Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | /* * linux/arch/alpha/kernel/sys_sable.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996 Jay A Estabrook * Copyright (C) 1998 Richard Henderson * * Code supporting the Sable and Sable-Gamma systems. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <asm/ptrace.h> #include <asm/system.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/mmu_context.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/core_t2.h> #include "proto.h" #include "irq.h" #include "bios32.h" #include "machvec.h" /* * For SABLE, which is really baroque, we manage 40 IRQ's, but the * hardware really only supports 24, not via normal ISA PIC, * but cascaded custom 8259's, etc. * 0-7 (char at 536) * 8-15 (char at 53a) * 16-23 (char at 53c) */ /* Note that the vector reported by the SRM PALcode corresponds to the interrupt mask bits, but we have to manage via more normal IRQs. */ static struct { char irq_to_mask[40]; char mask_to_irq[40]; unsigned long shadow_mask; } sable_irq_swizzle = { { -1, 6, -1, 8, 15, 12, 7, 9, /* pseudo PIC 0-7 */ -1, 16, 17, 18, 3, -1, 21, 22, /* pseudo PIC 8-15 */ -1, -1, -1, -1, -1, -1, -1, -1, /* pseudo EISA 0-7 */ -1, -1, -1, -1, -1, -1, -1, -1, /* pseudo EISA 8-15 */ 2, 1, 0, 4, 5, -1, -1, -1, /* pseudo PCI */ }, { 34, 33, 32, 12, 35, 36, 1, 6, /* mask 0-7 */ 3, 7, -1, -1, 5, -1, -1, 4, /* mask 8-15 */ 9, 10, 11, -1, -1, 14, 15, -1, /* mask 16-23 */ }, 0 }; static void sable_update_irq_hw(unsigned long irq, unsigned long unused_mask, int unmask_p) { unsigned long bit, mask; /* The "irq" argument is really the irq, but we need it to be the mask bit number. Convert it now. */ irq = sable_irq_swizzle.irq_to_mask[irq]; bit = 1UL << irq; mask = sable_irq_swizzle.shadow_mask | bit; if (unmask_p) mask &= ~bit; sable_irq_swizzle.shadow_mask = mask; /* The "irq" argument is now really the mask bit number. */ if (irq <= 7) outb(mask, 0x537); else if (irq <= 15) outb(mask >> 8, 0x53b); else outb(mask >> 16, 0x53d); } static void sable_ack_irq(unsigned long irq) { /* Note that the "irq" here is really the mask bit number */ switch (irq) { case 0 ... 7: outb(0xE0 | (irq - 0), 0x536); outb(0xE0 | 1, 0x534); /* slave 0 */ break; case 8 ... 15: outb(0xE0 | (irq - 8), 0x53a); outb(0xE0 | 3, 0x534); /* slave 1 */ break; case 16 ... 24: outb(0xE0 | (irq - 16), 0x53c); outb(0xE0 | 4, 0x534); /* slave 2 */ break; } } static void sable_srm_device_interrupt(unsigned long vector, struct pt_regs * regs) { /* Note that the vector reported by the SRM PALcode corresponds to the interrupt mask bits, but we have to manage via more normal IRQs. */ int irq, ack; ack = irq = (vector - 0x800) >> 4; irq = sable_irq_swizzle.mask_to_irq[(ack)]; #if 0 if (irq == 5 || irq == 9 || irq == 10 || irq == 11 || irq == 14 || irq == 15) printk("srm_device_interrupt: vector=0x%lx ack=0x%x" " irq=0x%x\n", vector, ack, irq); #endif handle_irq(irq, ack, regs); } static void __init sable_init_irq(void) { STANDARD_INIT_IRQ_PROLOG; outb(alpha_irq_mask , 0x537); /* slave 0 */ outb(alpha_irq_mask >> 8, 0x53b); /* slave 1 */ outb(alpha_irq_mask >> 16, 0x53d); /* slave 2 */ outb(0x44, 0x535); /* enable cascades in master */ } /* * PCI Fixup configuration for ALPHA SABLE (2100) - 2100A is different ?? * * Summary Registers (536/53a/53c): * Bit Meaning *----------------- * 0 PCI slot 0 * 1 NCR810 (builtin) * 2 TULIP (builtin) * 3 mouse * 4 PCI slot 1 * 5 PCI slot 2 * 6 keyboard * 7 floppy * 8 COM2 * 9 parallel port *10 EISA irq 3 *11 EISA irq 4 *12 EISA irq 5 *13 EISA irq 6 *14 EISA irq 7 *15 COM1 *16 EISA irq 9 *17 EISA irq 10 *18 EISA irq 11 *19 EISA irq 12 *20 EISA irq 13 *21 EISA irq 14 *22 NC *23 IIC * * The device to slot mapping looks like: * * Slot Device * 0 TULIP * 1 SCSI * 2 PCI-EISA bridge * 3 none * 4 none * 5 none * 6 PCI on board slot 0 * 7 PCI on board slot 1 * 8 PCI on board slot 2 * * * This two layered interrupt approach means that we allocate IRQ 16 and * above for PCI interrupts. The IRQ relates to which bit the interrupt * comes in on. This makes interrupt processing much easier. */ /* * NOTE: the IRQ assignments below are arbitrary, but need to be consistent * with the values in the irq swizzling tables above. */ static int __init sable_map_irq(struct pci_dev *dev, int slot, int pin) { static char irq_tab[9][5] __initlocaldata = { /*INT INTA INTB INTC INTD */ { 32+0, 32+0, 32+0, 32+0, 32+0}, /* IdSel 0, TULIP */ { 32+1, 32+1, 32+1, 32+1, 32+1}, /* IdSel 1, SCSI */ { -1, -1, -1, -1, -1}, /* IdSel 2, SIO */ { -1, -1, -1, -1, -1}, /* IdSel 3, none */ { -1, -1, -1, -1, -1}, /* IdSel 4, none */ { -1, -1, -1, -1, -1}, /* IdSel 5, none */ { 32+2, 32+2, 32+2, 32+2, 32+2}, /* IdSel 6, slot 0 */ { 32+3, 32+3, 32+3, 32+3, 32+3}, /* IdSel 7, slot 1 */ { 32+4, 32+4, 32+4, 32+4, 32+4}, /* IdSel 8, slot 2 */ }; const long min_idsel = 0, max_idsel = 8, irqs_per_slot = 5; return COMMON_TABLE_LOOKUP; } void __init sable_pci_fixup(void) { layout_all_busses(EISA_DEFAULT_IO_BASE, DEFAULT_MEM_BASE); common_pci_fixup(sable_map_irq, common_swizzle); } /* * The System Vectors * * In order that T2_HAE_ADDRESS should be a constant, we play * these games with GAMMA_BIAS. */ #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_GAMMA) #undef GAMMA_BIAS #define GAMMA_BIAS 0 struct alpha_machine_vector sable_mv __initmv = { vector_name: "Sable", DO_EV4_MMU, DO_DEFAULT_RTC, DO_T2_IO, DO_T2_BUS, machine_check: t2_machine_check, max_dma_address: ALPHA_MAX_DMA_ADDRESS, nr_irqs: 40, irq_probe_mask: _PROBE_MASK(40), update_irq_hw: sable_update_irq_hw, ack_irq: sable_ack_irq, device_interrupt: sable_srm_device_interrupt, init_arch: t2_init_arch, init_irq: sable_init_irq, init_pit: generic_init_pit, pci_fixup: sable_pci_fixup, kill_arch: generic_kill_arch, sys: { t2: { gamma_bias: 0 } } }; ALIAS_MV(sable) #endif #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_GAMMA) #undef GAMMA_BIAS #define GAMMA_BIAS _GAMMA_BIAS struct alpha_machine_vector sable_gamma_mv __initmv = { vector_name: "Sable-Gamma", DO_EV5_MMU, DO_DEFAULT_RTC, DO_T2_IO, DO_T2_BUS, machine_check: t2_machine_check, max_dma_address: ALPHA_MAX_DMA_ADDRESS, nr_irqs: 40, irq_probe_mask: _PROBE_MASK(40), update_irq_hw: sable_update_irq_hw, ack_irq: sable_ack_irq, device_interrupt: sable_srm_device_interrupt, init_arch: t2_init_arch, init_irq: sable_init_irq, init_pit: generic_init_pit, pci_fixup: sable_pci_fixup, kill_arch: generic_kill_arch, sys: { t2: { gamma_bias: _GAMMA_BIAS } } }; ALIAS_MV(sable_gamma) #endif |