Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | Kernel level exception handling in Linux 2.1.8 Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com> When a process runs in kernel mode, it often has to access user mode memory whose address has been passed by an untrusted program. To protect itself the kernel has to verify this address. In older versions of Linux this was done with the int verify_area(int type, const void * addr, unsigned long size) function. This function verified that the memory area starting at address addr and of size size was accessible for the operation specified in type (read or write). To do this, verify_read had to look up the virtual memory area (vma) that contained the address addr. In the normal case (correctly working program), this test was successful. It only failed for a few buggy programs. In some kernel profiling tests, this normally unneeded verification used up a considerable amount of time. To overcome this situation, Linus decided to let the virtual memory hardware present in every Linux-capable CPU handle this test. How does this work? Whenever the kernel tries to access an address that is currently not accessible, the CPU generates a page fault exception and calls the page fault handler void do_page_fault(struct pt_regs *regs, unsigned long error_code) in arch/i386/mm/fault.c. The parameters on the stack are set up by the low level assembly glue in arch/i386/kernel/entry.S. The parameter regs is a pointer to the saved registers on the stack, error_code contains a reason code for the exception. do_page_fault first obtains the unaccessible address from the CPU control register CR2. If the address is within the virtual address space of the process, the fault probably occurred, because the page was not swapped in, write protected or something similar. However, we are interested in the other case: the address is not valid, there is no vma that contains this address. In this case, the kernel jumps to the bad_area label. There it uses the address of the instruction that caused the exception (i.e. regs->eip) to find an address where the execution can continue (fixup). If this search is successful, the fault handler modifies the return address (again regs->eip) and returns. The execution will continue at the address in fixup. Where does fixup point to? Since we jump to the contents of fixup, fixup obviously points to executable code. This code is hidden inside the user access macros. I have picked the get_user macro defined in include/asm/uaccess.h as an example. The definition is somewhat hard to follow, so let's peek at the code generated by the preprocessor and the compiler. I selected the get_user call in drivers/char/console.c for a detailed examination. The original code in console.c line 1405: get_user(c, buf); The preprocessor output (edited to become somewhat readable): ( { long __gu_err = - 14 , __gu_val = 0; const __typeof__(*( ( buf ) )) *__gu_addr = ((buf)); if (((((0 + current_set[0])->tss.segment) == 0x18 ) || (((sizeof(*(buf))) <= 0xC0000000UL) && ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf))))))) do { __gu_err = 0; switch ((sizeof(*(buf)))) { case 1: __asm__ __volatile__( "1: mov" "b" " %2,%" "b" "1\n" "2:\n" ".section .fixup,\"ax\"\n" "3: movl %3,%0\n" " xor" "b" " %" "b" "1,%" "b" "1\n" " jmp 2b\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 1b,3b\n" ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *) ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ; break; case 2: __asm__ __volatile__( "1: mov" "w" " %2,%" "w" "1\n" "2:\n" ".section .fixup,\"ax\"\n" "3: movl %3,%0\n" " xor" "w" " %" "w" "1,%" "w" "1\n" " jmp 2b\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 1b,3b\n" ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )); break; case 4: __asm__ __volatile__( "1: mov" "l" " %2,%" "" "1\n" "2:\n" ".section .fixup,\"ax\"\n" "3: movl %3,%0\n" " xor" "l" " %" "" "1,%" "" "1\n" " jmp 2b\n" ".section __ex_table,\"a\"\n" " .align 4\n" " .long 1b,3b\n" ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err)); break; default: (__gu_val) = __get_user_bad(); } } while (0) ; ((c)) = (__typeof__(*((buf))))__gu_val; __gu_err; } ); WOW! Black GCC/assembly magic. This is impossible to follow, so let's see what code gcc generates: > xorl %edx,%edx > movl current_set,%eax > cmpl $24,788(%eax) > je .L1424 > cmpl $-1073741825,64(%esp) > ja .L1423 > .L1424: > movl %edx,%eax > movl 64(%esp),%ebx > #APP > 1: movb (%ebx),%dl /* this is the actual user access */ > 2: > .section .fixup,"ax" > 3: movl $-14,%eax > xorb %dl,%dl > jmp 2b > .section __ex_table,"a" > .align 4 > .long 1b,3b > .text > #NO_APP > .L1423: > movzbl %dl,%esi The optimizer does a good job and gives us something we can actually understand. Can we? The actual user access is quite obvious. Thanks to the unified address space we can just access the address in user memory. But what does the .section stuff do????? To understand this we have to look at the final kernel: > objdump --section-headers vmlinux > > vmlinux: file format elf32-i386 > > Sections: > Idx Name Size VMA LMA File off Algn > 0 .text 00098f40 c0100000 c0100000 00001000 2**4 > CONTENTS, ALLOC, LOAD, READONLY, CODE > 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0 > CONTENTS, ALLOC, LOAD, READONLY, CODE > 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2 > CONTENTS, ALLOC, LOAD, READONLY, DATA > 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2 > CONTENTS, ALLOC, LOAD, READONLY, DATA > 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4 > CONTENTS, ALLOC, LOAD, DATA > 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2 > ALLOC > 6 .comment 00000ec4 00000000 00000000 000ba748 2**0 > CONTENTS, READONLY > 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0 > CONTENTS, READONLY There are obviously 2 non standard ELF sections in the generated object file. But first we want to find out what happened to our code in the final kernel executable: > objdump --disassemble --section=.text vmlinux > > c017e785 <do_con_write+c1> xorl %edx,%edx > c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax > c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax) > c017e793 <do_con_write+cf> je c017e79f <do_con_write+db> > c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1) > c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3> > c017e79f <do_con_write+db> movl %edx,%eax > c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx > c017e7a5 <do_con_write+e1> movb (%ebx),%dl > c017e7a7 <do_con_write+e3> movzbl %dl,%esi The whole user memory access is reduced to 10 x86 machine instructions. The instructions bracketed in the .section directives are not longer in the normal execution path. They are located in a different section of the executable file: > objdump --disassemble --section=.fixup vmlinux > > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax > c0199ffa <.fixup+10ba> xorb %dl,%dl > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3> And finally: > objdump --full-contents --section=__ex_table vmlinux > > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................ > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................ > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................ or in human readable byte order: > c01aa7c4 c017c093 c0199fe0 c017c097 c017c099 ................ > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ ^^^^^^^^^^^^^^^^^ this is the interesting part! > c01aa7e4 c0180a08 c019a001 c0180a0a c019a004 ................ What happened? The assembly directives .section .fixup,"ax" .section __ex_table,"a" told the assembler to move the following code to the specified sections in the ELF object file. So the instructions 3: movl $-14,%eax xorb %dl,%dl jmp 2b ended up in the .fixup section of the object file and the addresses .long 1b,3b ended up in the __ex_table section of the object file. 1b and 3b are local labels. The local label 1b (1b stands for next label 1 backward) is the address of the instruction that might fault, i.e. in our case the address of the label 1 is c017e7a5: the original assembly code: > 1: movb (%ebx),%dl and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl The local label 3 (backwards again) is the address of the code to handle the fault, in our case the actual value is c0199ff5: the original assembly code: > 3: movl $-14,%eax and linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax The assembly code > .section __ex_table,"a" > .align 4 > .long 1b,3b becomes the value pair > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ ^this is ^this is 1b 3b c017e7a5,c0199ff5 in the exception table of the kernel. So, what actually happens if a fault from kernel mode with no suitable vma occurs? 1.) access to invalid address: > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 2.) MMU generates exception 3.) CPU calls do_page_fault 4.) do page fault calls search_exception_table (regs->eip == c017e7a5); 5.) search_exception_table looks up the address c017e7a5 in the exception table (i.e. the contents of the ELF section __ex_table) and returns the address of the associated fault handle code c0199ff5. 6.) do_page_fault modifies its own return address to point to the fault handle code and returns. 7.) execution continues in the fault handling code. 8.) 8a) EAX becomes -EFAULT (== -14) 8b) DL becomes zero (the value we "read" from user space) 8c) execution continues at local label 2 (address of the instruction immediately after the faulting user access). The steps 8a to 8c in a certain way emulate the faulting instruction. That's it, mostly. If you look at our example, you might ask why we set EAX to -EFAULT in the exception handler code. Well, the get_user macro actually returns a value: 0, if the user access was successful, -EFAULT on failure. Our original code did not test this return value, however the inline assembly code in get_user tries to return -EFAULT. GCC selected EAX to return this value. |