Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/*
 *  linux/drivers/block/ll_rw_blk.c
 *
 * Copyright (C) 1991, 1992 Linus Torvalds
 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
 */

/*
 * This handles all read/write requests to block devices
 */
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/config.h>
#include <linux/locks.h>
#include <linux/mm.h>
#include <linux/init.h>

#include <asm/system.h>
#include <asm/io.h>
#include <linux/blk.h>

#include <linux/module.h>

/*
 * The request-struct contains all necessary data
 * to load a nr of sectors into memory
 */
static struct request all_requests[NR_REQUEST];

/*
 * The "disk" task queue is used to start the actual requests
 * after a plug
 */
DECLARE_TASK_QUEUE(tq_disk);

/*
 * Protect the request list against multiple users..
 *
 * With this spinlock the Linux block IO subsystem is 100% SMP threaded
 * from the IRQ event side, and almost 100% SMP threaded from the syscall
 * side (we still have protect against block device array operations, and
 * the do_request() side is casually still unsafe. The kernel lock protects
 * this part currently.).
 *
 * there is a fair chance that things will work just OK if these functions
 * are called with no global kernel lock held ...
 */
spinlock_t io_request_lock = SPIN_LOCK_UNLOCKED;

/*
 * used to wait on when there are no free requests
 */
DECLARE_WAIT_QUEUE_HEAD(wait_for_request);

/* This specifies how many sectors to read ahead on the disk.  */

int read_ahead[MAX_BLKDEV] = {0, };

/* blk_dev_struct is:
 *	*request_fn
 *	*current_request
 */
struct blk_dev_struct blk_dev[MAX_BLKDEV]; /* initialized by blk_dev_init() */

/*
 * blk_size contains the size of all block-devices in units of 1024 byte
 * sectors:
 *
 * blk_size[MAJOR][MINOR]
 *
 * if (!blk_size[MAJOR]) then no minor size checking is done.
 */
int * blk_size[MAX_BLKDEV] = { NULL, NULL, };

/*
 * blksize_size contains the size of all block-devices:
 *
 * blksize_size[MAJOR][MINOR]
 *
 * if (!blksize_size[MAJOR]) then 1024 bytes is assumed.
 */
int * blksize_size[MAX_BLKDEV] = { NULL, NULL, };

/*
 * hardsect_size contains the size of the hardware sector of a device.
 *
 * hardsect_size[MAJOR][MINOR]
 *
 * if (!hardsect_size[MAJOR])
 *		then 512 bytes is assumed.
 * else
 *		sector_size is hardsect_size[MAJOR][MINOR]
 * This is currently set by some scsi devices and read by the msdos fs driver.
 * Other uses may appear later.
 */
int * hardsect_size[MAX_BLKDEV] = { NULL, NULL, };

/*
 * The following tunes the read-ahead algorithm in mm/filemap.c
 */
int * max_readahead[MAX_BLKDEV] = { NULL, NULL, };

/*
 * Max number of sectors per request
 */
int * max_sectors[MAX_BLKDEV] = { NULL, NULL, };

static inline int get_max_sectors(kdev_t dev)
{
	if (!max_sectors[MAJOR(dev)])
		return MAX_SECTORS;
	return max_sectors[MAJOR(dev)][MINOR(dev)];
}

/*
 * Is called with the request spinlock aquired.
 * NOTE: the device-specific queue() functions
 * have to be atomic!
 */
static inline struct request **get_queue(kdev_t dev)
{
	int major = MAJOR(dev);
	struct blk_dev_struct *bdev = blk_dev + major;

	if (bdev->queue)
		return bdev->queue(dev);
	return &blk_dev[major].current_request;
}

/*
 * remove the plug and let it rip..
 */
void unplug_device(void * data)
{
	struct blk_dev_struct * dev = (struct blk_dev_struct *) data;
	int queue_new_request=0;
	unsigned long flags;

	spin_lock_irqsave(&io_request_lock,flags);
	if (dev->current_request == &dev->plug) {
		struct request * next = dev->plug.next;
		dev->current_request = next;
		if (next || dev->queue) {
			dev->plug.next = NULL;
			queue_new_request = 1;
		}
	}
	if (queue_new_request)
		(dev->request_fn)();

	spin_unlock_irqrestore(&io_request_lock,flags);
}

/*
 * "plug" the device if there are no outstanding requests: this will
 * force the transfer to start only after we have put all the requests
 * on the list.
 *
 * This is called with interrupts off and no requests on the queue.
 * (and with the request spinlock aquired)
 */
static inline void plug_device(struct blk_dev_struct * dev)
{
	if (dev->current_request)
		return;
	dev->current_request = &dev->plug;
	queue_task(&dev->plug_tq, &tq_disk);
}

/*
 * look for a free request in the first N entries.
 * NOTE: interrupts must be disabled on the way in (on SMP the request queue
 * spinlock has to be aquired), and will still be disabled on the way out.
 */
static inline struct request * get_request(int n, kdev_t dev)
{
	static struct request *prev_found = NULL, *prev_limit = NULL;
	register struct request *req, *limit;

	if (n <= 0)
		panic("get_request(%d): impossible!\n", n);

	limit = all_requests + n;
	if (limit != prev_limit) {
		prev_limit = limit;
		prev_found = all_requests;
	}
	req = prev_found;
	for (;;) {
		req = ((req > all_requests) ? req : limit) - 1;
		if (req->rq_status == RQ_INACTIVE)
			break;
		if (req == prev_found)
			return NULL;
	}
	prev_found = req;
	req->rq_status = RQ_ACTIVE;
	req->rq_dev = dev;
	return req;
}

/*
 * wait until a free request in the first N entries is available.
 */
static struct request * __get_request_wait(int n, kdev_t dev)
{
	register struct request *req;
	DECLARE_WAITQUEUE(wait, current);
	unsigned long flags;

	add_wait_queue(&wait_for_request, &wait);
	for (;;) {
		current->state = TASK_UNINTERRUPTIBLE;
		spin_lock_irqsave(&io_request_lock,flags);
		req = get_request(n, dev);
		spin_unlock_irqrestore(&io_request_lock,flags);
		if (req)
			break;
		run_task_queue(&tq_disk);
		schedule();
	}
	remove_wait_queue(&wait_for_request, &wait);
	current->state = TASK_RUNNING;
	return req;
}

static inline struct request * get_request_wait(int n, kdev_t dev)
{
	register struct request *req;
	unsigned long flags;

	spin_lock_irqsave(&io_request_lock,flags);
	req = get_request(n, dev);
	spin_unlock_irqrestore(&io_request_lock,flags);
	if (req)
		return req;
	return __get_request_wait(n, dev);
}

/* RO fail safe mechanism */

static long ro_bits[MAX_BLKDEV][8];

int is_read_only(kdev_t dev)
{
	int minor,major;

	major = MAJOR(dev);
	minor = MINOR(dev);
	if (major < 0 || major >= MAX_BLKDEV) return 0;
	return ro_bits[major][minor >> 5] & (1 << (minor & 31));
}

void set_device_ro(kdev_t dev,int flag)
{
	int minor,major;

	major = MAJOR(dev);
	minor = MINOR(dev);
	if (major < 0 || major >= MAX_BLKDEV) return;
	if (flag) ro_bits[major][minor >> 5] |= 1 << (minor & 31);
	else ro_bits[major][minor >> 5] &= ~(1 << (minor & 31));
}

static inline void drive_stat_acct(int cmd, unsigned long nr_sectors,
                                   short disk_index)
{
	kstat.dk_drive[disk_index]++;
	if (cmd == READ) {
		kstat.dk_drive_rio[disk_index]++;
		kstat.dk_drive_rblk[disk_index] += nr_sectors;
	} else if (cmd == WRITE) {
		kstat.dk_drive_wio[disk_index]++;
		kstat.dk_drive_wblk[disk_index] += nr_sectors;
	} else
		printk(KERN_ERR "drive_stat_acct: cmd not R/W?\n");
}

/*
 * add-request adds a request to the linked list.
 * It disables interrupts (aquires the request spinlock) so that it can muck
 * with the request-lists in peace. Thus it should be called with no spinlocks
 * held.
 *
 * By this point, req->cmd is always either READ/WRITE, never READA/WRITEA,
 * which is important for drive_stat_acct() above.
 */

void add_request(struct blk_dev_struct * dev, struct request * req)
{
	struct request * tmp, **current_request;
	short		 disk_index;
	unsigned long flags;
	int queue_new_request = 0;

	switch (MAJOR(req->rq_dev)) {
		case SCSI_DISK0_MAJOR:
			disk_index = (MINOR(req->rq_dev) & 0x00f0) >> 4;
			if (disk_index < 4)
				drive_stat_acct(req->cmd, req->nr_sectors, disk_index);
			break;
		case IDE0_MAJOR:	/* same as HD_MAJOR */
		case XT_DISK_MAJOR:
			disk_index = (MINOR(req->rq_dev) & 0x0040) >> 6;
			drive_stat_acct(req->cmd, req->nr_sectors, disk_index);
			break;
		case IDE1_MAJOR:
			disk_index = ((MINOR(req->rq_dev) & 0x0040) >> 6) + 2;
			drive_stat_acct(req->cmd, req->nr_sectors, disk_index);
		default:
			break;
	}

	req->next = NULL;

	/*
	 * We use the goto to reduce locking complexity
	 */
	spin_lock_irqsave(&io_request_lock,flags);
	current_request = get_queue(req->rq_dev);

	if (req->bh)
		mark_buffer_clean(req->bh);
	if (!(tmp = *current_request)) {
		*current_request = req;
		if (dev->current_request != &dev->plug)
			queue_new_request = 1;
		goto out;
	}
	for ( ; tmp->next ; tmp = tmp->next) {
		const int after_current = IN_ORDER(tmp,req);
		const int before_next = IN_ORDER(req,tmp->next);

		if (!IN_ORDER(tmp,tmp->next)) {
			if (after_current || before_next)
				break;
		} else {
			if (after_current && before_next)
				break;
		}
	}
	req->next = tmp->next;
	tmp->next = req;

/* for SCSI devices, call request_fn unconditionally */
	if (scsi_blk_major(MAJOR(req->rq_dev)))
		queue_new_request = 1;
out:
	if (queue_new_request)
		(dev->request_fn)();
	spin_unlock_irqrestore(&io_request_lock,flags);
}

/*
 * Has to be called with the request spinlock aquired
 */
static inline void attempt_merge (struct request *req, int max_sectors)
{
	struct request *next = req->next;

	if (!next)
		return;
	if (req->sector + req->nr_sectors != next->sector)
		return;
	if (next->sem || req->cmd != next->cmd || req->rq_dev != next->rq_dev || req->nr_sectors + next->nr_sectors > max_sectors)
		return;
	req->bhtail->b_reqnext = next->bh;
	req->bhtail = next->bhtail;
	req->nr_sectors += next->nr_sectors;
	next->rq_status = RQ_INACTIVE;
	req->next = next->next;
	wake_up (&wait_for_request);
}

void make_request(int major,int rw, struct buffer_head * bh)
{
	unsigned int sector, count;
	struct request * req;
	int rw_ahead, max_req, max_sectors;
	unsigned long flags;

	count = bh->b_size >> 9;
	sector = bh->b_rsector;

	/* Uhhuh.. Nasty dead-lock possible here.. */
	if (buffer_locked(bh))
		return;
	/* Maybe the above fixes it, and maybe it doesn't boot. Life is interesting */

	lock_buffer(bh);

	if (blk_size[major]) {
		unsigned long maxsector = (blk_size[major][MINOR(bh->b_rdev)] << 1) + 1;

		if (maxsector < count || maxsector - count < sector) {
			bh->b_state &= (1 << BH_Lock);
                        /* This may well happen - the kernel calls bread()
                           without checking the size of the device, e.g.,
                           when mounting a device. */
			printk(KERN_INFO
                               "attempt to access beyond end of device\n");
			printk(KERN_INFO "%s: rw=%d, want=%d, limit=%d\n",
                               kdevname(bh->b_rdev), rw,
                               (sector + count)>>1,
                               blk_size[major][MINOR(bh->b_rdev)]);
			goto end_io;
		}
	}

	rw_ahead = 0;	/* normal case; gets changed below for READA/WRITEA */
	switch (rw) {
		case READA:
			rw_ahead = 1;
			rw = READ;	/* drop into READ */
		case READ:
			if (buffer_uptodate(bh)) /* Hmmph! Already have it */
				goto end_io;
			kstat.pgpgin++;
			max_req = NR_REQUEST;	/* reads take precedence */
			break;
		case WRITEA:
			rw_ahead = 1;
			rw = WRITE;	/* drop into WRITE */
		case WRITE:
			if (!buffer_dirty(bh))   /* Hmmph! Nothing to write */
				goto end_io;
			/* We don't allow the write-requests to fill up the
			 * queue completely:  we want some room for reads,
			 * as they take precedence. The last third of the
			 * requests are only for reads.
			 */
			kstat.pgpgout++;
			max_req = (NR_REQUEST * 2) / 3;
			break;
		default:
			printk(KERN_ERR "make_request: bad block dev cmd,"
                               " must be R/W/RA/WA\n");
			goto end_io;
	}

/* look for a free request. */
       /* Loop uses two requests, 1 for loop and 1 for the real device.
        * Cut max_req in half to avoid running out and deadlocking. */
	 if ((major == LOOP_MAJOR) || (major == NBD_MAJOR))
	     max_req >>= 1;

	/*
	 * Try to coalesce the new request with old requests
	 */
	max_sectors = get_max_sectors(bh->b_rdev);

	/*
	 * Now we acquire the request spinlock, we have to be mega careful
	 * not to schedule or do something nonatomic
	 */
	spin_lock_irqsave(&io_request_lock,flags);
	req = *get_queue(bh->b_rdev);
	if (!req) {
		/* MD and loop can't handle plugging without deadlocking */
		if (major != MD_MAJOR && major != LOOP_MAJOR && 
		    major != DDV_MAJOR && major != NBD_MAJOR)
			plug_device(blk_dev + major); /* is atomic */
	} else switch (major) {
	     case IDE0_MAJOR:	/* same as HD_MAJOR */
	     case IDE1_MAJOR:
	     case FLOPPY_MAJOR:
	     case IDE2_MAJOR:
	     case IDE3_MAJOR:
	     case IDE4_MAJOR:
	     case IDE5_MAJOR:
	     case IDE6_MAJOR:
	     case IDE7_MAJOR:
	     case ACSI_MAJOR:
	     case MFM_ACORN_MAJOR:
		/*
		 * The scsi disk and cdrom drivers completely remove the request
		 * from the queue when they start processing an entry.  For this
		 * reason it is safe to continue to add links to the top entry for
		 * those devices.
		 *
		 * All other drivers need to jump over the first entry, as that
		 * entry may be busy being processed and we thus can't change it.
		 */
		if (req == blk_dev[major].current_request)
	        	req = req->next;
		if (!req)
			break;
		/* fall through */

	     case SCSI_DISK0_MAJOR:
	     case SCSI_DISK1_MAJOR:
	     case SCSI_DISK2_MAJOR:
	     case SCSI_DISK3_MAJOR:
	     case SCSI_DISK4_MAJOR:
	     case SCSI_DISK5_MAJOR:
	     case SCSI_DISK6_MAJOR:
	     case SCSI_DISK7_MAJOR:
	     case SCSI_CDROM_MAJOR:
	     case I2O_MAJOR:

		do {
			if (req->sem)
				continue;
			if (req->cmd != rw)
				continue;
			if (req->nr_sectors + count > max_sectors)
				continue;
			if (req->rq_dev != bh->b_rdev)
				continue;
			/* Can we add it to the end of this request? */
			if (req->sector + req->nr_sectors == sector) {
				req->bhtail->b_reqnext = bh;
				req->bhtail = bh;
			    	req->nr_sectors += count;
				/* Can we now merge this req with the next? */
				attempt_merge(req, max_sectors);
			/* or to the beginning? */
			} else if (req->sector - count == sector) {
			    	bh->b_reqnext = req->bh;
			    	req->bh = bh;
			    	req->buffer = bh->b_data;
			    	req->current_nr_sectors = count;
			    	req->sector = sector;
			    	req->nr_sectors += count;
			} else
				continue;

			mark_buffer_clean(bh);
			spin_unlock_irqrestore(&io_request_lock,flags);
		    	return;

		} while ((req = req->next) != NULL);
	}

/* find an unused request. */
	req = get_request(max_req, bh->b_rdev);

	spin_unlock_irqrestore(&io_request_lock,flags);

/* if no request available: if rw_ahead, forget it; otherwise try again blocking.. */
	if (!req) {
		if (rw_ahead)
			goto end_io;
		req = __get_request_wait(max_req, bh->b_rdev);
	}

/* fill up the request-info, and add it to the queue */
	req->cmd = rw;
	req->errors = 0;
	req->sector = sector;
	req->nr_sectors = count;
	req->current_nr_sectors = count;
	req->buffer = bh->b_data;
	req->sem = NULL;
	req->bh = bh;
	req->bhtail = bh;
	req->next = NULL;
	add_request(major+blk_dev,req);
	return;

end_io:
	bh->b_end_io(bh, test_bit(BH_Uptodate, &bh->b_state));
}

/* This function can be used to request a number of buffers from a block
   device. Currently the only restriction is that all buffers must belong to
   the same device */

void ll_rw_block(int rw, int nr, struct buffer_head * bh[])
{
	unsigned int major;
	int correct_size;
	struct blk_dev_struct * dev;
	int i;

	/* Make sure that the first block contains something reasonable */
	while (!*bh) {
		bh++;
		if (--nr <= 0)
			return;
	}

	dev = NULL;
	if ((major = MAJOR(bh[0]->b_dev)) < MAX_BLKDEV)
		dev = blk_dev + major;
	if (!dev || !dev->request_fn) {
		printk(KERN_ERR
	"ll_rw_block: Trying to read nonexistent block-device %s (%ld)\n",
		kdevname(bh[0]->b_dev), bh[0]->b_blocknr);
		goto sorry;
	}

	/* Determine correct block size for this device.  */
	correct_size = BLOCK_SIZE;
	if (blksize_size[major]) {
		i = blksize_size[major][MINOR(bh[0]->b_dev)];
		if (i)
			correct_size = i;
	}

	/* Verify requested block sizes.  */
	for (i = 0; i < nr; i++) {
		if (bh[i]->b_size != correct_size) {
			printk(KERN_NOTICE "ll_rw_block: device %s: "
			       "only %d-char blocks implemented (%lu)\n",
			       kdevname(bh[0]->b_dev),
			       correct_size, bh[i]->b_size);
			goto sorry;
		}

		/* Md remaps blocks now */
		bh[i]->b_rdev = bh[i]->b_dev;
		bh[i]->b_rsector=bh[i]->b_blocknr*(bh[i]->b_size >> 9);
#ifdef CONFIG_BLK_DEV_MD
		if (major==MD_MAJOR &&
		    md_map (MINOR(bh[i]->b_dev), &bh[i]->b_rdev,
			    &bh[i]->b_rsector, bh[i]->b_size >> 9)) {
		        printk (KERN_ERR
				"Bad md_map in ll_rw_block\n");
		        goto sorry;
		}
#endif
	}

	if ((rw == WRITE || rw == WRITEA) && is_read_only(bh[0]->b_dev)) {
		printk(KERN_NOTICE "Can't write to read-only device %s\n",
		       kdevname(bh[0]->b_dev));
		goto sorry;
	}

	for (i = 0; i < nr; i++) {
		if (bh[i]) {
			set_bit(BH_Req, &bh[i]->b_state);
#ifdef CONFIG_BLK_DEV_MD
			if (MAJOR(bh[i]->b_dev) == MD_MAJOR) {
				md_make_request(MINOR (bh[i]->b_dev), rw, bh[i]);
				continue;
			}
#endif
			make_request(MAJOR(bh[i]->b_rdev), rw, bh[i]);
		}
	}
	return;

      sorry:
	for (i = 0; i < nr; i++) {
		if (bh[i]) {
			clear_bit(BH_Dirty, &bh[i]->b_state);
			clear_bit(BH_Uptodate, &bh[i]->b_state);
			bh[i]->b_end_io(bh[i], 0);
		}
	}
	return;
}

#ifdef CONFIG_STRAM_SWAP
extern int stram_device_init( void );
#endif

/*
 * First step of what used to be end_request
 *
 * 0 means continue with end_that_request_last,
 * 1 means we are done
 */

int 
end_that_request_first( struct request *req, int uptodate, char *name ) 
{
	struct buffer_head * bh;
	int nsect;

	req->errors = 0;
	if (!uptodate) {
		printk("end_request: I/O error, dev %s (%s), sector %lu\n",
			kdevname(req->rq_dev), name, req->sector);
		if ((bh = req->bh) != NULL) {
			nsect = bh->b_size >> 9;
			req->nr_sectors--;
			req->nr_sectors &= ~(nsect - 1);
			req->sector += nsect;
			req->sector &= ~(nsect - 1);
		}
	}

	if ((bh = req->bh) != NULL) {
		req->bh = bh->b_reqnext;
		bh->b_reqnext = NULL;
		bh->b_end_io(bh, uptodate);
		if ((bh = req->bh) != NULL) {
			req->current_nr_sectors = bh->b_size >> 9;
			if (req->nr_sectors < req->current_nr_sectors) {
				req->nr_sectors = req->current_nr_sectors;
				printk("end_request: buffer-list destroyed\n");
			}
			req->buffer = bh->b_data;
			return 1;
		}
	}
	return 0;
}

void
end_that_request_last( struct request *req ) 
{
	if (req->sem != NULL)
		up(req->sem);
	req->rq_status = RQ_INACTIVE;
	wake_up(&wait_for_request);
}

__initfunc(int blk_dev_init(void))
{
	struct request * req;
	struct blk_dev_struct *dev;

	for (dev = blk_dev + MAX_BLKDEV; dev-- != blk_dev;) {
		dev->request_fn      = NULL;
		dev->queue           = NULL;
		dev->current_request = NULL;
		dev->plug.rq_status  = RQ_INACTIVE;
		dev->plug.cmd        = -1;
		dev->plug.next       = NULL;
		dev->plug_tq.sync    = 0;
		dev->plug_tq.routine = &unplug_device;
		dev->plug_tq.data    = dev;
	}

	req = all_requests + NR_REQUEST;
	while (--req >= all_requests) {
		req->rq_status = RQ_INACTIVE;
		req->next = NULL;
	}
	memset(ro_bits,0,sizeof(ro_bits));
	memset(max_readahead, 0, sizeof(max_readahead));
	memset(max_sectors, 0, sizeof(max_sectors));
#ifdef CONFIG_AMIGA_Z2RAM
	z2_init();
#endif
#ifdef CONFIG_STRAM_SWAP
	stram_device_init();
#endif
#ifdef CONFIG_BLK_DEV_RAM
	rd_init();
#endif
#ifdef CONFIG_BLK_DEV_LOOP
	loop_init();
#endif
#ifdef CONFIG_ISP16_CDI
	isp16_init();
#endif CONFIG_ISP16_CDI
#ifdef CONFIG_BLK_DEV_IDE
	ide_init();		/* this MUST precede hd_init */
#endif
#ifdef CONFIG_BLK_DEV_HD
	hd_init();
#endif
#ifdef CONFIG_BLK_DEV_PS2
	ps2esdi_init();
#endif
#ifdef CONFIG_BLK_DEV_XD
	xd_init();
#endif
#ifdef CONFIG_BLK_DEV_MFM
	mfm_init();
#endif
#ifdef CONFIG_PARIDE
	{ extern void paride_init(void); paride_init(); };
#endif
#ifdef CONFIG_MAC_FLOPPY
	swim3_init();
#endif
#ifdef CONFIG_AMIGA_FLOPPY
	amiga_floppy_init();
#endif
#ifdef CONFIG_ATARI_FLOPPY
	atari_floppy_init();
#endif
#ifdef CONFIG_BLK_DEV_FD
	floppy_init();
#else
#if !defined (__mc68000__) && !defined(CONFIG_PMAC) && !defined(__sparc__)\
    && !defined(CONFIG_APUS)
	outb_p(0xc, 0x3f2);
#endif
#endif
#ifdef CONFIG_CDU31A
	cdu31a_init();
#endif CONFIG_CDU31A
#ifdef CONFIG_ATARI_ACSI
	acsi_init();
#endif CONFIG_ATARI_ACSI
#ifdef CONFIG_MCD
	mcd_init();
#endif CONFIG_MCD
#ifdef CONFIG_MCDX
	mcdx_init();
#endif CONFIG_MCDX
#ifdef CONFIG_SBPCD
	sbpcd_init();
#endif CONFIG_SBPCD
#ifdef CONFIG_AZTCD
        aztcd_init();
#endif CONFIG_AZTCD
#ifdef CONFIG_CDU535
	sony535_init();
#endif CONFIG_CDU535
#ifdef CONFIG_GSCD
	gscd_init();
#endif CONFIG_GSCD
#ifdef CONFIG_CM206
	cm206_init();
#endif
#ifdef CONFIG_OPTCD
	optcd_init();
#endif CONFIG_OPTCD
#ifdef CONFIG_SJCD
	sjcd_init();
#endif CONFIG_SJCD
#ifdef CONFIG_BLK_DEV_MD
	md_init();
#endif CONFIG_BLK_DEV_MD
#ifdef CONFIG_APBLOCK
	ap_init();
#endif
#ifdef CONFIG_DDV
	ddv_init();
#endif
#ifdef CONFIG_BLK_DEV_NBD
	nbd_init();
#endif
	return 0;
};

EXPORT_SYMBOL(io_request_lock);
EXPORT_SYMBOL(end_that_request_first);
EXPORT_SYMBOL(end_that_request_last);