees */
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);

    /* Build the bit length tree: */
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
    /* opt_len now includes the length of the tree representations, except
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     */

    /* Determine the number of bit length codes to send. The pkzip format
     * requires that at least 4 bit length codes be sent. (appnote.txt says
     * 3 but the actual value used is 4.)
     */
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    }
    /* Update opt_len to include the bit length tree and counts */
    s->opt_len += 3*(max_blindex+1) + 5+5+4;
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
            s->opt_len, s->static_len));

    return max_blindex;
}

/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
local void send_all_trees(s, lcodes, dcodes, blcodes)
    deflate_state *s;
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
    int rank;                    /* index in bl_order */

    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
            "too many codes");
    Tracev((stderr, "\nbl counts: "));
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
    send_bits(s, dcodes-1,   5);
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
    for (rank = 0; rank < blcodes; rank++) {
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    }
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));

    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));

    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
}

/* ===========================================================================
 * Send a stored block
 */
void _tr_stored_block(s, buf, stored_len, eof)
    deflate_state *s;
    charf *buf;       /* input block */
    ulg stored_len;   /* length of input block */
    int eof;          /* true if this is the last block for a file */
{
    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    s->compressed_len += (stored_len + 4) << 3;

    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
}

/* Send just the `stored block' type code without any length bytes or data.
 */
void _tr_stored_type_only(s)
    deflate_state *s;
{
    send_bits(s, (STORED_BLOCK << 1), 3);
    bi_windup(s);
    s->compressed_len = (s->compressed_len + 3) & ~7L;
}


/* ===========================================================================
 * Send one empty static block to give enough lookahead for inflate.
 * This takes 10 bits, of which 7 may remain in the bit buffer.
 * The current inflate code requires 9 bits of lookahead. If the
 * last two codes for the previous block (real code plus EOB) were coded
 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 * the last real code. In this case we send two empty static blocks instead
 * of one. (There are no problems if the previous block is stored or fixed.)
 * To simplify the code, we assume the worst case of last real code encoded
 * on one bit only.
 */
void _tr_align(s)
    deflate_state *s;
{
    send_bits(s, STATIC_TREES<<1, 3);
    send_code(s, END_BLOCK, static_ltree);
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
    bi_flush(s);
    /* Of the 10 bits for the empty block, we have already sent
     * (10 - bi_valid) bits. The lookahead for the last real code (before
     * the EOB of the previous block) was thus at least one plus the length
     * of the EOB plus what we have just sent of the empty static block.
     */
    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
        send_bits(s, STATIC_TREES<<1, 3);
        send_code(s, END_BLOCK, static_ltree);
        s->compressed_len += 10L;
        bi_flush(s);
    }
    s->last_eob_len = 7;
}

/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and output the encoded block to the zip file. This function
 * returns the total compressed length for the file so far.
 */
ulg _tr_flush_block(s, buf, stored_len, eof)
    deflate_state *s;
    charf *buf;       /* input block, or NULL if too old */
    ulg stored_len;   /* length of input block */
    int eof;          /* true if this is the last block for a file */
{
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    int max_blindex = 0;  /* index of last bit length code of non zero freq */

    /* Build the Huffman trees unless a stored block is forced */
    if (s->level > 0) {

	 /* Check if the file is ascii or binary */
	if (s->data_type == Z_UNKNOWN) set_data_type(s);

	/* Construct the literal and distance trees */
	build_tree(s, (tree_desc *)(&(s->l_desc)));
	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
		s->static_len));

	build_tree(s, (tree_desc *)(&(s->d_desc)));
	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
		s->static_len));
	/* At this point, opt_len and static_len are the total bit lengths of
	 * the compressed block data, excluding the tree representations.
	 */

	/* Build the bit length tree for the above two trees, and get the index
	 * in bl_order of the last bit length code to send.
	 */
	max_blindex = build_bl_tree(s);

	/* Determine the best encoding. Compute first the block length in bytes*/
	opt_lenb = (s->opt_len+3+7)>>3;
	static_lenb = (s->static_len+3+7)>>3;

	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
		s->last_lit));

	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

    } else {
        Assert(buf != (char*)0, "lost buf");
	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
    }

    /* If compression failed and this is the first and last block,
     * and if the .zip file can be seeked (to rewrite the local header),
     * the whole file is transformed into a stored file:
     */
#ifdef STORED_FILE_OK
#  ifdef FORCE_STORED_FILE
    if (eof && s->compressed_len == 0L) { /* force stored file */
#  else
    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
#  endif
        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
        if (buf == (charf*)0) error ("block vanished");

        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
        s->compressed_len = stored_len << 3;
        s->method = STORED;
    } else
#endif /* STORED_FILE_OK */

#ifdef FORCE_STORED
    if (buf != (char*)0) { /* force stored block */
#else
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
                       /* 4: two words for the lengths */
#endif
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
         * Otherwise we can't have processed more than WSIZE input bytes since
         * the last block flush, because compression would have been
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
         * transform a block into a stored block.
         */
        _tr_stored_block(s, buf, stored_len, eof);

#ifdef FORCE_STATIC
    } else if (static_lenb >= 0) { /* force static trees */
#else
    } else if (static_lenb == opt_lenb) {
#endif
        send_bits(s, (STATIC_TREES<<1)+eof, 3);
        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
        s->compressed_len += 3 + s->static_len;
    } else {
        send_bits(s, (DYN_TREES<<1)+eof, 3);
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                       max_blindex+1);
        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
        s->compressed_len += 3 + s->opt_len;
    }
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
    init_block(s);

    if (eof) {
        bi_windup(s);
        s->compressed_len += 7;  /* align on byte boundary */
    }
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
           s->compressed_len-7*eof));

    return s->compressed_len >> 3;
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
int _tr_tally (s, dist, lc)
    deflate_state *s;
    unsigned dist;  /* distance of matched string */
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
    s->d_buf[s->last_lit] = (ush)dist;
    s->l_buf[s->last_lit++] = (uch)lc;
    if (dist == 0) {
        /* lc is the unmatched char */
        s->dyn_ltree[lc].Freq++;
    } else {
        s->matches++;
        /* Here, lc is the match length - MIN_MATCH */
        dist--;             /* dist = match distance - 1 */
        Assert((ush)dist < (ush)MAX_DIST(s) &&
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");

        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
        s->dyn_dtree[d_code(dist)].Freq++;
    }

    /* Try to guess if it is profitable to stop the current block here */
    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
        /* Compute an upper bound for the compressed length */
        ulg out_length = (ulg)s->last_lit*8L;
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
        int dcode;
        for (dcode = 0; dcode < D_CODES; dcode++) {
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
                (5L+extra_dbits[dcode]);
        }
        out_length >>= 3;
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
               s->last_lit, in_length, out_length,
               100L - out_length*100L/in_length));
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
    }
    return (s->last_lit == s->lit_bufsize-1);
    /* We avoid equality with lit_bufsize because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */
}

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
local void compress_block(s, ltree, dtree)
    deflate_state *s;
    ct_data *ltree; /* literal tree */
    ct_data *dtree; /* distance tree */
{
    unsigned dist;      /* distance of matched string */
    int lc;             /* match length or unmatched char (if dist == 0) */
    unsigned lx = 0;    /* running index in l_buf */
    unsigned code;      /* the code to send */
    int extra;          /* number of extra bits to send */

    if (s->last_lit != 0) do {
        dist = s->d_buf[lx];
        lc = s->l_buf[lx++];
        if (dist == 0) {
            send_code(s, lc, ltree); /* send a literal byte */
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
        } else {
            /* Here, lc is the match length - MIN_MATCH */
            code = length_code[lc];
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
            extra = extra_lbits[code];
            if (extra != 0) {
                lc -= base_length[code];
                send_bits(s, lc, extra);       /* send the extra length bits */
            }
            dist--; /* dist is now the match distance - 1 */
            code = d_code(dist);
            Assert (code < D_CODES, "bad d_code");

            send_code(s, code, dtree);       /* send the distance code */
            extra = extra_dbits[code];
            if (extra != 0) {
                dist -= base_dist[code];
                send_bits(s, dist, extra);   /* send the extra distance bits */
            }
        } /* literal or match pair ? */

        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");

    } while (lx < s->last_lit);

    send_code(s, END_BLOCK, ltree);
    s->last_eob_len = ltree[END_BLOCK].Len;
}

/* ===========================================================================
 * Set the data type to ASCII or BINARY, using a crude approximation:
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 */
local void set_data_type(s)
    deflate_state *s;
{
    int n = 0;
    unsigned ascii_freq = 0;
    unsigned bin_freq = 0;
    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
}

/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
local unsigned bi_reverse(code, len)
    unsigned code; /* the value to invert */
    int len;       /* its bit length */
{
    register unsigned res = 0;
    do {
        res |= code & 1;
        code >>= 1, res <<= 1;
    } while (--len > 0);
    return res >> 1;
}

/* ===========================================================================
 * Flush the bit buffer, keeping at most 7 bits in it.
 */
local void bi_flush(s)
    deflate_state *s;
{
    if (s->bi_valid == 16) {
        put_short(s, s->bi_buf);
        s->bi_buf = 0;
        s->bi_valid = 0;
    } else if (s->bi_valid >= 8) {
        put_byte(s, (Byte)s->bi_buf);
        s->bi_buf >>= 8;
        s->bi_valid -= 8;
    }
}

/* ===========================================================================
 * Flush the bit buffer and align the output on a byte boundary
 */
local void bi_windup(s)
    deflate_state *s;
{
    if (s->bi_valid > 8) {
        put_short(s, s->bi_buf);
    } else if (s->bi_valid > 0) {
        put_byte(s, (Byte)s->bi_buf);
    }
    s->bi_buf = 0;
    s->bi_valid = 0;
#ifdef DEBUG_ZLIB
    s->bits_sent = (s->bits_sent+7) & ~7;
#endif
}

/* ===========================================================================
 * Copy a stored block, storing first the length and its
 * one's complement if requested.
 */
local void copy_block(s, buf, len, header)
    deflate_state *s;
    charf    *buf;    /* the input data */
    unsigned len;     /* its length */
    int      header;  /* true if block header must be written */
{
    bi_windup(s);        /* align on byte boundary */
    s->last_eob_len = 8; /* enough lookahead for inflate */

    if (header) {
        put_short(s, (ush)len);   
        put_short(s, (ush)~len);
#ifdef DEBUG_ZLIB
        s->bits_sent += 2*16;
#endif
    }
#ifdef DEBUG_ZLIB
    s->bits_sent += (ulg)len<<3;
#endif
    /* bundle up the put_byte(s, *buf++) calls */
    zmemcpy(&s->pending_buf[s->pending], buf, len);
    s->pending += len;
}
/* --- trees.c */

/* +++ inflate.c */
/* inflate.c -- zlib interface to inflate modules
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */

/* +++ infblock.h */
/* infblock.h -- header to use infblock.c
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

struct inflate_blocks_state;
typedef struct inflate_blocks_state FAR inflate_blocks_statef;

extern inflate_blocks_statef * inflate_blocks_new OF((
    z_streamp z,
    check_func c,               /* check function */
    uInt w));                   /* window size */

extern int inflate_blocks OF((
    inflate_blocks_statef *,
    z_streamp ,
    int));                      /* initial return code */

extern void inflate_blocks_reset OF((
    inflate_blocks_statef *,
    z_streamp ,
    uLongf *));                  /* check value on output */

extern int inflate_blocks_free OF((
    inflate_blocks_statef *,
    z_streamp ,
    uLongf *));                  /* check value on output */

extern void inflate_set_dictionary OF((
    inflate_blocks_statef *s,
    const Bytef *d,  /* dictionary */
    uInt  n));       /* dictionary length */

extern int inflate_addhistory OF((
    inflate_blocks_statef *,
    z_streamp));

extern int inflate_packet_flush OF((
    inflate_blocks_statef *));
/* --- infblock.h */

#ifndef NO_DUMMY_DECL
struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
#endif

/* inflate private state */
struct internal_state {

  /* mode */
  enum {
      METHOD,   /* waiting for method byte */
      FLAG,     /* waiting for flag byte */
      DICT4,    /* four dictionary check bytes to go */
      DICT3,    /* three dictionary check bytes to go */
      DICT2,    /* two dictionary check bytes to go */
      DICT1,    /* one dictionary check byte to go */
      DICT0,    /* waiting for inflateSetDictionary */
      BLOCKS,   /* decompressing blocks */
      CHECK4,   /* four check bytes to go */
      CHECK3,   /* three check bytes to go */
      CHECK2,   /* two check bytes to go */
      CHECK1,   /* one check byte to go */
      DONE,     /* finished check, done */
      BAD}      /* got an error--stay here */
    mode;               /* current inflate mode */

  /* mode dependent information */
  union {
    uInt method;        /* if FLAGS, method byte */
    struct {
      uLong was;                /* computed check value */
      uLong need;               /* stream check value */
    } check;            /* if CHECK, check values to compare */
    uInt marker;        /* if BAD, inflateSync's marker bytes count */
  } sub;        /* submode */

  /* mode independent information */
  int  nowrap;          /* flag for no wrapper */
  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
  inflate_blocks_statef 
    *blocks;            /* current inflate_blocks state */

};


int inflateReset(z)
z_streamp z;
{
  uLong c;

  if (z == Z_NULL || z->state == Z_NULL)
    return Z_STREAM_ERROR;
  z->total_in = z->total_out = 0;
  z->msg = Z_NULL;
  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
  inflate_blocks_reset(z->state->blocks, z, &c);
  Trace((stderr, "inflate: reset\n"));
  return Z_OK;
}


int inflateEnd(z)
z_streamp z;
{
  uLong c;

  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
    return Z_STREAM_ERROR;
  if (z->state->blocks != Z_NULL)
    inflate_blocks_free(z->state->blocks, z, &c);
  ZFREE(z, z->state);
  z->state = Z_NULL;
  Trace((stderr, "inflate: end\n"));
  return Z_OK;
}


int inflateInit2_(z, w, version, stream_size)
z_streamp z;
int w;
const char *version;
int stream_size;
{
  if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
      stream_size != sizeof(z_stream))
      return Z_VERSION_ERROR;

  /* initialize state */
  if (z == Z_NULL)
    return Z_STREAM_ERROR;
  z->msg = Z_NULL;
#ifndef NO_ZCFUNCS
  if (z->zalloc == Z_NULL)
  {
    z->zalloc = zcalloc;
    z->opaque = (voidpf)0;
  }
  if (z->zfree == Z_NULL) z->zfree = zcfree;
#endif
  if ((z->state = (struct internal_state FAR *)
       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
    return Z_MEM_ERROR;
  z->state->blocks = Z_NULL;

  /* handle undocumented nowrap option (no zlib header or check) */
  z->state->nowrap = 0;
  if (w < 0)
  {
    w = - w;
    z->state->nowrap = 1;
  }

  /* set window size */
  if (w < 8 || w > 15)
  {
    inflateEnd(z);
    return Z_STREAM_ERROR;
  }
  z->state->wbits = (uInt)w;

  /* create inflate_blocks state */
  if ((z->state->blocks =
      inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
      == Z_NULL)
  {
    inflateEnd(z);
    return Z_MEM_ERROR;
  }
  Trace((stderr, "inflate: allocated\n"));

  /* reset state */
  inflateReset(z);
  return Z_OK;
}


int inflateInit_(z, version, stream_size)
z_streamp z;
const char *version;
int stream_size;
{
  return inflateInit2_(z, DEF_WBITS, version, stream_size);
}


#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)

int inflate(z, f)
z_streamp z;
int f;
{
  int r;
  uInt b;

  if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
    return Z_STREAM_ERROR;
  r = Z_BUF_ERROR;
  while (1) switch (z->state->mode)
  {
    case METHOD:
      NEEDBYTE
      if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
      {
        z->state->mode = BAD;
        z->msg = (char*)"unknown compression method";
        z->state->sub.marker = 5;       /* can't try inflateSync */
        break;
      }
      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
      {
        z->state->mode = BAD;
        z->msg = (char*)"invalid window size";
        z->state->sub.marker = 5;       /* can't try inflateSync */
        break;
      }
      z->state->mode = FLAG;
    case FLAG:
      NEEDBYTE
      b = NEXTBYTE;
      if (((z->state->sub.method << 8) + b) % 31)
      {
        z->state->mode = BAD;
        z->msg = (char*)"incorrect header check";
        z->state->sub.marker = 5;       /* can't try inflateSync */
        break;
      }
      Trace((stderr, "inflate: zlib header ok\n"));
      if (!(b & PRESET_DICT))
      {
        z->state->mode = BLOCKS;
	break;
      }
      z->state->mode = DICT4;
    case DICT4:
      NEEDBYTE
      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
      z->state->mode = DICT3;
    case DICT3:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
      z->state->mode = DICT2;
    case DICT2:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
      z->state->mode = DICT1;
    case DICT1:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE;
      z->adler = z->state->sub.check.need;
      z->state->mode = DICT0;
      return Z_NEED_DICT;
    case DICT0:
      z->state->mode = BAD;
      z->msg = (char*)"need dictionary";
      z->state->sub.marker = 0;       /* can try inflateSync */
      return Z_STREAM_ERROR;
    case BLOCKS:
      r = inflate_blocks(z->state->blocks, z, r);
      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
	  r = inflate_packet_flush(z->state->blocks);
      if (r == Z_DATA_ERROR)
      {
        z->state->mode = BAD;
        z->state->sub.marker = 0;       /* can try inflateSync */
        break;
      }
      if (r != Z_STREAM_END)
        return r;
      r = Z_OK;
      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
      if (z->state->nowrap)
      {
        z->state->mode = DONE;
        break;
      }
      z->state->mode = CHECK4;
    case CHECK4:
      NEEDBYTE
      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
      z->state->mode = CHECK3;
    case CHECK3:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
      z->state->mode = CHECK2;
    case CHECK2:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
      z->state->mode = CHECK1;
    case CHECK1:
      NEEDBYTE
      z->state->sub.check.need += (uLong)NEXTBYTE;

      if (z->state->sub.check.was != z->state->sub.check.need)
      {
        z->state->mode = BAD;
        z->msg = (char*)"incorrect data check";
        z->state->sub.marker = 5;       /* can't try inflateSync */
        break;
      }
      Trace((stderr, "inflate: zlib check ok\n"));
      z->state->mode = DONE;
    case DONE:
      return Z_STREAM_END;
    case BAD:
      return Z_DATA_ERROR;
    default:
      return Z_STREAM_ERROR;
  }

 empty:
  if (f != Z_PACKET_FLUSH)
    return r;
  z->state->mode = BAD;
  z->msg = (char *)"need more for packet flush";
  z->state->sub.marker = 0;       /* can try inflateSync */
  return Z_DATA_ERROR;
}


int inflateSetDictionary(z, dictionary, dictLength)
z_streamp z;
const Bytef *dictionary;
uInt  dictLength;
{
  uInt length = dictLength;

  if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
    return Z_STREAM_ERROR;

  if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
  z->adler = 1L;

  if (length >= ((uInt)1<<z->state->wbits))
  {
    length = (1<<z->state->wbits)-1;
    dictionary += dictLength - length;
  }
  inflate_set_dictionary(z->state->blocks, dictionary, length);
  z->state->mode = BLOCKS;
  return Z_OK;
}

/*
 * This subroutine adds the data at next_in/avail_in to the output history
 * without performing any output.  The output buffer must be "caught up";
 * i.e. no pending output (hence s->read equals s->write), and the state must
 * be BLOCKS (i.e. we should be willing to see the start of a series of
 * BLOCKS).  On exit, the output will also be caught up, and the checksum
 * will have been updated if need be.
 */

int inflateIncomp(z)
z_stream *z;
{
    if (z->state->mode != BLOCKS)
	return Z_DATA_ERROR;
    return inflate_addhistory(z->state->blocks, z);
}


int inflateSync(z)
z_streamp z;
{
  uInt n;       /* number of bytes to look at */
  Bytef *p;     /* pointer to bytes */
  uInt m;       /* number of marker bytes found in a row */
  uLong r, w;   /* temporaries to save total_in and total_out */

  /* set up */
  if (z == Z_NULL || z->state == Z_NULL)
    return Z_STREAM_ERROR;
  if (z->state->mode != BAD)
  {
    z->state->mode = BAD;
    z->state->sub.marker = 0;
  }
  if ((n = z->avail_in) == 0)
    return Z_BUF_ERROR;
  p = z->next_in;
  m = z->state->sub.marker;

  /* search */
  while (n && m < 4)
  {
    if (*p == (Byte)(m < 2 ? 0 : 0xff))
      m++;
    else if (*p)
      m = 0;
    else
      m = 4 - m;
    p++, n--;
  }

  /* restore */
  z->total_in += p - z->next_in;
  z->next_in = p;
  z->avail_in = n;
  z->state->sub.marker = m;

  /* return no joy or set up to restart on a new block */
  if (m != 4)
    return Z_DATA_ERROR;
  r = z->total_in;  w = z->total_out;
  inflateReset(z);
  z->total_in = r;  z->total_out = w;
  z->state->mode = BLOCKS;
  return Z_OK;
}

#undef NEEDBYTE
#undef NEXTBYTE
/* --- inflate.c */

/* +++ infblock.c */
/* infblock.c -- interpret and process block types to last block
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */
/* #include "infblock.h" */

/* +++ inftrees.h */
/* inftrees.h -- header to use inftrees.c
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

/* Huffman code lookup table entry--this entry is four bytes for machines
   that have 16-bit pointers (e.g. PC's in the small or medium model). */

typedef struct inflate_huft_s FAR inflate_huft;

struct inflate_huft_s {
  union {
    struct {
      Byte Exop;        /* number of extra bits or operation */
      Byte Bits;        /* number of bits in this code or subcode */
    } what;
    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
  union {
    uInt Base;          /* literal, length base, or distance base */
    inflate_huft *Next; /* pointer to next level of table */
  } more;
};

#ifdef DEBUG_ZLIB
  extern uInt inflate_hufts;
#endif

extern int inflate_trees_bits OF((
    uIntf *,                    /* 19 code lengths */
    uIntf *,                    /* bits tree desired/actual depth */
    inflate_huft * FAR *,       /* bits tree result */
    z_streamp ));               /* for zalloc, zfree functions */

extern int inflate_trees_dynamic OF((
    uInt,                       /* number of literal/length codes */
    uInt,                       /* number of distance codes */
    uIntf *,                    /* that many (total) code lengths */
    uIntf *,                    /* literal desired/actual bit depth */
    uIntf *,                    /* distance desired/actual bit depth */
    inflate_huft * FAR *,       /* literal/length tree result */
    inflate_huft * FAR *,       /* distance tree result */
    z_streamp ));               /* for zalloc, zfree functions */

extern int inflate_trees_fixed OF((
    uIntf *,                    /* literal desired/actual bit depth */
    uIntf *,                    /* distance desired/actual bit depth */
    inflate_huft * FAR *,       /* literal/length tree result */
    inflate_huft * FAR *));     /* distance tree result */

extern int inflate_trees_free OF((
    inflate_huft *,             /* tables to free */
    z_streamp ));               /* for zfree function */

/* --- inftrees.h */

/* +++ infcodes.h */
/* infcodes.h -- header to use infcodes.c
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

struct inflate_codes_state;
typedef struct inflate_codes_state FAR inflate_codes_statef;

extern inflate_codes_statef *inflate_codes_new OF((
    uInt, uInt,
    inflate_huft *, inflate_huft *,
    z_streamp ));

extern int inflate_codes OF((
    inflate_blocks_statef *,
    z_streamp ,
    int));

extern void inflate_codes_free OF((
    inflate_codes_statef *,
    z_streamp ));

/* --- infcodes.h */

/* +++ infutil.h */
/* infutil.h -- types and macros common to blocks and codes
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

#ifndef _INFUTIL_H
#define _INFUTIL_H

typedef enum {
      TYPE,     /* get type bits (3, including end bit) */
      LENS,     /* get lengths for stored */
      STORED,   /* processing stored block */
      TABLE,    /* get table lengths */
      BTREE,    /* get bit lengths tree for a dynamic block */
      DTREE,    /* get length, distance trees for a dynamic block */
      CODES,    /* processing fixed or dynamic block */
      DRY,      /* output remaining window bytes */
      DONEB,    /* finished last block, done */
      BADB}     /* got a data error--stuck here */
inflate_block_mode;

/* inflate blocks semi-private state */
struct inflate_blocks_state {

  /* mode */
  inflate_block_mode  mode;     /* current inflate_block mode */

  /* mode dependent information */
  union {
    uInt left;          /* if STORED, bytes left to copy */
    struct {
      uInt table;               /* table lengths (14 bits) */
      uInt index;               /* index into blens (or border) */
      uIntf *blens;             /* bit lengths of codes */
      uInt bb;                  /* bit length tree depth */
      inflate_huft *tb;         /* bit length decoding tree */
    } trees;            /* if DTREE, decoding info for trees */
    struct {
      inflate_huft *tl;
      inflate_huft *td;         /* trees to free */
      inflate_codes_statef 
         *codes;
    } decode;           /* if CODES, current state */
  } sub;                /* submode */
  uInt last;            /* true if this block is the last block */

  /* mode independent information */
  uInt bitk;            /* bits in bit buffer */
  uLong bitb;           /* bit buffer */
  Bytef *window;        /* sliding window */
  Bytef *end;           /* one byte after sliding window */
  Bytef *read;          /* window read pointer */
  Bytef *write;         /* window write pointer */
  check_func checkfn;   /* check function */
  uLong check;          /* check on output */

};


/* defines for inflate input/output */
/*   update pointers and return */
#define UPDBITS {s->bitb=b;s->bitk=k;}
#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
#define UPDOUT {s->write=q;}
#define UPDATE {UPDBITS UPDIN UPDOUT}
#define LEAVE {UPDATE return inflate_flush(s,z,r);}
/*   get bytes and bits */
#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
#define NEXTBYTE (n--,*p++)
#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define DUMPBITS(j) {b>>=(j);k-=(j);}
/*   output bytes */
#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
/*   load local pointers */
#define LOAD {LOADIN LOADOUT}

/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
extern uInt inflate_mask[17];

/* copy as much as possible from the sliding window to the output area */
extern int inflate_flush OF((
    inflate_blocks_statef *,
    z_streamp ,
    int));

#ifndef NO_DUMMY_DECL
struct internal_state      {int dummy;}; /* for buggy compilers */
#endif

#endif
/* --- infutil.h */

#ifndef NO_DUMMY_DECL
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
#endif

/* Table for deflate from PKZIP's appnote.txt. */
local const uInt border[] = { /* Order of the bit length code lengths */
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};

/*
   Notes beyond the 1.93a appnote.txt:

   1. Distance pointers never point before the beginning of the output
      stream.
   2. Distance pointers can point back across blocks, up to 32k away.
   3. There is an implied maximum of 7 bits for the bit length table and
      15 bits for the actual data.
   4. If only one code exists, then it is encoded using one bit.  (Zero
      would be more efficient, but perhaps a little confusing.)  If two
      codes exist, they are coded using one bit each (0 and 1).
   5. There is no way of sending zero distance codes--a dummy must be
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
      store blocks with no distance codes, but this was discovered to be
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
      zero distance codes, which is sent as one code of zero bits in
      length.
   6. There are up to 286 literal/length codes.  Code 256 represents the
      end-of-block.  Note however that the static length tree defines
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
      cannot be used though, since there is no length base or extra bits
      defined for them.  Similarily, there are up to 30 distance codes.
      However, static trees define 32 codes (all 5 bits) to fill out the
      Huffman codes, but the last two had better not show up in the data.
   7. Unzip can check dynamic Huffman blocks for complete code sets.
      The exception is that a single code would not be complete (see #4).
   8. The five bits following the block type is really the number of
      literal codes sent minus 257.
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
      (1+6+6).  Therefore, to output three times the length, you output
      three codes (1+1+1), whereas to output four times the same length,
      you only need two codes (1+3).  Hmm.
  10. In the tree reconstruction algorithm, Code = Code + Increment
      only if BitLength(i) is not zero.  (Pretty obvious.)
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
  12. Note: length code 284 can represent 227-258, but length code 285
      really is 258.  The last length deserves its own, short code
      since it gets used a lot in very redundant files.  The length
      258 is special since 258 - 3 (the min match length) is 255.
  13. The literal/length and distance code bit lengths are read as a
      single stream of lengths.  It is possible (and advantageous) for
      a repeat code (16, 17, or 18) to go across the boundary between
      the two sets of lengths.
 */


void inflate_blocks_reset(s, z, c)
inflate_blocks_statef *s;
z_streamp z;
uLongf *c;
{
  if (s->checkfn != Z_NULL)
    *c = s->check;
  if (s->mode == BTREE || s->mode == DTREE)
    ZFREE(z, s->sub.trees.blens);
  if (s->mode == CODES)
  {
    inflate_codes_free(s->sub.decode.codes, z);
    inflate_trees_free(s->sub.decode.td, z);
    inflate_trees_free(s->sub.decode.tl, z);
  }
  s->mode = TYPE;
  s->bitk = 0;
  s->bitb = 0;
  s->read = s->write = s->window;
  if (s->checkfn != Z_NULL)
    z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
  Trace((stderr, "inflate:   blocks reset\n"));
}


inflate_blocks_statef *inflate_blocks_new(z, c, w)
z_streamp z;
check_func c;
uInt w;
{
  inflate_blocks_statef *s;

  if ((s = (inflate_blocks_statef *)ZALLOC
       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
    return s;
  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
  {
    ZFREE(z, s);
    return Z_NULL;
  }
  s->end = s->window + w;
  s->checkfn = c;
  s->mode = TYPE;
  Trace((stderr, "inflate:   blocks allocated\n"));
  inflate_blocks_reset(s, z, &s->check);
  return s;
}


#ifdef DEBUG_ZLIB
  extern uInt inflate_hufts;
#endif
int inflate_blocks(s, z, r)
inflate_blocks_statef *s;
z_streamp z;
int r;
{
  uInt t;               /* temporary storage */
  uLong b;              /* bit buffer */
  uInt k;               /* bits in bit buffer */
  Bytef *p;             /* input data pointer */
  uInt n;               /* bytes available there */
  Bytef *q;             /* output window write pointer */
  uInt m;               /* bytes to end of window or read pointer */

  /* copy input/output information to locals (UPDATE macro restores) */
  LOAD

  /* process input based on current state */
  while (1) switch (s->mode)
  {
    case TYPE:
      NEEDBITS(3)
      t = (uInt)b & 7;
      s->last = t & 1;
      switch (t >> 1)
      {
        case 0:                         /* stored */
          Trace((stderr, "inflate:     stored block%s\n",
                 s->last ? " (last)" : ""));
          DUMPBITS(3)
          t = k & 7;                    /* go to byte boundary */
          DUMPBITS(t)
          s->mode = LENS;               /* get length of stored block */
          break;
        case 1:                         /* fixed */
          Trace((stderr, "inflate:     fixed codes block%s\n",
                 s->last ? " (last)" : ""));
          {
            uInt bl, bd;
            inflate_huft *tl, *td;

            inflate_trees_fixed(&bl, &bd, &tl, &td);
            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
            if (s->sub.decode.codes == Z_NULL)
            {
              r = Z_MEM_ERROR;
              LEAVE
            }
            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
            s->sub.decode.td = Z_NULL;
          }
          DUMPBITS(3)
          s->mode = CODES;
          break;
        case 2:                         /* dynamic */
          Trace((stderr, "inflate:     dynamic codes block%s\n",
                 s->last ? " (last)" : ""));
          DUMPBITS(3)
          s->mode = TABLE;
          break;
        case 3:                         /* illegal */
          DUMPBITS(3)
          s->mode = BADB;
          z->msg = (char*)"invalid block type";
          r = Z_DATA_ERROR;
          LEAVE
      }
      break;
    case LENS:
      NEEDBITS(32)
      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
      {
        s->mode = BADB;
        z->msg = (char*)"invalid stored block lengths";
        r = Z_DATA_ERROR;
        LEAVE
      }
      s->sub.left = (uInt)b & 0xffff;
      b = k = 0;                      /* dump bits */
      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
      break;
    case STORED:
      if (n == 0)
        LEAVE
      NEEDOUT
      t = s->sub.left;
      if (t > n) t = n;
      if (t > m) t = m;
      zmemcpy(q, p, t);
      p += t;  n -= t;
      q += t;  m -= t;
      if ((s->sub.left -= t) != 0)
        break;
      Tracev((stderr, "inflate:       stored end, %lu total out\n",
              z->total_out + (q >= s->read ? q - s->read :
              (s->end - s->read) + (q - s->window))));
      s->mode = s->last ? DRY : TYPE;
      break;
    case TABLE:
      NEEDBITS(14)
      s->sub.trees.table = t = (uInt)b & 0x3fff;
#ifndef PKZIP_BUG_WORKAROUND
      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
      {
        s->mode = BADB;
        z->msg = (char*)"too many length or distance symbols";
        r = Z_DATA_ERROR;
        LEAVE
      }
#endif
      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
      if (t < 19)
        t = 19;
      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
      {
        r = Z_MEM_ERROR;
        LEAVE
      }
      DUMPBITS(14)
      s->sub.trees.index = 0;
      Tracev((stderr, "inflate:       table sizes ok\n"));
      s->mode = BTREE;
    case BTREE:
      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
      {
        NEEDBITS(3)
        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
        DUMPBITS(3)
      }
      while (s->sub.trees.index < 19)
        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
      s->sub.trees.bb = 7;
      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
                             &s->sub.trees.tb, z);
      if (t != Z_OK)
      {
        ZFREE(z, s->sub.trees.blens);
        r = t;
        if (r == Z_DATA_ERROR)
          s->mode = BADB;
        LEAVE
      }
      s->sub.trees.index = 0;
      Tracev((stderr, "inflate:       bits tree ok\n"));
      s->mode = DTREE;
    case DTREE:
      while (t = s->sub.trees.table,
             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
      {
        inflate_huft *h;
        uInt i, j, c;

        t = s->sub.trees.bb;
        NEEDBITS(t)
        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
        t = h->word.what.Bits;
        c = h->more.Base;
        if (c < 16)
        {
          DUMPBITS(t)
          s->sub.trees.blens[s->sub.trees.index++] = c;
        }
        else /* c == 16..18 */
        {
          i = c == 18 ? 7 : c - 14;
          j = c == 18 ? 11 : 3;
          NEEDBITS(t + i)
          DUMPBITS(t)
          j += (uInt)b & inflate_mask[i];
          DUMPBITS(i)
          i = s->sub.trees.index;
          t = s->sub.trees.table;
          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
              (c == 16 && i < 1))
          {
            inflate_trees_free(s->sub.trees.tb, z);
            ZFREE(z, s->sub.trees.blens);
            s->mode = BADB;
            z->msg = (char*)"invalid bit length repeat";
            r = Z_DATA_ERROR;
            LEAVE
          }
          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
          do {
            s->sub.trees.blens[i++] = c;
          } while (--j);
          s->sub.trees.index = i;
        }
      }
      inflate_trees_free(s->sub.trees.tb, z);
      s->sub.trees.tb = Z_NULL;
      {
        uInt bl, bd;
        inflate_huft *tl, *td;
        inflate_codes_statef *c;

        bl = 9;         /* must be <= 9 for lookahead assumptions */
        bd = 6;         /* must be <= 9 for lookahead assumptions */
        t = s->sub.trees.table;
#ifdef DEBUG_ZLIB
      inflate_hufts = 0;
#endif
        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
        ZFREE(z, s->sub.trees.blens);
        if (t != Z_OK)
        {
          if (t == (uInt)Z_DATA_ERROR)
            s->mode = BADB;
          r = t;
          LEAVE
        }
        Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
              inflate_hufts, sizeof(inflate_huft)));
        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
        {
          inflate_trees_free(td, z);
          inflate_trees_free(tl, z);
          r = Z_MEM_ERROR;
          LEAVE
        }
        s->sub.decode.codes = c;
        s->sub.decode.tl = tl;
        s->sub.decode.td = td;
      }
      s->mode = CODES;
    case CODES:
      UPDATE
      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
        return inflate_flush(s, z, r);
      r = Z_OK;
      inflate_codes_free(s->sub.decode.codes, z);
      inflate_trees_free(s->sub.decode.td, z);
      inflate_trees_free(s->sub.decode.tl, z);
      LOAD
      Tracev((stderr, "inflate:       codes end, %lu total out\n",
              z->total_out + (q >= s->read ? q - s->read :
              (s->end - s->read) + (q - s->window))));
      if (!s->last)
      {
        s->mode = TYPE;
        break;
      }
      if (k > 7)              /* return unused byte, if any */
      {
        Assert(k < 16, "inflate_codes grabbed too many bytes")
        k -= 8;
        n++;
        p--;                    /* can always return one */
      }
      s->mode = DRY;
    case DRY:
      FLUSH
      if (s->read != s->write)
        LEAVE
      s->mode = DONEB;
    case DONEB:
      r = Z_STREAM_END;
      LEAVE
    case BADB:
      r = Z_DATA_ERROR;
      LEAVE
    default:
      r = Z_STREAM_ERROR;
      LEAVE
  }
}


int inflate_blocks_free(s, z, c)
inflate_blocks_statef *s;
z_streamp z;
uLongf *c;
{
  inflate_blocks_reset(s, z, c);
  ZFREE(z, s->window);
  ZFREE(z, s);
  Trace((stderr, "inflate:   blocks freed\n"));
  return Z_OK;
}


void inflate_set_dictionary(s, d, n)
inflate_blocks_statef *s;
const Bytef *d;
uInt  n;
{
  zmemcpy((charf *)s->window, d, n);
  s->read = s->write = s->window + n;
}

/*
 * This subroutine adds the data at next_in/avail_in to the output history
 * without performing any output.  The output buffer must be "caught up";
 * i.e. no pending output (hence s->read equals s->write), and the state must
 * be BLOCKS (i.e. we should be willing to see the start of a series of
 * BLOCKS).  On exit, the output will also be caught up, and the checksum
 * will have been updated if need be.
 */
int inflate_addhistory(s, z)
inflate_blocks_statef *s;
z_stream *z;
{
    uLong b;              /* bit buffer */  /* NOT USED HERE */
    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
    uInt t;               /* temporary storage */
    Bytef *p;             /* input data pointer */
    uInt n;               /* bytes available there */
    Bytef *q;             /* output window write pointer */
    uInt m;               /* bytes to end of window or read pointer */

    if (s->read != s->write)
	return Z_STREAM_ERROR;
    if (s->mode != TYPE)
	return Z_DATA_ERROR;

    /* we're ready to rock */
    LOAD
    /* while there is input ready, copy to output buffer, moving
     * pointers as needed.
     */
    while (n) {
	t = n;  /* how many to do */
	/* is there room until end of buffer? */
	if (t > m) t = m;
	/* update check information */
	if (s->checkfn != Z_NULL)
	    s->check = (*s->checkfn)(s->check, q, t);
	zmemcpy(q, p, t);
	q += t;
	p += t;
	n -= t;
	z->total_out += t;
	s->read = q;    /* drag read pointer forward */
/*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
	if (q == s->end) {
	    s->read = q = s->window;
	    m = WAVAIL;
	}
    }
    UPDATE
    return Z_OK;
}


/*
 * At the end of a Deflate-compressed PPP packet, we expect to have seen
 * a `stored' block type value but not the (zero) length bytes.
 */
int inflate_packet_flush(s)
    inflate_blocks_statef *s;
{
    if (s->mode != LENS)
	return Z_DATA_ERROR;
    s->mode = TYPE;
    return Z_OK;
}
/* --- infblock.c */

/* +++ inftrees.c */
/* inftrees.c -- generate Huffman trees for efficient decoding
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */
/* #include "inftrees.h" */

char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
 */

#ifndef NO_DUMMY_DECL
struct internal_state  {int dummy;}; /* for buggy compilers */
#endif

/* simplify the use of the inflate_huft type with some defines */
#define base more.Base
#define next more.Next
#define exop word.what.Exop
#define bits word.what.Bits


local int huft_build OF((
    uIntf *,            /* code lengths in bits */
    uInt,               /* number of codes */
    uInt,               /* number of "simple" codes */
    const uIntf *,      /* list of base values for non-simple codes */
    const uIntf *,      /* list of extra bits for non-simple codes */
    inflate_huft * FAR*,/* result: starting table */
    uIntf *,            /* maximum lookup bits (returns actual) */
    z_streamp ));       /* for zalloc function */

local voidpf falloc OF((
    voidpf,             /* opaque pointer (not used) */
    uInt,               /* number of items */
    uInt));             /* size of item */

/* Tables for deflate from PKZIP's appnote.txt. */
local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
        /* see note #13 above about 258 */
local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577};
local const uInt cpdext[30] = { /* Extra bits for distance codes */
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
        12, 12, 13, 13};

/*
   Huffman code decoding is performed using a multi-level table lookup.
   The fastest way to decode is to simply build a lookup table whose
   size is determined by the longest code.  However, the time it takes
   to build this table can also be a factor if the data being decoded
   is not very long.  The most common codes are necessarily the
   shortest codes, so those codes dominate the decoding time, and hence
   the speed.  The idea is you can have a shorter table that decodes the
   shorter, more probable codes, and then point to subsidiary tables for
   the longer codes.  The time it costs to decode the longer codes is
   then traded against the time it takes to make longer tables.

   This results of this trade are in the variables lbits and dbits
   below.  lbits is the number of bits the first level table for literal/
   length codes can decode in one step, and dbits is the same thing for
   the distance codes.  Subsequent tables are also less than or equal to
   those sizes.  These values may be adjusted either when all of the
   codes are shorter than that, in which case the longest code length in
   bits is used, or when the shortest code is *longer* than the requested
   table size, in which case the length of the shortest code in bits is
   used.

   There are two different values for the two tables, since they code a
   different number of possibilities each.  The literal/length table
   codes 286 possible values, or in a flat code, a little over eight
   bits.  The distance table codes 30 possible values, or a little less
   than five bits, flat.  The optimum values for speed end up being
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   The optimum values may differ though from machine to machine, and
   possibly even between compilers.  Your mileage may vary.
 */


/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
#define BMAX 15         /* maximum bit length of any code */
#define N_MAX 288       /* maximum number of codes in any set */

#ifdef DEBUG_ZLIB
  uInt inflate_hufts;
#endif

local int huft_build(b, n, s, d, e, t, m, zs)
uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
uInt n;                 /* number of codes (assumed <= N_MAX) */
uInt s;                 /* number of simple-valued codes (0..s-1) */
const uIntf *d;         /* list of base values for non-simple codes */
const uIntf *e;         /* list of extra bits for non-simple codes */
inflate_huft * FAR *t;  /* result: starting table */
uIntf *m;               /* maximum lookup bits, returns actual */
z_streamp zs;           /* for zalloc function */
/* Given a list of code lengths and a maximum table size, make a set of
   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   if the given code set is incomplete (the tables are still built in this
   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
   lengths), or Z_MEM_ERROR if not enough memory. */
{

  uInt a;                       /* counter for codes of length k */
  uInt c[BMAX+1];               /* bit length count table */
  uInt f;                       /* i repeats in table every f entries */
  int g;                        /* maximum code length */
  int h;                        /* table level */
  register uInt i;              /* counter, current code */
  register uInt j;              /* counter */
  register int k;               /* number of bits in current code */
  int l;                        /* bits per table (returned in m) */
  register uIntf *p;            /* pointer into c[], b[], or v[] */
  inflate_huft *q;              /* points to current table */
  struct inflate_huft_s r;      /* table entry for structure assignment */
  inflate_huft *u[BMAX];        /* table stack */
  uInt v[N_MAX];                /* values in order of bit length */
  register int w;               /* bits before this table == (l * h) */
  uInt x[BMAX+1];               /* bit offsets, then code stack */
  uIntf *xp;                    /* pointer into x */
  int y;                        /* number of dummy codes added */
  uInt z;                       /* number of entries in current table */


  /* Generate counts for each bit length */
  p = c;
#define C0 *p++ = 0;
#define C2 C0 C0 C0 C0
#define C4 C2 C2 C2 C2
  C4                            /* clear c[]--assume BMAX+1 is 16 */
  p = b;  i = n;
  do {
    c[*p++]++;                  /* assume all entries <= BMAX */
  } while (--i);
  if (c[0] == n)                /* null input--all zero length codes */
  {
    *t = (inflate_huft *)Z_NULL;
    *m = 0;
    return Z_OK;
  }


  /* Find minimum and maximum length, bound *m by those */
  l = *m;
  for (j = 1; j <= BMAX; j++)
    if (c[j])
      break;
  k = j;                        /* minimum code length */
  if ((uInt)l < j)
    l = j;
  for (i = BMAX; i; i--)
    if (c[i])
      break;
  g = i;                        /* maximum code length */
  if ((uInt)l > i)
    l = i;
  *m = l;


  /* Adjust last length count to fill out codes, if needed */
  for (y = 1 << j; j < i; j++, y <<= 1)
    if ((y -= c[j]) < 0)
      return Z_DATA_ERROR;
  if ((y -= c[i]) < 0)
    return Z_DATA_ERROR;
  c[i] += y;


  /* Generate starting offsets into the value table for each length */
  x[1] = j = 0;
  p = c + 1;  xp = x + 2;
  while (--i) {                 /* note that i == g from above */
    *xp++ = (j += *p++);
  }


  /* Make a table of values in order of bit lengths */
  p = b;  i = 0;
  do {
    if ((j = *p++) != 0)
      v[x[j]++] = i;
  } while (++i < n);
  n = x[g];                   /* set n to length of v */


  /* Generate the Huffman codes and for each, make the table entries */
  x[0] = i = 0;                 /* first Huffman code is zero */
  p = v;                        /* grab values in bit order */
  h = -1;                       /* no tables yet--level -1 */
  w = -l;                       /* bits decoded == (l * h) */
  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
  q = (inflate_huft *)Z_NULL;   /* ditto */
  z = 0;                        /* ditto */

  /* go through the bit lengths (k already is bits in shortest code) */
  for (; k <= g; k++)
  {
    a = c[k];
    while (a--)
    {
      /* here i is the Huffman code of length k bits for value *p */
      /* make tables up to required level */
      while (k > w + l)
      {
        h++;
        w += l;                 /* previous table always l bits */

        /* compute minimum size table less than or equal to l bits */
        z = g - w;
        z = z > (uInt)l ? l : z;        /* table size upper limit */
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
        {                       /* too few codes for k-w bit table */
          f -= a + 1;           /* deduct codes from patterns left */
          xp = c + k;
          if (j < z)
            while (++j < z)     /* try smaller tables up to z bits */
            {
              if ((f <<= 1) <= *++xp)
                break;          /* enough codes to use up j bits */
              f -= *xp;         /* else deduct codes from patterns */
            }
        }
        z = 1 << j;             /* table entries for j-bit table */

        /* allocate and link in new table */
        if ((q = (inflate_huft *)ZALLOC
             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
        {
          if (h)
            inflate_trees_free(u[0], zs);
          return Z_MEM_ERROR;   /* not enough memory */
        }
#ifdef DEBUG_ZLIB
        inflate_hufts += z + 1;
#endif
        *t = q + 1;             /* link to list for huft_free() */
        *(t = &(q->next)) = Z_NULL;
        u[h] = ++q;             /* table starts after link */

        /* connect to last table, if there is one */
        if (h)
        {
          x[h] = i;             /* save pattern for backing up */
          r.bits = (Byte)l;     /* bits to dump before this table */
          r.exop = (Byte)j;     /* bits in this table */
          r.next = q;           /* pointer to this table */
          j = i >> (w - l);     /* (get around Turbo C bug) */
          u[h-1][j] = r;        /* connect to last table */
        }
      }

      /* set up table entry in r */
      r.bits = (Byte)(k - w);
      if (p >= v + n)
        r.exop = 128 + 64;      /* out of values--invalid code */
      else if (*p < s)
      {
        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
        r.base = *p++;          /* simple code is just the value */
      }
      else
      {
        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
        r.base = d[*p++ - s];
      }

      /* fill code-like entries with r */
      f = 1 << (k - w);
      for (j = i >> w; j < z; j += f)
        q[j] = r;

      /* backwards increment the k-bit code i */
      for (j = 1 << (k - 1); i & j; j >>= 1)
        i ^= j;
      i ^= j;

      /* backup over finished tables */
      while ((i & ((1 << w) - 1)) != x[h])
      {
        h--;                    /* don't need to update q */
        w -= l;
      }
    }
  }


  /* Return Z_BUF_ERROR if we were given an incomplete table */
  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
}


int inflate_trees_bits(c, bb, tb, z)
uIntf *c;               /* 19 code lengths */
uIntf *bb;              /* bits tree desired/actual depth */
inflate_huft * FAR *tb; /* bits tree result */
z_streamp z;            /* for zfree function */
{
  int r;

  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
  if (r == Z_DATA_ERROR)
    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
  else if (r == Z_BUF_ERROR || *bb == 0)
  {
    inflate_trees_free(*tb, z);
    z->msg = (char*)"incomplete dynamic bit lengths tree";
    r = Z_DATA_ERROR;
  }
  return r;
}


int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
uInt nl;                /* number of literal/length codes */
uInt nd;                /* number of distance codes */
uIntf *c;               /* that many (total) code lengths */
uIntf *bl;              /* literal desired/actual bit depth */
uIntf *bd;              /* distance desired/actual bit depth */
inflate_huft * FAR *tl; /* literal/length tree result */
inflate_huft * FAR *td; /* distance tree result */
z_streamp z;            /* for zfree function */
{
  int r;

  /* build literal/length tree */
  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
  if (r != Z_OK || *bl == 0)
  {
    if (r == Z_DATA_ERROR)
      z->msg = (char*)"oversubscribed literal/length tree";
    else if (r != Z_MEM_ERROR)
    {
      inflate_trees_free(*tl, z);
      z->msg = (char*)"incomplete literal/length tree";
      r = Z_DATA_ERROR;
    }
    return r;
  }

  /* build distance tree */
  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
  if (r != Z_OK || (*bd == 0 && nl > 257))
  {
    if (r == Z_DATA_ERROR)
      z->msg = (char*)"oversubscribed distance tree";
    else if (r == Z_BUF_ERROR) {
#ifdef PKZIP_BUG_WORKAROUND
      r = Z_OK;
    }
#else
      inflate_trees_free(*td, z);
      z->msg = (char*)"incomplete distance tree";
      r = Z_DATA_ERROR;
    }
    else if (r != Z_MEM_ERROR)
    {
      z->msg = (char*)"empty distance tree with lengths";
      r = Z_DATA_ERROR;
    }
    inflate_trees_free(*tl, z);
    return r;
#endif
  }

  /* done */
  return Z_OK;
}


/* build fixed tables only once--keep them here */
local int fixed_built = 0;
#define FIXEDH 530      /* number of hufts used by fixed tables */
local inflate_huft fixed_mem[FIXEDH];
local uInt fixed_bl;
local uInt fixed_bd;
local inflate_huft *fixed_tl;
local inflate_huft *fixed_td;


local voidpf falloc(q, n, s)
voidpf q;       /* opaque pointer */
uInt n;         /* number of items */
uInt s;         /* size of item */
{
  Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
         "inflate_trees falloc overflow");
  *(intf *)q -= n+s-s; /* s-s to avoid warning */
  return (voidpf)(fixed_mem + *(intf *)q);
}


int inflate_trees_fixed(bl, bd, tl, td)
uIntf *bl;               /* literal desired/actual bit depth */
uIntf *bd;               /* distance desired/actual bit depth */
inflate_huft * FAR *tl;  /* literal/length tree result */
inflate_huft * FAR *td;  /* distance tree result */
{
  /* build fixed tables if not already (multiple overlapped executions ok) */
  if (!fixed_built)
  {
    int k;              /* temporary variable */
    unsigned c[288];    /* length list for huft_build */
    z_stream z;         /* for falloc function */
    int f = FIXEDH;     /* number of hufts left in fixed_mem */

    /* set up fake z_stream for memory routines */
    z.zalloc = falloc;
    z.zfree = Z_NULL;
    z.opaque = (voidpf)&f;

    /* literal table */
    for (k = 0; k < 144; k++)
      c[k] = 8;
    for (; k < 256; k++)
      c[k] = 9;
    for (; k < 280; k++)
      c[k] = 7;
    for (; k < 288; k++)
      c[k] = 8;
    fixed_bl = 7;
    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);

    /* distance table */
    for (k = 0; k < 30; k++)
      c[k] = 5;
    fixed_bd = 5;
    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);

    /* done */
    Assert(f == 0, "invalid build of fixed tables");
    fixed_built = 1;
  }
  *bl = fixed_bl;
  *bd = fixed_bd;
  *tl = fixed_tl;
  *td = fixed_td;
  return Z_OK;
}


int inflate_trees_free(t, z)
inflate_huft *t;        /* table to free */
z_streamp z;            /* for zfree function */
/* Free the malloc'ed tables built by huft_build(), which makes a linked
   list of the tables it made, with the links in a dummy first entry of
   each table. */
{
  register inflate_huft *p, *q, *r;

  /* Reverse linked list */
  p = Z_NULL;
  q = t;
  while (q != Z_NULL)
  {
    r = (q - 1)->next;
    (q - 1)->next = p;
    p = q;
    q = r;
  }
  /* Go through linked list, freeing from the malloced (t[-1]) address. */
  while (p != Z_NULL)
  {
    q = (--p)->next;
    ZFREE(z,p);
    p = q;
  } 
  return Z_OK;
}
/* --- inftrees.c */

/* +++ infcodes.c */
/* infcodes.c -- process literals and length/distance pairs
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */
/* #include "inftrees.h" */
/* #include "infblock.h" */
/* #include "infcodes.h" */
/* #include "infutil.h" */

/* +++ inffast.h */
/* inffast.h -- header to use inffast.c
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* WARNING: this file should *not* be used by applications. It is
   part of the implementation of the compression library and is
   subject to change. Applications should only use zlib.h.
 */

extern int inflate_fast OF((
    uInt,
    uInt,
    inflate_huft *,
    inflate_huft *,
    inflate_blocks_statef *,
    z_streamp ));
/* --- inffast.h */

/* simplify the use of the inflate_huft type with some defines */
#define base more.Base
#define next more.Next
#define exop word.what.Exop
#define bits word.what.Bits

/* inflate codes private state */
struct inflate_codes_state {

  /* mode */
  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
      START,    /* x: set up for LEN */
      LEN,      /* i: get length/literal/eob next */
      LENEXT,   /* i: getting length extra (have base) */
      DIST,     /* i: get distance next */
      DISTEXT,  /* i: getting distance extra */
      COPY,     /* o: copying bytes in window, waiting for space */
      LIT,      /* o: got literal, waiting for output space */
      WASH,     /* o: got eob, possibly still output waiting */
      END,      /* x: got eob and all data flushed */
      BADCODE}  /* x: got error */
    mode;               /* current inflate_codes mode */

  /* mode dependent information */
  uInt len;
  union {
    struct {
      inflate_huft *tree;       /* pointer into tree */
      uInt need;                /* bits needed */
    } code;             /* if LEN or DIST, where in tree */
    uInt lit;           /* if LIT, literal */
    struct {
      uInt get;                 /* bits to get for extra */
      uInt dist;                /* distance back to copy from */
    } copy;             /* if EXT or COPY, where and how much */
  } sub;                /* submode */

  /* mode independent information */
  Byte lbits;           /* ltree bits decoded per branch */
  Byte dbits;           /* dtree bits decoder per branch */
  inflate_huft *ltree;          /* literal/length/eob tree */
  inflate_huft *dtree;          /* distance tree */

};


inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
uInt bl, bd;
inflate_huft *tl;
inflate_huft *td; /* need separate declaration for Borland C++ */
z_streamp z;
{
  inflate_codes_statef *c;

  if ((c = (inflate_codes_statef *)
       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
  {
    c->mode = START;
    c->lbits = (Byte)bl;
    c->dbits = (Byte)bd;
    c->ltree = tl;
    c->dtree = td;
    Tracev((stderr, "inflate:       codes new\n"));
  }
  return c;
}


int inflate_codes(s, z, r)
inflate_blocks_statef *s;
z_streamp z;
int r;
{
  uInt j;               /* temporary storage */
  inflate_huft *t;      /* temporary pointer */
  uInt e;               /* extra bits or operation */
  uLong b;              /* bit buffer */
  uInt k;               /* bits in bit buffer */
  Bytef *p;             /* input data pointer */
  uInt n;               /* bytes available there */
  Bytef *q;             /* output window write pointer */
  uInt m;               /* bytes to end of window or read pointer */
  Bytef *f;             /* pointer to copy strings from */
  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */

  /* copy input/output information to locals (UPDATE macro restores) */
  LOAD

  /* process input and output based on current state */
  while (1) switch (c->mode)
  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
    case START:         /* x: set up for LEN */
#ifndef SLOW
      if (m >= 258 && n >= 10)
      {
        UPDATE
        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
        LOAD
        if (r != Z_OK)
        {
          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
          break;
        }
      }
#endif /* !SLOW */
      c->sub.code.need = c->lbits;
      c->sub.code.tree = c->ltree;
      c->mode = LEN;
    case LEN:           /* i: get length/literal/eob next */
      j = c->sub.code.need;
      NEEDBITS(j)
      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
      DUMPBITS(t->bits)
      e = (uInt)(t->exop);
      if (e == 0)               /* literal */
      {
        c->sub.lit = t->base;
        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                 "inflate:         literal '%c'\n" :
                 "inflate:         literal 0x%02x\n", t->base));
        c->mode = LIT;
        break;
      }
      if (e & 16)               /* length */
      {
        c->sub.copy.get = e & 15;
        c->len = t->base;
        c->mode = LENEXT;
        break;
      }
      if ((e & 64) == 0)        /* next table */
      {
        c->sub.code.need = e;
        c->sub.code.tree = t->next;
        break;
      }
      if (e & 32)               /* end of block */
      {
        Tracevv((stderr, "inflate:         end of block\n"));
        c->mode = WASH;
        break;
      }
      c->mode = BADCODE;        /* invalid code */
      z->msg = (char*)"invalid literal/length code";
      r = Z_DATA_ERROR;
      LEAVE
    case LENEXT:        /* i: getting length extra (have base) */
      j = c->sub.copy.get;
      NEEDBITS(j)
      c->len += (uInt)b & inflate_mask[j];
      DUMPBITS(j)
      c->sub.code.need = c->dbits;
      c->sub.code.tree = c->dtree;
      Tracevv((stderr, "inflate:         length %u\n", c->len));
      c->mode = DIST;
    case DIST:          /* i: get distance next */
      j = c->sub.code.need;
      NEEDBITS(j)
      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
      DUMPBITS(t->bits)
      e = (uInt)(t->exop);
      if (e & 16)               /* distance */
      {
        c->sub.copy.get = e & 15;
        c->sub.copy.dist = t->base;
        c->mode = DISTEXT;
        break;
      }
      if ((e & 64) == 0)        /* next table */
      {
        c->sub.code.need = e;
        c->sub.code.tree = t->next;
        break;
      }
      c->mode = BADCODE;        /* invalid code */
      z->msg = (char*)"invalid distance code";
      r = Z_DATA_ERROR;
      LEAVE
    case DISTEXT:       /* i: getting distance extra */
      j = c->sub.copy.get;
      NEEDBITS(j)
      c->sub.copy.dist += (uInt)b & inflate_mask[j];
      DUMPBITS(j)
      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
      c->mode = COPY;
    case COPY:          /* o: copying bytes in window, waiting for space */
#ifndef __TURBOC__ /* Turbo C bug for following expression */
      f = (uInt)(q - s->window) < c->sub.copy.dist ?
          s->end - (c->sub.copy.dist - (q - s->window)) :
          q - c->sub.copy.dist;
#else
      f = q - c->sub.copy.dist;
      if ((uInt)(q - s->window) < c->sub.copy.dist)
        f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
#endif
      while (c->len)
      {
        NEEDOUT
        OUTBYTE(*f++)
        if (f == s->end)
          f = s->window;
        c->len--;
      }
      c->mode = START;
      break;
    case LIT:           /* o: got literal, waiting for output space */
      NEEDOUT
      OUTBYTE(c->sub.lit)
      c->mode = START;
      break;
    case WASH:          /* o: got eob, possibly more output */
      FLUSH
      if (s->read != s->write)
        LEAVE
      c->mode = END;
    case END:
      r = Z_STREAM_END;
      LEAVE
    case BADCODE:       /* x: got error */
      r = Z_DATA_ERROR;
      LEAVE
    default:
      r = Z_STREAM_ERROR;
      LEAVE
  }
}


void inflate_codes_free(c, z)
inflate_codes_statef *c;
z_streamp z;
{
  ZFREE(z, c);
  Tracev((stderr, "inflate:       codes free\n"));
}
/* --- infcodes.c */

/* +++ infutil.c */
/* inflate_util.c -- data and routines common to blocks and codes
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */
/* #include "infblock.h" */
/* #include "inftrees.h" */
/* #include "infcodes.h" */
/* #include "infutil.h" */

#ifndef NO_DUMMY_DECL
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
#endif

/* And'ing with mask[n] masks the lower n bits */
uInt inflate_mask[17] = {
    0x0000,
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};


/* copy as much as possible from the sliding window to the output area */
int inflate_flush(s, z, r)
inflate_blocks_statef *s;
z_streamp z;
int r;
{
  uInt n;
  Bytef *p;
  Bytef *q;

  /* local copies of source and destination pointers */
  p = z->next_out;
  q = s->read;

  /* compute number of bytes to copy as far as end of window */
  n = (uInt)((q <= s->write ? s->write : s->end) - q);
  if (n > z->avail_out) n = z->avail_out;
  if (n && r == Z_BUF_ERROR) r = Z_OK;

  /* update counters */
  z->avail_out -= n;
  z->total_out += n;

  /* update check information */
  if (s->checkfn != Z_NULL)
    z->adler = s->check = (*s->checkfn)(s->check, q, n);

  /* copy as far as end of window */
  if (p != Z_NULL) {
    zmemcpy(p, q, n);
    p += n;
  }
  q += n;

  /* see if more to copy at beginning of window */
  if (q == s->end)
  {
    /* wrap pointers */
    q = s->window;
    if (s->write == s->end)
      s->write = s->window;

    /* compute bytes to copy */
    n = (uInt)(s->write - q);
    if (n > z->avail_out) n = z->avail_out;
    if (n && r == Z_BUF_ERROR) r = Z_OK;

    /* update counters */
    z->avail_out -= n;
    z->total_out += n;

    /* update check information */
    if (s->checkfn != Z_NULL)
      z->adler = s->check = (*s->checkfn)(s->check, q, n);

    /* copy */
    if (p != Z_NULL) {
      zmemcpy(p, q, n);
      p += n;
    }
    q += n;
  }

  /* update pointers */
  z->next_out = p;
  s->read = q;

  /* done */
  return r;
}
/* --- infutil.c */

/* +++ inffast.c */
/* inffast.c -- process literals and length/distance pairs fast
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* #include "zutil.h" */
/* #include "inftrees.h" */
/* #include "infblock.h" */
/* #include "infcodes.h" */
/* #include "infutil.h" */
/* #include "inffast.h" */

#ifndef NO_DUMMY_DECL
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
#endif

/* simplify the use of the inflate_huft type with some defines */
#define base more.Base
#define next more.Next
#define exop word.what.Exop
#define bits word.what.Bits

/* macros for bit input with no checking and for returning unused bytes */
#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}

/* Called with number of bytes left to write in window at least 258
   (the maximum string length) and number of input bytes available
   at least ten.  The ten bytes are six bytes for the longest length/
   distance pair plus four bytes for overloading the bit buffer. */

int inflate_fast(bl, bd, tl, td, s, z)
uInt bl, bd;
inflate_huft *tl;
inflate_huft *td; /* need separate declaration for Borland C++ */
inflate_blocks_statef *s;
z_streamp z;
{
  inflate_huft *t;      /* temporary pointer */
  uInt e;               /* extra bits or operation */
  uLong b;              /* bit buffer */
  uInt k;               /* bits in bit buffer */
  Bytef *p;             /* input data pointer */
  uInt n;               /* bytes available there */
  Bytef *q;             /* output window write pointer */
  uInt m;               /* bytes to end of window or read pointer */
  uInt ml;              /* mask for literal/length tree */
  uInt md;              /* mask for distance tree */
  uInt c;               /* bytes to copy */
  uInt d;               /* distance back to copy from */
  Bytef *r;             /* copy source pointer */

  /* load input, output, bit values */
  LOAD

  /* initialize masks */
  ml = inflate_mask[bl];
  md = inflate_mask[bd];

  /* do until not enough input or output space for fast loop */
  do {                          /* assume called with m >= 258 && n >= 10 */
    /* get literal/length code */
    GRABBITS(20)                /* max bits for literal/length code */
    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
    {
      DUMPBITS(t->bits)
      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                "inflate:         * literal '%c'\n" :
                "inflate:         * literal 0x%02x\n", t->base));
      *q++ = (Byte)t->base;
      m--;
      continue;
    }
    do {
      DUMPBITS(t->bits)
      if (e & 16)
      {
        /* get extra bits for length */
        e &= 15;
        c = t->base + ((uInt)b & inflate_mask[e]);
        DUMPBITS(e)
        Tracevv((stderr, "inflate:         * length %u\n", c));

        /* decode distance base of block to copy */
        GRABBITS(15);           /* max bits for distance code */
        e = (t = td + ((uInt)b & md))->exop;
        do {
          DUMPBITS(t->bits)
          if (e & 16)
          {
            /* get extra bits to add to distance base */
            e &= 15;
            GRABBITS(e)         /* get extra bits (up to 13) */
            d = t->base + ((uInt)b & inflate_mask[e]);
            DUMPBITS(e)
            Tracevv((stderr, "inflate:         * distance %u\n", d));

            /* do the copy */
            m -= c;
            if ((uInt)(q - s->window) >= d)     /* offset before dest */
            {                                   /*  just copy */
              r = q - d;
              *q++ = *r++;  c--;        /* minimum count is three, */
              *q++ = *r++;  c--;        /*  so unroll loop a little */
            }
            else                        /* else offset after destination */
            {
              e = d - (uInt)(q - s->window); /* bytes from offset to end */
              r = s->end - e;           /* pointer to offset */
              if (c > e)                /* if source crosses, */
              {
                c -= e;                 /* copy to end of window */
                do {
                  *q++ = *r++;
                } while (--e);
                r = s->window;          /* copy rest from start of window */
              }
            }
            do {                        /* copy all or what's left */
              *q++ = *r++;
            } while (--c);
            break;
          }
          else if ((e & 64) == 0)
            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
          else
          {
            z->msg = (char*)"invalid distance code";
            UNGRAB
            UPDATE
            return Z_DATA_ERROR;
          }
        } while (1);
        break;
      }
      if ((e & 64) == 0)
      {
        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
        {
          DUMPBITS(t->bits)
          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
                    "inflate:         * literal '%c'\n" :
                    "inflate:         * literal 0x%02x\n", t->base));
          *q++ = (Byte)t->base;
          m--;
          break;
        }
      }
      else if (e & 32)
      {
        Tracevv((stderr, "inflate:         * end of block\n"));
        UNGRAB
        UPDATE
        return Z_STREAM_END;
      }
      else
      {
        z->msg = (char*)"invalid literal/length code";
        UNGRAB
        UPDATE
        return Z_DATA_ERROR;
      }
    } while (1);
  } while (m >= 258 && n >= 10);

  /* not enough input or output--restore pointers and return */
  UNGRAB
  UPDATE
  return Z_OK;
}
/* --- inffast.c */

/* +++ zutil.c */
/* zutil.c -- target dependent utility functions for the compression library
 * Copyright (C) 1995-1996 Jean-loup Gailly.
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */

/* #include "zutil.h" */

#ifndef NO_DUMMY_DECL
struct internal_state      {int dummy;}; /* for buggy compilers */
#endif

#ifndef STDC
extern void exit OF((int));
#endif

const char *z_errmsg[10] = {
"need dictionary",     /* Z_NEED_DICT       2  */
"stream end",          /* Z_STREAM_END      1  */
"",                    /* Z_OK              0  */
"file error",          /* Z_ERRNO         (-1) */
"stream error",        /* Z_STREAM_ERROR  (-2) */
"data error",          /* Z_DATA_ERROR    (-3) */
"insufficient memory", /* Z_MEM_ERROR     (-4) */
"buffer error",        /* Z_BUF_ERROR     (-5) */
"incompatible version",/* Z_VERSION_ERROR (-6) */
""};


const char *zlibVersion()
{
    return ZLIB_VERSION;
}

#ifdef DEBUG_ZLIB
void z_error (m)
    char *m;
{
    fprintf(stderr, "%s\n", m);
    exit(1);
}
#endif

#ifndef HAVE_MEMCPY

void zmemcpy(dest, source, len)
    Bytef* dest;
    Bytef* source;
    uInt  len;
{
    if (len == 0) return;
    do {
        *dest++ = *source++; /* ??? to be unrolled */
    } while (--len != 0);
}

int zmemcmp(s1, s2, len)
    Bytef* s1;
    Bytef* s2;
    uInt  len;
{
    uInt j;

    for (j = 0; j < len; j++) {
        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
    }
    return 0;
}

void zmemzero(dest, len)
    Bytef* dest;
    uInt  len;
{
    if (len == 0) return;
    do {
        *dest++ = 0;  /* ??? to be unrolled */
    } while (--len != 0);
}
#endif

#ifdef __TURBOC__
#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
/* Small and medium model in Turbo C are for now limited to near allocation
 * with reduced MAX_WBITS and MAX_MEM_LEVEL
 */
#  define MY_ZCALLOC

/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
 * and farmalloc(64K) returns a pointer with an offset of 8, so we
 * must fix the pointer. Warning: the pointer must be put back to its
 * original form in order to free it, use zcfree().
 */

#define MAX_PTR 10
/* 10*64K = 640K */

local int next_ptr = 0;

typedef struct ptr_table_s {
    voidpf org_ptr;
    voidpf new_ptr;
} ptr_table;

local ptr_table table[MAX_PTR];
/* This table is used to remember the original form of pointers
 * to large buffers (64K). Such pointers are normalized with a zero offset.
 * Since MSDOS is not a preemptive multitasking OS, this table is not
 * protected from concurrent access. This hack doesn't work anyway on
 * a protected system like OS/2. Use Microsoft C instead.
 */

voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
    voidpf buf = opaque; /* just to make some compilers happy */
    ulg bsize = (ulg)items*size;

    /* If we allocate less than 65520 bytes, we assume that farmalloc
     * will return a usable pointer which doesn't have to be normalized.
     */
    if (bsize < 65520L) {
        buf = farmalloc(bsize);
        if (*(ush*)&buf != 0) return buf;
    } else {
        buf = farmalloc(bsize + 16L);
    }
    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
    table[next_ptr].org_ptr = buf;

    /* Normalize the pointer to seg:0 */
    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
    *(ush*)&buf = 0;
    table[next_ptr++].new_ptr = buf;
    return buf;
}

void  zcfree (voidpf opaque, voidpf ptr)
{
    int n;
    if (*(ush*)&ptr != 0) { /* object < 64K */
        farfree(ptr);
        return;
    }
    /* Find the original pointer */
    for (n = 0; n < next_ptr; n++) {
        if (ptr != table[n].new_ptr) continue;

        farfree(table[n].org_ptr);
        while (++n < next_ptr) {
            table[n-1] = table[n];
        }
        next_ptr--;
        return;
    }
    ptr = opaque; /* just to make some compilers happy */
    Assert(0, "zcfree: ptr not found");
}
#endif
#endif /* __TURBOC__ */


#if defined(M_I86) && !defined(__32BIT__)
/* Microsoft C in 16-bit mode */

#  define MY_ZCALLOC

#if (!defined(_MSC_VER) || (_MSC_VER < 600))
#  define _halloc  halloc
#  define _hfree   hfree
#endif

voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
    if (opaque) opaque = 0; /* to make compiler happy */
    return _halloc((long)items, size);
}

void  zcfree (voidpf opaque, voidpf ptr)
{
    if (opaque) opaque = 0; /* to make compiler happy */
    _hfree(ptr);
}

#endif /* MSC */


#ifndef MY_ZCALLOC /* Any system without a special alloc function */

#ifndef STDC
extern voidp  calloc OF((uInt items, uInt size));
extern void   free   OF((voidpf ptr));
#endif

voidpf zcalloc (opaque, items, size)
    voidpf opaque;
    unsigned items;
    unsigned size;
{
    if (opaque) items += size - size; /* make compiler happy */
    return (voidpf)calloc(items, size);
}

void  zcfree (opaque, ptr)
    voidpf opaque;
    voidpf ptr;
{
    free(ptr);
    if (opaque) return; /* make compiler happy */
}

#endif /* MY_ZCALLOC */
/* --- zutil.c */

/* +++ adler32.c */
/* adler32.c -- compute the Adler-32 checksum of a data stream
 * Copyright (C) 1995-1996 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */

/* #include "zlib.h" */

#define BASE 65521L /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */

#define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
#define DO16(buf)   DO8(buf,0); DO8(buf,8);

/* ========================================================================= */
uLong adler32(adler, buf, len)
    uLong adler;
    const Bytef *buf;
    uInt len;
{
    unsigned long s1 = adler & 0xffff;
    unsigned long s2 = (adler >> 16) & 0xffff;
    int k;

    if (buf == Z_NULL) return 1L;

    while (len > 0) {
        k = len < NMAX ? len : NMAX;
        len -= k;
        while (k >= 16) {
            DO16(buf);
	    buf += 16;
            k -= 16;
        }
        if (k != 0) do {
            s1 += *buf++;
	    s2 += s1;
        } while (--k);
        s1 %= BASE;
        s2 %= BASE;
    }
    return (s2 << 16) | s1;
}
/* --- adler32.c */