Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*  -*- linux-c -*-
 *  linux/drivers/block/pdc4030.c	Version 0.90  May 27, 1999
 *
 *  Copyright (C) 1995-1999  Linus Torvalds & authors (see below)
 */

/*
 *  Principal Author/Maintainer:  peterd@pnd-pc.demon.co.uk
 *
 *  This file provides support for the second port and cache of Promise
 *  IDE interfaces, e.g. DC4030VL, DC4030VL-1 and DC4030VL-2.
 *
 *  Thanks are due to Mark Lord for advice and patiently answering stupid
 *  questions, and all those mugs^H^H^H^Hbrave souls who've tested this,
 *  especially Andre Hedrick.
 *
 *  Version 0.01	Initial version, #include'd in ide.c rather than
 *                      compiled separately.
 *                      Reads use Promise commands, writes as before. Drives
 *                      on second channel are read-only.
 *  Version 0.02        Writes working on second channel, reads on both
 *                      channels. Writes fail under high load. Suspect
 *			transfers of >127 sectors don't work.
 *  Version 0.03        Brought into line with ide.c version 5.27.
 *                      Other minor changes.
 *  Version 0.04        Updated for ide.c version 5.30
 *                      Changed initialization strategy
 *  Version 0.05	Kernel integration.  -ml
 *  Version 0.06	Ooops. Add hwgroup to direct call of ide_intr() -ml
 *  Version 0.07	Added support for DC4030 variants
 *			Secondary interface autodetection
 *  Version 0.08	Renamed to pdc4030.c
 *  Version 0.09	Obsolete - never released - did manual write request
 *			splitting before max_sectors[major][minor] available.
 *  Version 0.10	Updated for 2.1 series of kernels
 *  Version 0.11	Updated for 2.3 series of kernels
 *			Autodetection code added.
 *
 *  Version 0.90	Transition to BETA code. No lost/unexpected interrupts
 */

/*
 * Once you've compiled it in, you'll have to also enable the interface
 * setup routine from the kernel command line, as in 
 *
 *	'linux ide0=dc4030' or 'linux ide1=dc4030'
 *
 * It should now work as a second controller also ('ide1=dc4030') but only
 * if you DON'T have BIOS V4.44, which has a bug. If you have this version
 * and EPROM programming facilities, you need to fix 4 bytes:
 * 	2496:	81	81
 *	2497:	3E	3E
 *	2498:	22	98	*
 *	2499:	06	05	*
 *	249A:	F0	F0
 *	249B:	01	01
 *	...
 *	24A7:	81	81
 *	24A8:	3E	3E
 *	24A9:	22	98	*
 *	24AA:	06	05	*
 *	24AB:	70	70
 *	24AC:	01	01
 *
 * As of January 1999, Promise Technology Inc. have finally supplied me with
 * some technical information which has shed a glimmer of light on some of the
 * problems I was having, especially with writes. 
 *
 * There are still problems with the robustness and efficiency of this driver
 * because I still don't understand what the card is doing with interrupts.
 */

#define DEBUG_READ
#define DEBUG_WRITE

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/ide.h>

#include <asm/io.h>
#include <asm/irq.h>

#include "pdc4030.h"

/*
 * promise_selectproc() is invoked by ide.c
 * in preparation for access to the specified drive.
 */
static void promise_selectproc (ide_drive_t *drive)
{
	unsigned int number;

	number = (HWIF(drive)->channel << 1) + drive->select.b.unit;
	OUT_BYTE(number,IDE_FEATURE_REG);
}

/*
 * pdc4030_cmd handles the set of vendor specific commands that are initiated
 * by command F0. They all have the same success/failure notification -
 * 'P' (=0x50) on success, 'p' (=0x70) on failure.
 */
int pdc4030_cmd(ide_drive_t *drive, byte cmd)
{
	unsigned long timeout, timer;
	byte status_val;

	promise_selectproc(drive);	/* redundant? */
	OUT_BYTE(0xF3,IDE_SECTOR_REG);
	OUT_BYTE(cmd,IDE_SELECT_REG);
	OUT_BYTE(PROMISE_EXTENDED_COMMAND,IDE_COMMAND_REG);
	timeout = HZ * 10;
	timeout += jiffies;
	do {
		if(time_after(jiffies, timeout)) {
			return 2; /* device timed out */
		}
		/* This is out of delay_10ms() */
		/* Delays at least 10ms to give interface a chance */
		timer = jiffies + (HZ + 99)/100 + 1;
		while (time_after(timer, jiffies));
		status_val = IN_BYTE(IDE_SECTOR_REG);
	} while (status_val != 0x50 && status_val != 0x70);

	if(status_val == 0x50)
		return 0; /* device returned success */
	else
		return 1; /* device returned failure */
}

/*
 * pdc4030_identify sends a vendor-specific IDENTIFY command to the drive
 */
int pdc4030_identify(ide_drive_t *drive)
{
	return pdc4030_cmd(drive, PROMISE_IDENTIFY);
}

int enable_promise_support = 0;

void __init init_pdc4030 (void)
{
	enable_promise_support = 1;
}

/*
 * setup_pdc4030()
 * Completes the setup of a Promise DC4030 controller card, once found.
 */
int __init setup_pdc4030 (ide_hwif_t *hwif)
{
        ide_drive_t *drive;
	ide_hwif_t *hwif2;
	struct dc_ident ident;
	int i;
	
	if (!hwif) return 0;

	drive = &hwif->drives[0];
	hwif2 = &ide_hwifs[hwif->index+1];
	if (hwif->chipset == ide_pdc4030) /* we've already been found ! */
		return 1;

	if (IN_BYTE(IDE_NSECTOR_REG) == 0xFF || IN_BYTE(IDE_SECTOR_REG) == 0xFF) {
		return 0;
	}
	OUT_BYTE(0x08,IDE_CONTROL_REG);
	if (pdc4030_cmd(drive,PROMISE_GET_CONFIG)) {
		return 0;
	}
	if (ide_wait_stat(drive,DATA_READY,BAD_W_STAT,WAIT_DRQ)) {
		printk(KERN_INFO
			"%s: Failed Promise read config!\n",hwif->name);
		return 0;
	}
	ide_input_data(drive,&ident,SECTOR_WORDS);
	if (ident.id[1] != 'P' || ident.id[0] != 'T') {
		return 0;
	}
	printk(KERN_INFO "%s: Promise caching controller, ",hwif->name);
	switch(ident.type) {
		case 0x43:	printk("DC4030VL-2, "); break;
		case 0x41:	printk("DC4030VL-1, "); break;
		case 0x40:	printk("DC4030VL, "); break;
		default:
			printk("unknown - type 0x%02x - please report!\n"
			       ,ident.type);
			printk("Please e-mail the following data to "
			       "promise@pnd-pc.demon.co.uk along with\n"
			       "a description of your card and drives:\n");
			for (i=0; i < 0x90; i++) {
				printk("%02x ", ((unsigned char *)&ident)[i]);
				if ((i & 0x0f) == 0x0f) printk("\n");
			}
			return 0;
	}
	printk("%dKB cache, ",(int)ident.cache_mem);
	switch(ident.irq) {
            case 0x00: hwif->irq = 14; break;
            case 0x01: hwif->irq = 12; break;
            default:   hwif->irq = 15; break;
	}
	printk("on IRQ %d\n",hwif->irq);

	/*
	 * Once found and identified, we set up the next hwif in the array
	 * (hwif2 = ide_hwifs[hwif->index+1]) with the same io ports, irq
	 * and other settings as the main hwif. This gives us two "mated"
	 * hwifs pointing to the Promise card.
	 *
	 * We also have to shift the default values for the remaining
	 * interfaces "up by one" to make room for the second interface on the
	 * same set of values.
	 */

	hwif->chipset	= hwif2->chipset = ide_pdc4030;
	hwif->mate	= hwif2;
	hwif2->mate	= hwif;
	hwif2->channel	= 1;
	hwif->selectproc = hwif2->selectproc = &promise_selectproc;
	hwif->serialized = hwif2->serialized = 1;

/* Shift the remaining interfaces down by one */
	for (i=MAX_HWIFS-1 ; i > hwif->index+1 ; i--) {
		ide_hwif_t *h = &ide_hwifs[i];

#ifdef DEBUG
		printk(KERN_DEBUG "Shifting i/f %d values to i/f %d\n",i-1,i);
#endif
		ide_init_hwif_ports(&h->hw, (h-1)->io_ports[IDE_DATA_OFFSET], 0, NULL);
		memcpy(h->io_ports, h->hw.io_ports, sizeof(h->io_ports));
		h->noprobe = (h-1)->noprobe;
	}
	ide_init_hwif_ports(&hwif2->hw, hwif->io_ports[IDE_DATA_OFFSET], 0, NULL);
	memcpy(hwif2->io_ports, hwif->hw.io_ports, sizeof(hwif2->io_ports));
	hwif2->irq = hwif->irq;
	hwif2->hw.irq = hwif->hw.irq = hwif->irq;
	for (i=0; i<2 ; i++) {
		hwif->drives[i].io_32bit = 3;
		hwif2->drives[i].io_32bit = 3;
		hwif->drives[i].keep_settings = 1;
		hwif2->drives[i].keep_settings = 1;
		if (!ident.current_tm[i].cyl)
			hwif->drives[i].noprobe = 1;
		if (!ident.current_tm[i+2].cyl)
			hwif2->drives[i].noprobe = 1;
	}
        return 1;
}

/*
 * detect_pdc4030()
 * Tests for the presence of a DC4030 Promise card on this interface
 * Returns: 1 if found, 0 if not found
 */
int __init detect_pdc4030(ide_hwif_t *hwif)
{
	ide_drive_t *drive = &hwif->drives[0];

	if (IDE_DATA_REG == 0) { /* Skip test for non-existent interface */
		return 0;
	}
	OUT_BYTE(0xF3, IDE_SECTOR_REG);
	OUT_BYTE(0x14, IDE_SELECT_REG);
	OUT_BYTE(PROMISE_EXTENDED_COMMAND, IDE_COMMAND_REG);
	
	ide_delay_50ms();

	if (IN_BYTE(IDE_ERROR_REG) == 'P' &&
	    IN_BYTE(IDE_NSECTOR_REG) == 'T' &&
	    IN_BYTE(IDE_SECTOR_REG) == 'I') {
		return 1;
	} else {
		return 0;
	}
}

void __init ide_probe_for_pdc4030(void)
{
	unsigned int	index;
	ide_hwif_t	*hwif;

	if (enable_promise_support == 0)
		return;
	for (index = 0; index < MAX_HWIFS; index++) {
		hwif = &ide_hwifs[index];
		if (hwif->chipset == ide_unknown && detect_pdc4030(hwif)) {
			setup_pdc4030(hwif);
		}
	}
}



/*
 * promise_read_intr() is the handler for disk read/multread interrupts
 */
static void promise_read_intr (ide_drive_t *drive)
{
	byte stat;
	int total_remaining;
	unsigned int sectors_left, sectors_avail, nsect;
	struct request *rq;

	if (!OK_STAT(stat=GET_STAT(),DATA_READY,BAD_R_STAT)) {
		ide_error(drive, "promise_read_intr", stat);
		return;
	}

read_again:
	do {
		sectors_left = IN_BYTE(IDE_NSECTOR_REG);
		IN_BYTE(IDE_SECTOR_REG);
	} while (IN_BYTE(IDE_NSECTOR_REG) != sectors_left);
	rq = HWGROUP(drive)->rq;
	sectors_avail = rq->nr_sectors - sectors_left;
	if (!sectors_avail)
		goto read_again;

read_next:
	rq = HWGROUP(drive)->rq;
	nsect = rq->current_nr_sectors;
	if (nsect > sectors_avail)
		nsect = sectors_avail;
	sectors_avail -= nsect;
	ide_input_data(drive, rq->buffer, nsect * SECTOR_WORDS);
#ifdef DEBUG_READ
	printk(KERN_DEBUG "%s:  promise_read: sectors(%ld-%ld), "
	       "buf=0x%08lx, rem=%ld\n", drive->name, rq->sector,
	       rq->sector+nsect-1, (unsigned long) rq->buffer,
	       rq->nr_sectors-nsect);
#endif
	rq->sector += nsect;
	rq->buffer += nsect<<9;
	rq->errors = 0;
	rq->nr_sectors -= nsect;
	total_remaining = rq->nr_sectors;
	if ((rq->current_nr_sectors -= nsect) <= 0) {
		ide_end_request(1, HWGROUP(drive));
	}
/*
 * Now the data has been read in, do the following:
 * 
 * if there are still sectors left in the request, 
 *   if we know there are still sectors available from the interface,
 *     go back and read the next bit of the request.
 *   else if DRQ is asserted, there are more sectors available, so
 *     go back and find out how many, then read them in.
 *   else if BUSY is asserted, we are going to get an interrupt, so
 *     set the handler for the interrupt and just return
 */
	if (total_remaining > 0) {
		if (sectors_avail)
			goto read_next;
		stat = GET_STAT();
		if (stat & DRQ_STAT)
			goto read_again;
		if (stat & BUSY_STAT) {
			ide_set_handler (drive, &promise_read_intr, WAIT_CMD);
#ifdef DEBUG_READ
			printk(KERN_DEBUG "%s: promise_read: waiting for"
			       "interrupt\n", drive->name);
#endif 
			return;
		}
		printk(KERN_ERR "%s: Eeek! promise_read_intr: sectors left "
		       "!DRQ !BUSY\n", drive->name);
		ide_error(drive, "promise read intr", stat);
	}
}

/*
 * promise_complete_pollfunc()
 * This is the polling function for waiting (nicely!) until drive stops
 * being busy. It is invoked at the end of a write, after the previous poll
 * has finished.
 *
 * Once not busy, the end request is called.
 */
static void promise_complete_pollfunc(ide_drive_t *drive)
{
	ide_hwgroup_t *hwgroup = HWGROUP(drive);
	struct request *rq = hwgroup->rq;
	int i;

	if (GET_STAT() & BUSY_STAT) {
		if (time_before(jiffies, hwgroup->poll_timeout)) {
			ide_set_handler(drive, &promise_complete_pollfunc, 1);
			return; /* continue polling... */
		}
		hwgroup->poll_timeout = 0;
		printk(KERN_ERR "%s: completion timeout - still busy!\n",
		       drive->name);
		ide_error(drive, "busy timeout", GET_STAT());
		return;
	}

	hwgroup->poll_timeout = 0;
#ifdef DEBUG_WRITE
	printk(KERN_DEBUG "%s: Write complete - end_request\n", drive->name);
#endif
	for (i = rq->nr_sectors; i > 0; ) {
		i -= rq->current_nr_sectors;
		ide_end_request(1, hwgroup);
	}
}

/*
 * promise_write_pollfunc() is the handler for disk write completion polling.
 */
static void promise_write_pollfunc (ide_drive_t *drive)
{
	ide_hwgroup_t *hwgroup = HWGROUP(drive);

	if (IN_BYTE(IDE_NSECTOR_REG) != 0) {
		if (time_before(jiffies, hwgroup->poll_timeout)) {
			ide_set_handler (drive, &promise_write_pollfunc, 1);
			return; /* continue polling... */
		}
		hwgroup->poll_timeout = 0;
		printk(KERN_ERR "%s: write timed-out!\n",drive->name);
		ide_error (drive, "write timeout", GET_STAT());
		return;
	}

	/*
	 * Now write out last 4 sectors and poll for not BUSY
	 */
	ide_multwrite(drive, 4);
	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
	ide_set_handler(drive, &promise_complete_pollfunc, 1);
#ifdef DEBUG_WRITE
	printk(KERN_DEBUG "%s: Done last 4 sectors - status = %02x\n",
		drive->name, GET_STAT());
#endif
	return;
}

/*
 * promise_write() transfers a block of one or more sectors of data to a
 * drive as part of a disk write operation. All but 4 sectors are transfered
 * in the first attempt, then the interface is polled (nicely!) for completion
 * before the final 4 sectors are transfered. There is no interrupt generated
 * on writes (at least on the DC4030VL-2), we just have to poll for NOT BUSY.
 */
static void promise_write (ide_drive_t *drive)
{
	ide_hwgroup_t *hwgroup = HWGROUP(drive);
	struct request *rq = &hwgroup->wrq;

#ifdef DEBUG_WRITE
	printk(KERN_DEBUG "%s: promise_write: sectors(%ld-%ld), "
	       "buffer=0x%08x\n", drive->name, rq->sector,
	       rq->sector + rq->nr_sectors - 1, (unsigned int)rq->buffer);
#endif

	/*
	 * If there are more than 4 sectors to transfer, do n-4 then go into
	 * the polling strategy as defined above.
	 */
	if (rq->nr_sectors > 4) {
		ide_multwrite(drive, rq->nr_sectors - 4);
		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
		ide_set_handler (drive, &promise_write_pollfunc, 1);
	} else {
	/*
	 * There are 4 or fewer sectors to transfer, do them all in one go
	 * and wait for NOT BUSY.
	 */
		ide_multwrite(drive, rq->nr_sectors);
		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
		ide_set_handler(drive, &promise_complete_pollfunc, 1);
#ifdef DEBUG_WRITE
		printk(KERN_DEBUG "%s: promise_write: <= 4 sectors, "
			"status = %02x\n", drive->name, GET_STAT());
#endif
	}
}

/*
 * do_pdc4030_io() is called from do_rw_disk, having had the block number
 * already set up. It issues a READ or WRITE command to the Promise
 * controller, assuming LBA has been used to set up the block number.
 */
void do_pdc4030_io (ide_drive_t *drive, struct request *rq)
{
	unsigned long timeout;
	byte stat;

	if (rq->cmd == READ) {
		OUT_BYTE(PROMISE_READ, IDE_COMMAND_REG);
/*
 * The card's behaviour is odd at this point. If the data is
 * available, DRQ will be true, and no interrupt will be
 * generated by the card. If this is the case, we need to call the 
 * "interrupt" handler (promise_read_intr) directly. Otherwise, if
 * an interrupt is going to occur, bit0 of the SELECT register will
 * be high, so we can set the handler the just return and be interrupted.
 * If neither of these is the case, we wait for up to 50ms (badly I'm
 * afraid!) until one of them is.
 */
		timeout = jiffies + HZ/20; /* 50ms wait */
		do {
			stat=GET_STAT();
			if (stat & DRQ_STAT) {
				udelay(1);
				promise_read_intr(drive);
				return;
			}
			if (IN_BYTE(IDE_SELECT_REG) & 0x01) {
#ifdef DEBUG_READ
				printk(KERN_DEBUG "%s: read: waiting for "
				                  "interrupt\n", drive->name);
#endif
				ide_set_handler(drive, &promise_read_intr, WAIT_CMD);
				return;
			}
			udelay(1);
		} while (time_before(jiffies, timeout));

		printk(KERN_ERR "%s: reading: No DRQ and not waiting - Odd!\n",
			drive->name);

	} else if (rq->cmd == WRITE) {
		OUT_BYTE(PROMISE_WRITE, IDE_COMMAND_REG);
		if (ide_wait_stat(drive, DATA_READY, drive->bad_wstat, WAIT_DRQ)) {
			printk(KERN_ERR "%s: no DRQ after issuing "
			       "PROMISE_WRITE\n", drive->name);
			return;
	    	}
		if (!drive->unmask)
			__cli();	/* local CPU only */
		HWGROUP(drive)->wrq = *rq; /* scratchpad */
		promise_write(drive);

	} else {
		printk("KERN_WARNING %s: bad command: %d\n",
		       drive->name, rq->cmd);
		ide_end_request(0, HWGROUP(drive));
	}
}