/*
* ROSE release 003
*
* This code REQUIRES 2.1.15 or higher/ NET3.038
*
* This module:
* This module is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* History
* ROSE 001 Jonathan(G4KLX) Cloned from af_netrom.c.
* Alan(GW4PTS) Hacked up for newer API stuff
* Terry (VK2KTJ) Added support for variable length
* address masks.
* ROSE 002 Jonathan(G4KLX) Changed hdrincl to qbitincl.
* Added random number facilities entry.
* Variable number of ROSE devices.
* ROSE 003 Jonathan(G4KLX) New timer architecture.
* Implemented idle timer.
* Added use count to neighbour.
*/
#include <linux/config.h>
#if defined(CONFIG_ROSE) || defined(CONFIG_ROSE_MODULE)
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/stat.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/fcntl.h>
#include <linux/termios.h> /* For TIOCINQ/OUTQ */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <net/rose.h>
#include <linux/proc_fs.h>
#include <net/ip.h>
#include <net/arp.h>
#include <linux/if_arp.h>
#include <linux/init.h>
int rose_ndevs = 10;
int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1;
int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2;
int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3;
int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE;
int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB;
int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING;
int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT;
int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC;
int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE;
static struct sock *volatile rose_list = NULL;
static struct proto_ops rose_proto_ops;
ax25_address rose_callsign;
/*
* Convert a ROSE address into text.
*/
char *rose2asc(rose_address *addr)
{
static char buffer[11];
if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
addr->rose_addr[4] == 0x00) {
strcpy(buffer, "*");
} else {
sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
addr->rose_addr[1] & 0xFF,
addr->rose_addr[2] & 0xFF,
addr->rose_addr[3] & 0xFF,
addr->rose_addr[4] & 0xFF);
}
return buffer;
}
/*
* Compare two ROSE addresses, 0 == equal.
*/
int rosecmp(rose_address *addr1, rose_address *addr2)
{
int i;
for (i = 0; i < 5; i++)
if (addr1->rose_addr[i] != addr2->rose_addr[i])
return 1;
return 0;
}
/*
* Compare two ROSE addresses for only mask digits, 0 == equal.
*/
int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
{
int i, j;
if (mask > 10)
return 1;
for (i = 0; i < mask; i++) {
j = i / 2;
if ((i % 2) != 0) {
if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
return 1;
} else {
if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
return 1;
}
}
return 0;
}
static void rose_free_sock(struct sock *sk)
{
sk_free(sk);
MOD_DEC_USE_COUNT;
}
static struct sock *rose_alloc_sock(void)
{
struct sock *sk;
rose_cb *rose;
if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, 1)) == NULL)
return NULL;
if ((rose = kmalloc(sizeof(*rose), GFP_ATOMIC)) == NULL) {
sk_free(sk);
return NULL;
}
MOD_INC_USE_COUNT;
memset(rose, 0x00, sizeof(*rose));
sk->protinfo.rose = rose;
rose->sk = sk;
return sk;
}
/*
* Socket removal during an interrupt is now safe.
*/
static void rose_remove_socket(struct sock *sk)
{
struct sock *s;
unsigned long flags;
save_flags(flags); cli();
if ((s = rose_list) == sk) {
rose_list = s->next;
restore_flags(flags);
return;
}
while (s != NULL && s->next != NULL) {
if (s->next == sk) {
s->next = sk->next;
restore_flags(flags);
return;
}
s = s->next;
}
restore_flags(flags);
}
/*
* Kill all bound sockets on a broken link layer connection to a
* particular neighbour.
*/
void rose_kill_by_neigh(struct rose_neigh *neigh)
{
struct sock *s;
for (s = rose_list; s != NULL; s = s->next) {
if (s->protinfo.rose->neighbour == neigh) {
rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
s->protinfo.rose->neighbour->use--;
s->protinfo.rose->neighbour = NULL;
}
}
}
/*
* Kill all bound sockets on a dropped device.
*/
static void rose_kill_by_device(struct device *dev)
{
struct sock *s;
for (s = rose_list; s != NULL; s = s->next) {
if (s->protinfo.rose->device == dev) {
rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
s->protinfo.rose->neighbour->use--;
s->protinfo.rose->device = NULL;
}
}
}
/*
* Handle device status changes.
*/
static int rose_device_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct device *dev = (struct device *)ptr;
if (event != NETDEV_DOWN)
return NOTIFY_DONE;
switch (dev->type) {
case ARPHRD_ROSE:
rose_kill_by_device(dev);
break;
case ARPHRD_AX25:
rose_link_device_down(dev);
rose_rt_device_down(dev);
break;
}
return NOTIFY_DONE;
}
/*
* Add a socket to the bound sockets list.
*/
static void rose_insert_socket(struct sock *sk)
{
unsigned long flags;
save_flags(flags); cli();
sk->next = rose_list;
rose_list = sk;
restore_flags(flags);
}
/*
* Find a socket that wants to accept the Call Request we just
* received.
*/
static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
{
unsigned long flags;
struct sock *s;
save_flags(flags); cli();
for (s = rose_list; s != NULL; s = s->next) {
if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, call) == 0 && s->protinfo.rose->source_ndigis == 0 && s->state == TCP_LISTEN) {
restore_flags(flags);
return s;
}
}
for (s = rose_list; s != NULL; s = s->next) {
if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0 && s->state == TCP_LISTEN) {
restore_flags(flags);
return s;
}
}
restore_flags(flags);
return NULL;
}
/*
* Find a connected ROSE socket given my LCI and device.
*/
struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
{
struct sock *s;
unsigned long flags;
save_flags(flags); cli();
for (s = rose_list; s != NULL; s = s->next) {
if (s->protinfo.rose->lci == lci && s->protinfo.rose->neighbour == neigh) {
restore_flags(flags);
return s;
}
}
restore_flags(flags);
return NULL;
}
/*
* Find a unique LCI for a given device.
*/
unsigned int rose_new_lci(struct rose_neigh *neigh)
{
int lci;
if (neigh->dce_mode) {
for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
return lci;
} else {
for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
return lci;
}
return 0;
}
/*
* Deferred destroy.
*/
void rose_destroy_socket(struct sock *);
/*
* Handler for deferred kills.
*/
static void rose_destroy_timer(unsigned long data)
{
rose_destroy_socket((struct sock *)data);
}
/*
* This is called from user mode and the timers. Thus it protects itself against
* interrupt users but doesn't worry about being called during work.
* Once it is removed from the queue no interrupt or bottom half will
* touch it and we are (fairly 8-) ) safe.
*/
void rose_destroy_socket(struct sock *sk) /* Not static as it's used by the timer */
{
struct sk_buff *skb;
unsigned long flags;
save_flags(flags); cli();
rose_stop_heartbeat(sk);
rose_stop_idletimer(sk);
rose_stop_timer(sk);
rose_remove_socket(sk);
rose_clear_queues(sk); /* Flush the queues */
while ((skb = skb_dequeue(&sk->receive_queue)) != NULL) {
if (skb->sk != sk) { /* A pending connection */
skb->sk->dead = 1; /* Queue the unaccepted socket for death */
rose_start_heartbeat(skb->sk);
skb->sk->protinfo.rose->state = ROSE_STATE_0;
}
kfree_skb(skb);
}
if (atomic_read(&sk->wmem_alloc) != 0 || atomic_read(&sk->rmem_alloc) != 0) {
/* Defer: outstanding buffers */
init_timer(&sk->timer);
sk->timer.expires = jiffies + 10 * HZ;
sk->timer.function = rose_destroy_timer;
sk->timer.data = (unsigned long)sk;
add_timer(&sk->timer);
} else {
rose_free_sock(sk);
}
restore_flags(flags);
}
/*
* Handling for system calls applied via the various interfaces to a
* ROSE socket object.
*/
static int rose_setsockopt(struct socket *sock, int level, int optname,
char *optval, int optlen)
{
struct sock *sk = sock->sk;
int opt;
if (level != SOL_ROSE)
return -ENOPROTOOPT;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(opt, (int *)optval))
return -EFAULT;
switch (optname) {
case ROSE_DEFER:
sk->protinfo.rose->defer = opt ? 1 : 0;
return 0;
case ROSE_T1:
if (opt < 1)
return -EINVAL;
sk->protinfo.rose->t1 = opt * HZ;
return 0;
case ROSE_T2:
if (opt < 1)
return -EINVAL;
sk->protinfo.rose->t2 = opt * HZ;
return 0;
case ROSE_T3:
if (opt < 1)
return -EINVAL;
sk->protinfo.rose->t3 = opt * HZ;
return 0;
case ROSE_HOLDBACK:
if (opt < 1)
return -EINVAL;
sk->protinfo.rose->hb = opt * HZ;
return 0;
case ROSE_IDLE:
if (opt < 0)
return -EINVAL;
sk->protinfo.rose->idle = opt * 60 * HZ;
return 0;
case ROSE_QBITINCL:
sk->protinfo.rose->qbitincl = opt ? 1 : 0;
return 0;
default:
return -ENOPROTOOPT;
}
}
static int rose_getsockopt(struct socket *sock, int level, int optname,
char *optval, int *optlen)
{
struct sock *sk = sock->sk;
int val = 0;
int len;
if (level != SOL_ROSE)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
switch (optname) {
case ROSE_DEFER:
val = sk->protinfo.rose->defer;
break;
case ROSE_T1:
val = sk->protinfo.rose->t1 / HZ;
break;
case ROSE_T2:
val = sk->protinfo.rose->t2 / HZ;
break;
case ROSE_T3:
val = sk->protinfo.rose->t3 / HZ;
break;
case ROSE_HOLDBACK:
val = sk->protinfo.rose->hb / HZ;
break;
case ROSE_IDLE:
val = sk->protinfo.rose->idle / (60 * HZ);
break;
case ROSE_QBITINCL:
val = sk->protinfo.rose->qbitincl;
break;
default:
return -ENOPROTOOPT;
}
len = min(len, sizeof(int));
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int rose_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
if (sk->state != TCP_LISTEN) {
sk->protinfo.rose->dest_ndigis = 0;
memset(&sk->protinfo.rose->dest_addr, '\0', ROSE_ADDR_LEN);
memset(&sk->protinfo.rose->dest_call, '\0', AX25_ADDR_LEN);
memset(sk->protinfo.rose->dest_digis, '\0', AX25_ADDR_LEN*ROSE_MAX_DIGIS);
sk->max_ack_backlog = backlog;
sk->state = TCP_LISTEN;
return 0;
}
return -EOPNOTSUPP;
}
static int rose_create(struct socket *sock, int protocol)
{
struct sock *sk;
rose_cb *rose;
if (sock->type != SOCK_SEQPACKET || protocol != 0)
return -ESOCKTNOSUPPORT;
if ((sk = rose_alloc_sock()) == NULL)
return -ENOMEM;
rose = sk->protinfo.rose;
sock_init_data(sock, sk);
skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
skb_queue_head_init(&rose->frag_queue);
rose->fraglen = 0;
#endif
sock->ops = &rose_proto_ops;
sk->protocol = protocol;
init_timer(&rose->timer);
init_timer(&rose->idletimer);
rose->t1 = sysctl_rose_call_request_timeout;
rose->t2 = sysctl_rose_reset_request_timeout;
rose->t3 = sysctl_rose_clear_request_timeout;
rose->hb = sysctl_rose_ack_hold_back_timeout;
rose->idle = sysctl_rose_no_activity_timeout;
rose->state = ROSE_STATE_0;
return 0;
}
static struct sock *rose_make_new(struct sock *osk)
{
struct sock *sk;
rose_cb *rose;
if (osk->type != SOCK_SEQPACKET)
return NULL;
if ((sk = rose_alloc_sock()) == NULL)
return NULL;
rose = sk->protinfo.rose;
sock_init_data(NULL, sk);
skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
skb_queue_head_init(&rose->frag_queue);
rose->fraglen = 0;
#endif
sk->type = osk->type;
sk->socket = osk->socket;
sk->priority = osk->priority;
sk->protocol = osk->protocol;
sk->rcvbuf = osk->rcvbuf;
sk->sndbuf = osk->sndbuf;
sk->debug = osk->debug;
sk->state = TCP_ESTABLISHED;
sk->sleep = osk->sleep;
sk->zapped = osk->zapped;
init_timer(&rose->timer);
init_timer(&rose->idletimer);
rose->t1 = osk->protinfo.rose->t1;
rose->t2 = osk->protinfo.rose->t2;
rose->t3 = osk->protinfo.rose->t3;
rose->hb = osk->protinfo.rose->hb;
rose->idle = osk->protinfo.rose->idle;
rose->defer = osk->protinfo.rose->defer;
rose->device = osk->protinfo.rose->device;
rose->qbitincl = osk->protinfo.rose->qbitincl;
return sk;
}
static int rose_release(struct socket *sock, struct socket *peer)
{
struct sock *sk = sock->sk;
if (sk == NULL) return 0;
switch (sk->protinfo.rose->state) {
case ROSE_STATE_0:
rose_disconnect(sk, 0, -1, -1);
rose_destroy_socket(sk);
break;
case ROSE_STATE_2:
sk->protinfo.rose->neighbour->use--;
rose_disconnect(sk, 0, -1, -1);
rose_destroy_socket(sk);
break;
case ROSE_STATE_1:
case ROSE_STATE_3:
case ROSE_STATE_4:
case ROSE_STATE_5:
rose_clear_queues(sk);
rose_stop_idletimer(sk);
rose_write_internal(sk, ROSE_CLEAR_REQUEST);
rose_start_t3timer(sk);
sk->protinfo.rose->state = ROSE_STATE_2;
sk->state = TCP_CLOSE;
sk->shutdown |= SEND_SHUTDOWN;
sk->state_change(sk);
sk->dead = 1;
sk->destroy = 1;
break;
default:
break;
}
sock->sk = NULL;
sk->socket = NULL; /* Not used, but we should do this. **/
return 0;
}
static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sock *sk = sock->sk;
struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
struct device *dev;
ax25_address *user, *source;
int n;
if (sk->zapped == 0)
return -EINVAL;
if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
return -EINVAL;
if (addr->srose_family != AF_ROSE)
return -EINVAL;
if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
return -EINVAL;
if (addr->srose_ndigis > ROSE_MAX_DIGIS)
return -EINVAL;
if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
return -EADDRNOTAVAIL;
}
source = &addr->srose_call;
if ((user = ax25_findbyuid(current->euid)) == NULL) {
if (ax25_uid_policy && !suser())
return -EACCES;
user = source;
}
sk->protinfo.rose->source_addr = addr->srose_addr;
sk->protinfo.rose->source_call = *user;
sk->protinfo.rose->device = dev;
sk->protinfo.rose->source_ndigis = addr->srose_ndigis;
if (addr_len == sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < addr->srose_ndigis ; n++)
sk->protinfo.rose->source_digis[n] = full_addr->srose_digis[n];
} else {
if (sk->protinfo.rose->source_ndigis == 1) {
sk->protinfo.rose->source_digis[0] = addr->srose_digi;
}
}
rose_insert_socket(sk);
sk->zapped = 0;
SOCK_DEBUG(sk, "ROSE: socket is bound\n");
return 0;
}
static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
{
struct sock *sk = sock->sk;
struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
unsigned char cause, diagnostic;
ax25_address *user;
struct device *dev;
int n;
if (sk->state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
sock->state = SS_CONNECTED;
return 0; /* Connect completed during a ERESTARTSYS event */
}
if (sk->state == TCP_CLOSE && sock->state == SS_CONNECTING) {
sock->state = SS_UNCONNECTED;
return -ECONNREFUSED;
}
if (sk->state == TCP_ESTABLISHED)
return -EISCONN; /* No reconnect on a seqpacket socket */
sk->state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
return -EINVAL;
if (addr->srose_family != AF_ROSE)
return -EINVAL;
if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
return -EINVAL;
if (addr->srose_ndigis > ROSE_MAX_DIGIS)
return -EINVAL;
/* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
if ((sk->protinfo.rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
return -EINVAL;
if ((sk->protinfo.rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic)) == NULL)
return -ENETUNREACH;
if ((sk->protinfo.rose->lci = rose_new_lci(sk->protinfo.rose->neighbour)) == 0)
return -ENETUNREACH;
if (sk->zapped) { /* Must bind first - autobinding in this may or may not work */
sk->zapped = 0;
if ((dev = rose_dev_first()) == NULL)
return -ENETUNREACH;
if ((user = ax25_findbyuid(current->euid)) == NULL)
return -EINVAL;
memcpy(&sk->protinfo.rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
sk->protinfo.rose->source_call = *user;
sk->protinfo.rose->device = dev;
rose_insert_socket(sk); /* Finish the bind */
}
sk->protinfo.rose->dest_addr = addr->srose_addr;
sk->protinfo.rose->dest_call = addr->srose_call;
sk->protinfo.rose->rand = ((int)sk->protinfo.rose & 0xFFFF) + sk->protinfo.rose->lci;
sk->protinfo.rose->dest_ndigis = addr->srose_ndigis;
if (addr_len == sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < addr->srose_ndigis ; n++)
sk->protinfo.rose->dest_digis[n] = full_addr->srose_digis[n];
} else {
if (sk->protinfo.rose->dest_ndigis == 1) {
sk->protinfo.rose->dest_digis[0] = addr->srose_digi;
}
}
/* Move to connecting socket, start sending Connect Requests */
sock->state = SS_CONNECTING;
sk->state = TCP_SYN_SENT;
sk->protinfo.rose->state = ROSE_STATE_1;
sk->protinfo.rose->neighbour->use++;
rose_write_internal(sk, ROSE_CALL_REQUEST);
rose_start_heartbeat(sk);
rose_start_t1timer(sk);
/* Now the loop */
if (sk->state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
return -EINPROGRESS;
cli(); /* To avoid races on the sleep */
/*
* A Connect Ack with Choke or timeout or failed routing will go to closed.
*/
while (sk->state == TCP_SYN_SENT) {
interruptible_sleep_on(sk->sleep);
if (signal_pending(current)) {
sti();
return -ERESTARTSYS;
}
}
if (sk->state != TCP_ESTABLISHED) {
sti();
sock->state = SS_UNCONNECTED;
return sock_error(sk); /* Always set at this point */
}
sock->state = SS_CONNECTED;
sti();
return 0;
}
static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
{
struct sock *sk;
struct sock *newsk;
struct sk_buff *skb;
if (newsock->sk != NULL)
rose_destroy_socket(newsock->sk);
newsock->sk = NULL;
if ((sk = sock->sk) == NULL)
return -EINVAL;
if (sk->type != SOCK_SEQPACKET)
return -EOPNOTSUPP;
if (sk->state != TCP_LISTEN)
return -EINVAL;
/*
* The write queue this time is holding sockets ready to use
* hooked into the SABM we saved
*/
do {
cli();
if ((skb = skb_dequeue(&sk->receive_queue)) == NULL) {
if (flags & O_NONBLOCK) {
sti();
return -EWOULDBLOCK;
}
interruptible_sleep_on(sk->sleep);
if (signal_pending(current)) {
sti();
return -ERESTARTSYS;
}
}
} while (skb == NULL);
newsk = skb->sk;
newsk->pair = NULL;
newsk->socket = newsock;
newsk->sleep = &newsock->wait;
sti();
/* Now attach up the new socket */
skb->sk = NULL;
kfree_skb(skb);
sk->ack_backlog--;
newsock->sk = newsk;
return 0;
}
static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct sockaddr_rose *srose = (struct sockaddr_rose *)uaddr;
struct sock *sk = sock->sk;
int n;
if (peer != 0) {
if (sk->state != TCP_ESTABLISHED)
return -ENOTCONN;
srose->srose_family = AF_ROSE;
srose->srose_ndigis = 0;
srose->srose_addr = sk->protinfo.rose->dest_addr;
srose->srose_call = sk->protinfo.rose->dest_call;
srose->srose_ndigis = sk->protinfo.rose->dest_ndigis;
if (*uaddr_len >= sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
full_srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n];
*uaddr_len = sizeof(struct full_sockaddr_rose);
} else {
if (sk->protinfo.rose->dest_ndigis >= 1) {
srose->srose_ndigis = 1;
srose->srose_digi = sk->protinfo.rose->dest_digis[0];
}
*uaddr_len = sizeof(struct sockaddr_rose);
}
} else {
srose->srose_family = AF_ROSE;
srose->srose_ndigis = 0;
srose->srose_addr = sk->protinfo.rose->source_addr;
srose->srose_call = sk->protinfo.rose->source_call;
srose->srose_ndigis = sk->protinfo.rose->source_ndigis;
if (*uaddr_len >= sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)uaddr;
for (n = 0 ; n < sk->protinfo.rose->source_ndigis ; n++)
full_srose->srose_digis[n] = sk->protinfo.rose->source_digis[n];
*uaddr_len = sizeof(struct full_sockaddr_rose);
} else {
if (sk->protinfo.rose->source_ndigis >= 1) {
srose->srose_ndigis = 1;
srose->srose_digi = sk->protinfo.rose->source_digis[sk->protinfo.rose->source_ndigis-1];
}
*uaddr_len = sizeof(struct sockaddr_rose);
}
}
return 0;
}
int rose_rx_call_request(struct sk_buff *skb, struct device *dev, struct rose_neigh *neigh, unsigned int lci)
{
struct sock *sk;
struct sock *make;
struct rose_facilities_struct facilities;
int n, len;
skb->sk = NULL; /* Initially we don't know who it's for */
/*
* skb->data points to the rose frame start
*/
memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
len = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
return 0;
}
sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
/*
* We can't accept the Call Request.
*/
if (sk == NULL || sk->ack_backlog == sk->max_ack_backlog || (make = rose_make_new(sk)) == NULL) {
rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
return 0;
}
skb->sk = make;
make->state = TCP_ESTABLISHED;
make->protinfo.rose->lci = lci;
make->protinfo.rose->dest_addr = facilities.dest_addr;
make->protinfo.rose->dest_call = facilities.dest_call;
make->protinfo.rose->dest_ndigis = facilities.dest_ndigis;
for (n = 0 ; n < facilities.dest_ndigis ; n++)
make->protinfo.rose->dest_digis[n] = facilities.dest_digis[n];
make->protinfo.rose->source_addr = facilities.source_addr;
make->protinfo.rose->source_call = facilities.source_call;
make->protinfo.rose->source_ndigis = facilities.source_ndigis;
for (n = 0 ; n < facilities.source_ndigis ; n++)
make->protinfo.rose->source_digis[n]= facilities.source_digis[n];
make->protinfo.rose->neighbour = neigh;
make->protinfo.rose->device = dev;
make->protinfo.rose->facilities = facilities;
make->protinfo.rose->neighbour->use++;
if (sk->protinfo.rose->defer) {
make->protinfo.rose->state = ROSE_STATE_5;
} else {
rose_write_internal(make, ROSE_CALL_ACCEPTED);
make->protinfo.rose->state = ROSE_STATE_3;
rose_start_idletimer(make);
}
make->protinfo.rose->condition = 0x00;
make->protinfo.rose->vs = 0;
make->protinfo.rose->va = 0;
make->protinfo.rose->vr = 0;
make->protinfo.rose->vl = 0;
sk->ack_backlog++;
make->pair = sk;
rose_insert_socket(make);
skb_queue_head(&sk->receive_queue, skb);
rose_start_heartbeat(make);
if (!sk->dead)
sk->data_ready(sk, skb->len);
return 1;
}
static int rose_sendmsg(struct socket *sock, struct msghdr *msg, int len,
struct scm_cookie *scm)
{
struct sock *sk = sock->sk;
struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
int err;
struct full_sockaddr_rose srose;
struct sk_buff *skb;
unsigned char *asmptr;
int n, size, qbit = 0;
if (msg->msg_flags & ~MSG_DONTWAIT)
return -EINVAL;
if (sk->zapped)
return -EADDRNOTAVAIL;
if (sk->shutdown & SEND_SHUTDOWN) {
send_sig(SIGPIPE, current, 0);
return -EPIPE;
}
if (sk->protinfo.rose->neighbour == NULL || sk->protinfo.rose->device == NULL)
return -ENETUNREACH;
if (usrose != NULL) {
if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
return -EINVAL;
memset(&srose, 0, sizeof(struct full_sockaddr_rose));
memcpy(&srose, usrose, msg->msg_namelen);
if (rosecmp(&sk->protinfo.rose->dest_addr, &srose.srose_addr) != 0 ||
ax25cmp(&sk->protinfo.rose->dest_call, &srose.srose_call) != 0)
return -EISCONN;
if (srose.srose_ndigis != sk->protinfo.rose->dest_ndigis)
return -EISCONN;
if (srose.srose_ndigis == sk->protinfo.rose->dest_ndigis) {
for (n = 0 ; n < srose.srose_ndigis ; n++)
if (ax25cmp(&sk->protinfo.rose->dest_digis[n], &srose.srose_digis[n]) != 0)
return -EISCONN;
}
if (srose.srose_family != AF_ROSE)
return -EINVAL;
} else {
if (sk->state != TCP_ESTABLISHED)
return -ENOTCONN;
srose.srose_family = AF_ROSE;
srose.srose_addr = sk->protinfo.rose->dest_addr;
srose.srose_call = sk->protinfo.rose->dest_call;
srose.srose_ndigis = sk->protinfo.rose->dest_ndigis;
for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
srose.srose_digis[n] = sk->protinfo.rose->dest_digis[n];
}
SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");
/* Build a packet */
SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
if ((skb = sock_alloc_send_skb(sk, size, 0, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
return err;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
/*
* Put the data on the end
*/
SOCK_DEBUG(sk, "ROSE: Appending user data\n");
asmptr = skb->h.raw = skb_put(skb, len);
memcpy_fromiovec(asmptr, msg->msg_iov, len);
/*
* If the Q BIT Include socket option is in force, the first
* byte of the user data is the logical value of the Q Bit.
*/
if (sk->protinfo.rose->qbitincl) {
qbit = skb->data[0];
skb_pull(skb, 1);
}
/*
* Push down the ROSE header
*/
asmptr = skb_push(skb, ROSE_MIN_LEN);
SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");
/* Build a ROSE Network header */
asmptr[0] = ((sk->protinfo.rose->lci >> 8) & 0x0F) | ROSE_GFI;
asmptr[1] = (sk->protinfo.rose->lci >> 0) & 0xFF;
asmptr[2] = ROSE_DATA;
if (qbit)
asmptr[0] |= ROSE_Q_BIT;
SOCK_DEBUG(sk, "ROSE: Built header.\n");
SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");
if (sk->state != TCP_ESTABLISHED) {
kfree_skb(skb);
return -ENOTCONN;
}
#ifdef M_BIT
#define ROSE_PACLEN (256-ROSE_MIN_LEN)
if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
unsigned char header[ROSE_MIN_LEN];
struct sk_buff *skbn;
int frontlen;
int lg;
/* Save a copy of the Header */
memcpy(header, skb->data, ROSE_MIN_LEN);
skb_pull(skb, ROSE_MIN_LEN);
frontlen = skb_headroom(skb);
while (skb->len > 0) {
if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, 0, &err)) == NULL)
return err;
skbn->sk = sk;
skbn->free = 1;
skbn->arp = 1;
skb_reserve(skbn, frontlen);
lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
/* Copy the user data */
memcpy(skb_put(skbn, lg), skb->data, lg);
skb_pull(skb, lg);
/* Duplicate the Header */
skb_push(skbn, ROSE_MIN_LEN);
memcpy(skbn->data, header, ROSE_MIN_LEN);
if (skb->len > 0)
skbn->data[2] |= M_BIT;
skb_queue_tail(&sk->write_queue, skbn); /* Throw it on the queue */
}
skb->free = 1;
kfree_skb(skb, FREE_WRITE);
} else {
skb_queue_tail(&sk->write_queue, skb); /* Throw it on the queue */
}
#else
skb_queue_tail(&sk->write_queue, skb); /* Shove it onto the queue */
#endif
rose_kick(sk);
return len;
}
static int rose_recvmsg(struct socket *sock, struct msghdr *msg, int size,
int flags, struct scm_cookie *scm)
{
struct sock *sk = sock->sk;
struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
int copied, qbit;
unsigned char *asmptr;
struct sk_buff *skb;
int n, er;
/*
* This works for seqpacket too. The receiver has ordered the queue for
* us! We do one quick check first though
*/
if (sk->state != TCP_ESTABLISHED)
return -ENOTCONN;
/* Now we can treat all alike */
if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
return er;
qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
skb_pull(skb, ROSE_MIN_LEN);
if (sk->protinfo.rose->qbitincl) {
asmptr = skb_push(skb, 1);
*asmptr = qbit;
}
skb->h.raw = skb->data;
copied = skb->len;
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
if (srose != NULL) {
srose->srose_family = AF_ROSE;
srose->srose_addr = sk->protinfo.rose->dest_addr;
srose->srose_call = sk->protinfo.rose->dest_call;
srose->srose_ndigis = sk->protinfo.rose->dest_ndigis;
if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
full_srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n];
msg->msg_namelen = sizeof(struct full_sockaddr_rose);
} else {
if (sk->protinfo.rose->dest_ndigis >= 1) {
srose->srose_ndigis = 1;
srose->srose_digi = sk->protinfo.rose->dest_digis[0];
}
msg->msg_namelen = sizeof(struct sockaddr_rose);
}
}
skb_free_datagram(sk, skb);
return copied;
}
static int rose_shutdown(struct socket *sk, int how)
{
return -EOPNOTSUPP;
}
static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
switch (cmd) {
case TIOCOUTQ: {
long amount;
amount = sk->sndbuf - atomic_read(&sk->wmem_alloc);
if (amount < 0)
amount = 0;
if (put_user(amount, (unsigned int *)arg))
return -EFAULT;
return 0;
}
case TIOCINQ: {
struct sk_buff *skb;
long amount = 0L;
/* These two are safe on a single CPU system as only user tasks fiddle here */
if ((skb = skb_peek(&sk->receive_queue)) != NULL)
amount = skb->len;
if (put_user(amount, (unsigned int *)arg))
return -EFAULT;
return 0;
}
case SIOCGSTAMP:
if (sk != NULL) {
if (sk->stamp.tv_sec == 0)
return -ENOENT;
if (copy_to_user((void *)arg, &sk->stamp, sizeof(struct timeval)))
return -EFAULT;
return 0;
}
return -EINVAL;
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
return -EINVAL;
case SIOCADDRT:
case SIOCDELRT:
case SIOCRSCLRRT:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
return rose_rt_ioctl(cmd, (void *)arg);
case SIOCRSGCAUSE: {
struct rose_cause_struct rose_cause;
rose_cause.cause = sk->protinfo.rose->cause;
rose_cause.diagnostic = sk->protinfo.rose->diagnostic;
if (copy_to_user((void *)arg, &rose_cause, sizeof(struct rose_cause_struct)))
return -EFAULT;
return 0;
}
case SIOCRSSCAUSE: {
struct rose_cause_struct rose_cause;
if (copy_from_user(&rose_cause, (void *)arg, sizeof(struct rose_cause_struct)))
return -EFAULT;
sk->protinfo.rose->cause = rose_cause.cause;
sk->protinfo.rose->diagnostic = rose_cause.diagnostic;
return 0;
}
case SIOCRSSL2CALL:
if (!suser()) return -EPERM;
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
ax25_listen_release(&rose_callsign, NULL);
if (copy_from_user(&rose_callsign, (void *)arg, sizeof(ax25_address)))
return -EFAULT;
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
ax25_listen_register(&rose_callsign, NULL);
return 0;
case SIOCRSGL2CALL:
if (copy_to_user((void *)arg, &rose_callsign, sizeof(ax25_address)))
return -EFAULT;
return 0;
case SIOCRSACCEPT:
if (sk->protinfo.rose->state == ROSE_STATE_5) {
rose_write_internal(sk, ROSE_CALL_ACCEPTED);
rose_start_idletimer(sk);
sk->protinfo.rose->condition = 0x00;
sk->protinfo.rose->vs = 0;
sk->protinfo.rose->va = 0;
sk->protinfo.rose->vr = 0;
sk->protinfo.rose->vl = 0;
sk->protinfo.rose->state = ROSE_STATE_3;
}
return 0;
default:
return dev_ioctl(cmd, (void *)arg);
}
/*NOTREACHED*/
return 0;
}
static int rose_get_info(char *buffer, char **start, off_t offset, int length, int dummy)
{
struct sock *s;
struct device *dev;
const char *devname, *callsign;
int len = 0;
off_t pos = 0;
off_t begin = 0;
cli();
len += sprintf(buffer, "dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n");
for (s = rose_list; s != NULL; s = s->next) {
if ((dev = s->protinfo.rose->device) == NULL)
devname = "???";
else
devname = dev->name;
len += sprintf(buffer + len, "%-10s %-9s ",
rose2asc(&s->protinfo.rose->dest_addr),
ax2asc(&s->protinfo.rose->dest_call));
if (ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0)
callsign = "??????-?";
else
callsign = ax2asc(&s->protinfo.rose->source_call);
len += sprintf(buffer + len, "%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
rose2asc(&s->protinfo.rose->source_addr),
callsign,
devname,
s->protinfo.rose->lci & 0x0FFF,
(s->protinfo.rose->neighbour) ? s->protinfo.rose->neighbour->number : 0,
s->protinfo.rose->state,
s->protinfo.rose->vs,
s->protinfo.rose->vr,
s->protinfo.rose->va,
ax25_display_timer(&s->protinfo.rose->timer) / HZ,
s->protinfo.rose->t1 / HZ,
s->protinfo.rose->t2 / HZ,
s->protinfo.rose->t3 / HZ,
s->protinfo.rose->hb / HZ,
ax25_display_timer(&s->protinfo.rose->idletimer) / (60 * HZ),
s->protinfo.rose->idle / (60 * HZ),
atomic_read(&s->wmem_alloc),
atomic_read(&s->rmem_alloc),
s->socket != NULL ? s->socket->inode->i_ino : 0L);
pos = begin + len;
if (pos < offset) {
len = 0;
begin = pos;
}
if (pos > offset + length)
break;
}
sti();
*start = buffer + (offset - begin);
len -= (offset - begin);
if (len > length) len = length;
return(len);
}
static struct net_proto_family rose_family_ops = {
PF_ROSE,
rose_create
};
static struct proto_ops rose_proto_ops = {
PF_ROSE,
sock_no_dup,
rose_release,
rose_bind,
rose_connect,
sock_no_socketpair,
rose_accept,
rose_getname,
datagram_poll,
rose_ioctl,
rose_listen,
rose_shutdown,
rose_setsockopt,
rose_getsockopt,
sock_no_fcntl,
rose_sendmsg,
rose_recvmsg
};
static struct notifier_block rose_dev_notifier = {
rose_device_event,
0
};
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry proc_net_rose = {
PROC_NET_RS, 4, "rose",
S_IFREG | S_IRUGO, 1, 0, 0,
0, &proc_net_inode_operations,
rose_get_info
};
static struct proc_dir_entry proc_net_rose_neigh = {
PROC_NET_RS_NEIGH, 10, "rose_neigh",
S_IFREG | S_IRUGO, 1, 0, 0,
0, &proc_net_inode_operations,
rose_neigh_get_info
};
static struct proc_dir_entry proc_net_rose_nodes = {
PROC_NET_RS_NODES, 10, "rose_nodes",
S_IFREG | S_IRUGO, 1, 0, 0,
0, &proc_net_inode_operations,
rose_nodes_get_info
};
static struct proc_dir_entry proc_net_rose_routes = {
PROC_NET_RS_ROUTES, 11, "rose_routes",
S_IFREG | S_IRUGO, 1, 0, 0,
0, &proc_net_inode_operations,
rose_routes_get_info
};
#endif
static struct device *dev_rose;
__initfunc(void rose_proto_init(struct net_proto *pro))
{
int i;
rose_callsign = null_ax25_address;
if ((dev_rose = kmalloc(rose_ndevs * sizeof(struct device), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
return;
}
memset(dev_rose, 0x00, rose_ndevs * sizeof(struct device));
for (i = 0; i < rose_ndevs; i++) {
dev_rose[i].name = kmalloc(20, GFP_KERNEL);
sprintf(dev_rose[i].name, "rose%d", i);
dev_rose[i].init = rose_init;
register_netdev(&dev_rose[i]);
}
sock_register(&rose_family_ops);
register_netdevice_notifier(&rose_dev_notifier);
printk(KERN_INFO "F6FBB/G4KLX ROSE for Linux. Version 0.62 for AX25.037 Linux 2.1\n");
ax25_protocol_register(AX25_P_ROSE, rose_route_frame);
ax25_linkfail_register(rose_link_failed);
#ifdef CONFIG_SYSCTL
rose_register_sysctl();
#endif
rose_loopback_init();
rose_add_loopback_neigh();
#ifdef CONFIG_PROC_FS
proc_net_register(&proc_net_rose);
proc_net_register(&proc_net_rose_neigh);
proc_net_register(&proc_net_rose_nodes);
proc_net_register(&proc_net_rose_routes);
#endif
}
#ifdef MODULE
EXPORT_NO_SYMBOLS;
MODULE_PARM(rose_ndevs, "i");
MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
int init_module(void)
{
rose_proto_init(NULL);
return 0;
}
void cleanup_module(void)
{
int i;
#ifdef CONFIG_PROC_FS
proc_net_unregister(PROC_NET_RS);
proc_net_unregister(PROC_NET_RS_NEIGH);
proc_net_unregister(PROC_NET_RS_NODES);
proc_net_unregister(PROC_NET_RS_ROUTES);
#endif
rose_loopback_clear();
rose_rt_free();
ax25_protocol_release(AX25_P_ROSE);
ax25_linkfail_release(rose_link_failed);
if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
ax25_listen_release(&rose_callsign, NULL);
#ifdef CONFIG_SYSCTL
rose_unregister_sysctl();
#endif
unregister_netdevice_notifier(&rose_dev_notifier);
sock_unregister(PF_ROSE);
for (i = 0; i < rose_ndevs; i++) {
if (dev_rose[i].priv != NULL) {
kfree(dev_rose[i].priv);
dev_rose[i].priv = NULL;
unregister_netdev(&dev_rose[i]);
}
kfree(dev_rose[i].name);
}
kfree(dev_rose);
}
#endif
#endif