Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#ifndef _ASM_IA64_SAL_H
#define _ASM_IA64_SAL_H

/*
 * System Abstraction Layer definitions.
 *
 * This is based on version 2.5 of the manual "IA-64 System
 * Abstraction Layer".
 *
 * Copyright (C) 1998, 1999 Hewlett-Packard Co
 * Copyright (C) 1998, 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 * Copyright (C) 1999 Srinivasa Prasad Thirumalachar <sprasad@sprasad.engr.sgi.com>
 *
 * 99/09/29 davidm	Updated for SAL 2.6.
 */

#include <linux/config.h>

#include <asm/pal.h>
#include <asm/system.h>

extern spinlock_t sal_lock;

#ifdef __GCC_MULTIREG_RETVALS__
  /* If multi-register return values are returned according to the
     ia-64 calling convention, we can call ia64_sal directly.  */
# define __SAL_CALL(result,args...)	result = (*ia64_sal)(args)
#else
  /* If multi-register return values are returned through an aggregate
     allocated in the caller, we need to use the stub implemented in
     sal-stub.S.  */
  extern struct ia64_sal_retval ia64_sal_stub (u64 index, ...);
# define __SAL_CALL(result,args...)	result = ia64_sal_stub(args)
#endif

#ifdef CONFIG_SMP
# define SAL_CALL(result,args...) do {		\
	  spin_lock(&sal_lock);			\
	  __SAL_CALL(result,args);		\
	  spin_unlock(&sal_lock);		\
} while (0)
#else
# define SAL_CALL(result,args...)	__SAL_CALL(result,args)
#endif

#define SAL_SET_VECTORS			0x01000000
#define SAL_GET_STATE_INFO		0x01000001
#define SAL_GET_STATE_INFO_SIZE		0x01000002
#define SAL_CLEAR_STATE_INFO		0x01000003
#define SAL_MC_RENDEZ			0x01000004
#define SAL_MC_SET_PARAMS		0x01000005
#define SAL_REGISTER_PHYSICAL_ADDR	0x01000006

#define SAL_CACHE_FLUSH			0x01000008
#define SAL_CACHE_INIT			0x01000009
#define SAL_PCI_CONFIG_READ		0x01000010
#define SAL_PCI_CONFIG_WRITE		0x01000011
#define SAL_FREQ_BASE			0x01000012

#define SAL_UPDATE_PAL			0x01000020

struct ia64_sal_retval {
	/*
	 * A zero status value indicates call completed without error.
	 * A negative status value indicates reason of call failure.
	 * A positive status value indicates success but an
	 * informational value should be printed (e.g., "reboot for
	 * change to take effect").
	 */
	s64 	status;
	u64 	v0;
	u64 	v1;
	u64 	v2;
};

typedef struct ia64_sal_retval (*ia64_sal_handler) (u64, ...);

enum {
	SAL_FREQ_BASE_PLATFORM = 0,
	SAL_FREQ_BASE_INTERVAL_TIMER = 1,
	SAL_FREQ_BASE_REALTIME_CLOCK = 2
};

/*
 * The SAL system table is followed by a variable number of variable
 * length descriptors.  The structure of these descriptors follows
 * below.
 */
struct ia64_sal_systab {
	char signature[4];	/* should be "SST_" */
	int size;		/* size of this table in bytes */
	unsigned char sal_rev_minor;
	unsigned char sal_rev_major;
	unsigned short entry_count;	/* # of entries in variable portion */
	unsigned char checksum;
	char ia32_bios_present;
	unsigned short reserved1;
	char oem_id[32];	/* ASCII NUL terminated OEM id
				   (terminating NUL is missing if
				   string is exactly 32 bytes long). */
	char product_id[32];	/* ASCII product id  */
	char reserved2[16];
};

enum SAL_Systab_Entry_Type {
	SAL_DESC_ENTRY_POINT = 0,
	SAL_DESC_MEMORY = 1,
	SAL_DESC_PLATFORM_FEATURE = 2,
	SAL_DESC_TR = 3,
	SAL_DESC_PTC = 4,
	SAL_DESC_AP_WAKEUP = 5
};

/*
 * Entry type:	Size:
 *	0	48
 *	1	32
 *	2	16
 *	3	32
 *	4	16
 *	5	16
 */
#define SAL_DESC_SIZE(type)	"\060\040\020\040\020\020"[(unsigned) type]

struct ia64_sal_desc_entry_point {
	char type;
	char reserved1[7];
	s64 pal_proc;
	s64 sal_proc;
	s64 gp;
	char reserved2[16];
};

struct ia64_sal_desc_memory {
	char type;
	char used_by_sal;	/* needs to be mapped for SAL? */
	char mem_attr;		/* current memory attribute setting */
	char access_rights;	/* access rights set up by SAL */
	char mem_attr_mask;	/* mask of supported memory attributes */
	char reserved1;
	char mem_type;		/* memory type */
	char mem_usage;		/* memory usage */
	s64 addr;		/* physical address of memory */
	unsigned int length;	/* length (multiple of 4KB pages) */
	unsigned int reserved2;
	char oem_reserved[8];
};

#define IA64_SAL_PLATFORM_FEATURE_BUS_LOCK		(1 << 0)
#define IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT	(1 << 1)
#define IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT	(1 << 2)

struct ia64_sal_desc_platform_feature {
	char type;
	unsigned char feature_mask;
	char reserved1[14];
};

struct ia64_sal_desc_tr {
	char type;
	char tr_type;		/* 0 == instruction, 1 == data */
	char regnum;		/* translation register number */
	char reserved1[5];
	s64 addr;		/* virtual address of area covered */
	s64 page_size;		/* encoded page size */
	char reserved2[8];
};

struct ia64_sal_desc_ptc {
	char type;
	char reserved1[3];
	unsigned int num_domains;	/* # of coherence domains */
	long domain_info;	/* physical address of domain info table */
};

#define IA64_SAL_AP_EXTERNAL_INT 0

struct ia64_sal_desc_ap_wakeup {
	char type;
	char mechanism;		/* 0 == external interrupt */
	char reserved1[6];
	long vector;		/* interrupt vector in range 0x10-0xff */
};

extern ia64_sal_handler ia64_sal;

extern const char *ia64_sal_strerror (long status);
extern void ia64_sal_init (struct ia64_sal_systab *sal_systab);

/* SAL information type encodings */
enum {
	SAL_INFO_TYPE_MCA	=		0,	/* Machine check abort information */
        SAL_INFO_TYPE_INIT	=		1,	/* Init information */
        SAL_INFO_TYPE_CMC	=		2 	/* Corrected machine check information */
};

/* Sub information type encodings */
enum {
        SAL_SUB_INFO_TYPE_PROCESSOR	=	0,	/* Processor information */
        SAL_SUB_INFO_TYPE_PLATFORM	=	1	/* Platform information */
};

/* Encodings for machine check parameter types */
enum {
        SAL_MC_PARAM_RENDEZ_INT		=	1,	/* Rendezevous interrupt */
        SAL_MC_PARAM_RENDEZ_WAKEUP	=	2	/* Wakeup */
};

/* Encodings for rendezvous mechanisms */
enum {
        SAL_MC_PARAM_MECHANISM_INT	=	1,	/* Use interrupt */
        SAL_MC_PARAM_MECHANISM_MEM	=	2	/* Use memory synchronization variable*/
};

/* Encodings for vectors which can be registered by the OS with SAL */
enum {
	SAL_VECTOR_OS_MCA		=	0,
	SAL_VECTOR_OS_INIT		=	1,
	SAL_VECTOR_OS_BOOT_RENDEZ	=	2
};

/* Definition of the SAL Error Log from the SAL spec */

/* Definition of timestamp according to SAL spec for logging purposes */

typedef struct sal_log_timestamp_s {
	u8	slh_century;				/* Century (19, 20, 21, ...) */
	u8	slh_year;				/* Year (00..99) */
	u8	slh_month;				/* Month (1..12) */
	u8	slh_day;				/* Day (1..31) */
	u8	slh_reserved;					
	u8	slh_hour;				/* Hour (0..23)	*/
	u8	slh_minute;				/* Minute (0..59) */
	u8	slh_second;				/* Second (0..59) */
} sal_log_timestamp_t;


#define MAX_CACHE_ERRORS			6
#define MAX_TLB_ERRORS				6
#define MAX_BUS_ERRORS				1

typedef struct sal_log_processor_info_s {
	struct	{
		u64		slpi_psi	: 1,
				slpi_cache_check: MAX_CACHE_ERRORS,
				slpi_tlb_check	: MAX_TLB_ERRORS,
				slpi_bus_check	: MAX_BUS_ERRORS,
				slpi_reserved2	: (31 - (MAX_TLB_ERRORS + MAX_CACHE_ERRORS
							 + MAX_BUS_ERRORS)),
				slpi_minstate	: 1,
				slpi_bank1_gr	: 1,
				slpi_br		: 1,
				slpi_cr		: 1,
				slpi_ar		: 1,
				slpi_rr		: 1,
				slpi_fr		: 1,
				slpi_reserved1	: 25;
	} slpi_valid;

	pal_processor_state_info_t	slpi_processor_state_info;

	struct {
		pal_cache_check_info_t	slpi_cache_check;
		u64			slpi_target_address;
	} slpi_cache_check_info[MAX_CACHE_ERRORS];
		
	pal_tlb_check_info_t		slpi_tlb_check_info[MAX_TLB_ERRORS];

	struct {
		pal_bus_check_info_t	slpi_bus_check;
		u64			slpi_requestor_addr;	
		u64			slpi_responder_addr;	
		u64			slpi_target_addr;
	} slpi_bus_check_info[MAX_BUS_ERRORS];

	pal_min_state_area_t		slpi_min_state_area;
	u64				slpi_bank1_gr[16];
	u64				slpi_bank1_nat_bits;
	u64				slpi_br[8];
	u64				slpi_cr[128];
	u64				slpi_ar[128];
	u64				slpi_rr[8];
	u64				slpi_fr[128];
} sal_log_processor_info_t;

#define sal_log_processor_info_psi_valid		slpi_valid.spli_psi
#define sal_log_processor_info_cache_check_valid	slpi_valid.spli_cache_check
#define sal_log_processor_info_tlb_check_valid		slpi_valid.spli_tlb_check
#define sal_log_processor_info_bus_check_valid		slpi_valid.spli_bus_check
#define sal_log_processor_info_minstate_valid		slpi_valid.spli_minstate
#define sal_log_processor_info_bank1_gr_valid		slpi_valid.slpi_bank1_gr
#define sal_log_processor_info_br_valid			slpi_valid.slpi_br
#define sal_log_processor_info_cr_valid			slpi_valid.slpi_cr
#define sal_log_processor_info_ar_valid			slpi_valid.slpi_ar
#define sal_log_processor_info_rr_valid			slpi_valid.slpi_rr
#define sal_log_processor_info_fr_valid			slpi_valid.slpi_fr

typedef struct sal_log_header_s {
	u64			slh_next_log;		/* Offset of the next log from the 
							 * beginning of  this structure.
							 */
	uint			slh_log_len;		/* Length of this error log in bytes */
	ushort			slh_log_type;		/* Type of log (0 - cpu ,1 - platform) */
	ushort			slh_log_sub_type;	/* SGI specific sub type */
	sal_log_timestamp_t	slh_log_timestamp;	/* Timestamp */
	u64			slh_log_dev_spec_info;	/* For processor log this field will
							 * contain an area architected for all
							 * IA-64 processors. For platform log
							 * this field will contain information
							 * specific to the hardware 
							 * implementation.
							 */
} sal_log_header_t;


/*
 * Now define a couple of inline functions for improved type checking
 * and convenience.
 */
extern inline long
ia64_sal_freq_base (unsigned long which, unsigned long *ticks_per_second,
		    unsigned long *drift_info)
{
	struct ia64_sal_retval isrv;

	SAL_CALL(isrv, SAL_FREQ_BASE, which);
	*ticks_per_second = isrv.v0;
	*drift_info = isrv.v1;
	return isrv.status;
}

/* Flush all the processor and platform level instruction and/or data caches */
extern inline s64
ia64_sal_cache_flush (u64 cache_type)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_CACHE_FLUSH, cache_type);
	return isrv.status;
}


	
/* Initialize all the processor and platform level instruction and data caches */
extern inline s64
ia64_sal_cache_init (void)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_CACHE_INIT);
	return isrv.status;
}

/* Clear the processor and platform information logged by SAL with respect to the 
 * machine state at the time of MCA's, INITs or CMCs 
 */
extern inline s64
ia64_sal_clear_state_info (u64 sal_info_type, u64 sal_info_sub_type)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_CLEAR_STATE_INFO, sal_info_type, sal_info_sub_type);
	return isrv.status;
}


/* Get the processor and platform information logged by SAL with respect to the machine
 * state at the time of the MCAs, INITs or CMCs.
 */
extern inline u64
ia64_sal_get_state_info (u64 sal_info_type, u64 sal_info_sub_type, u64 *sal_info)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_GET_STATE_INFO, sal_info_type, sal_info_sub_type, sal_info);
	if (isrv.status)
		return 0;
	return isrv.v0;
}	
/* Get the maximum size of the information logged by SAL with respect to the machine 
 * state at the time of MCAs, INITs or CMCs
 */
extern inline u64
ia64_sal_get_state_info_size (u64 sal_info_type, u64 sal_info_sub_type)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_GET_STATE_INFO_SIZE, sal_info_type, sal_info_sub_type);
	if (isrv.status)
		return 0;
	return isrv.v0;
}

/* Causes the processor to go into a spin loop within SAL where SAL awaits a wakeup
 * from the monarch processor.
 */
extern inline s64
ia64_sal_mc_rendez (void)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_MC_RENDEZ);
	return isrv.status;
}

/* Allow the OS to specify the interrupt number to be used by SAL to interrupt OS during
 * the machine check rendezvous sequence as well as the mechanism to wake up the 
 * non-monarch processor at the end of machine check processing.
 */
extern inline s64
ia64_sal_mc_set_params (u64 param_type, u64 i_or_m, u64 i_or_m_val, u64 timeout)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_MC_SET_PARAMS, param_type, i_or_m, i_or_m_val, timeout);
	return isrv.status;
}

/* Read from PCI configuration space */
extern inline s64
ia64_sal_pci_config_read (u64 pci_config_addr, u64 size, u64 *value)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_PCI_CONFIG_READ, pci_config_addr, size);
	if (value)
		*value = isrv.v0;
	return isrv.status;
}

/* Write to PCI configuration space */
extern inline s64
ia64_sal_pci_config_write (u64 pci_config_addr, u64 size, u64 value)
{
	struct ia64_sal_retval isrv;
#if defined(CONFIG_ITANIUM_ASTEP_SPECIFIC) && !defined(SAPIC_FIXED)
	extern spinlock_t ivr_read_lock;
	unsigned long flags;

	/*
	 * Avoid PCI configuration read/write overwrite -- A0 Interrupt loss workaround
	 */
	spin_lock_irqsave(&ivr_read_lock, flags);
#endif
	SAL_CALL(isrv, SAL_PCI_CONFIG_WRITE, pci_config_addr, size, value);
#if defined(CONFIG_ITANIUM_ASTEP_SPECIFIC) && !defined(SAPIC_FIXED)
	spin_unlock_irqrestore(&ivr_read_lock, flags);
#endif
	return isrv.status;
}

/*
 * Register physical addresses of locations needed by SAL when SAL
 * procedures are invoked in virtual mode.
 */
extern inline s64
ia64_sal_register_physical_addr (u64 phys_entry, u64 phys_addr)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_REGISTER_PHYSICAL_ADDR, phys_entry, phys_addr);
	return isrv.status;
}

/* Register software dependent code locations within SAL. These locations are handlers
 * or entry points where SAL will pass control for the specified event. These event
 * handlers are for the bott rendezvous, MCAs and INIT scenarios.
 */
extern inline s64
ia64_sal_set_vectors (u64 vector_type,
		      u64 handler_addr1, u64 gp1, u64 handler_len1,
		      u64 handler_addr2, u64 gp2, u64 handler_len2)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_SET_VECTORS, vector_type,
			handler_addr1, gp1, handler_len1,
			handler_addr2, gp2, handler_len2);			

	return isrv.status;
}		
/* Update the contents of PAL block in the non-volatile storage device */
extern inline s64
ia64_sal_update_pal (u64 param_buf, u64 scratch_buf, u64 scratch_buf_size,
		     u64 *error_code, u64 *scratch_buf_size_needed)
{
	struct ia64_sal_retval isrv;
	SAL_CALL(isrv, SAL_UPDATE_PAL, param_buf, scratch_buf, scratch_buf_size);
	if (error_code)
		*error_code = isrv.v0;
	if (scratch_buf_size_needed)
		*scratch_buf_size_needed = isrv.v1;
	return isrv.status;
}

#endif /* _ASM_IA64_PAL_H */