Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/* $Id: bitops.h,v 1.4 1999/12/04 03:59:12 ralf Exp $
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (c) 1994 - 1999  Ralf Baechle (ralf@gnu.org)
 * Copyright (c) 1999  Silicon Graphics, Inc.
 */
#ifndef _ASM_BITOPS_H
#define _ASM_BITOPS_H

#include <linux/types.h>
#include <linux/byteorder/swab.h>		/* sigh ... */

#ifndef __KERNEL__
#error "Don't do this, sucker ..."
#endif

#include <asm/system.h>
#include <asm/sgidefs.h>
#include <asm/mipsregs.h>

/*
 * These functions for MIPS ISA > 1 are interrupt and SMP proof and
 * interrupt friendly
 */

extern __inline__ void
set_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tlld\t%0, %1\t\t# set_bit\n\t"
		"or\t%0, %2\n\t"
		"scd\t%0, %1\n\t"
		"beqz\t%0, 1b"
		:"=&r" (temp), "=m" (*m)
		:"ir" (1UL << (nr & 0x3f)), "m" (*m));
}

extern __inline__ void
clear_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tlld\t%0, %1\t\t# clear_bit\n\t"
		"and\t%0, %2\n\t"
		"scd\t%0, %1\n\t"
		"beqz\t%0, 1b\n\t"
		:"=&r" (temp), "=m" (*m)
		:"ir" (~(1UL << (nr & 0x3f))), "m" (*m));
}

extern __inline__ void
change_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tlld\t%0, %1\t\t# change_bit\n\t"
		"xor\t%0, %2\n\t"
		"scd\t%0, %1\n\t"
		"beqz\t%0, 1b"
		:"=&r" (temp), "=m" (*m)
		:"ir" (1UL << (nr & 0x3f)), "m" (*m));
}

extern __inline__ unsigned long
test_and_set_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_set_bit\n"
		"1:\tlld\t%0, %1\n\t"
		"or\t%2, %0, %3\n\t"
		"scd\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		:"=&r" (temp), "=m" (*m), "=&r" (res)
		:"r" (1UL << (nr & 0x3f)), "m" (*m));

	return res != 0;
}

extern __inline__ unsigned long
test_and_clear_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_clear_bit\n"
		"1:\tlld\t%0, %1\n\t"
		"or\t%2, %0, %3\n\t"
		"xor\t%2, %3\n\t"
		"scd\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		:"=&r" (temp), "=m" (*m), "=&r" (res)
		:"r" (1UL << (nr & 0x3f)), "m" (*m));

	return res != 0;
}

extern __inline__ unsigned long
test_and_change_bit(unsigned long nr, void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_change_bit\n"
		"1:\tlld\t%0, %1\n\t"
		"xor\t%2, %0, %3\n\t"
		"scd\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		:"=&r" (temp), "=m" (*m), "=&r" (res)
		:"r" (1UL << (nr & 0x3f)), "m" (*m));

	return res != 0;
}

extern __inline__ unsigned long
test_bit(int nr, volatile void * addr)
{
	return 1UL & (((const long *) addr)[nr >> 6] >> (nr & 0x3f));
}

#ifndef __MIPSEB__

/* Little endian versions. */

extern __inline__ int
find_first_zero_bit (void *addr, unsigned size)
{
	unsigned long dummy;
	int res;

	if (!size)
		return 0;

	__asm__ (".set\tnoreorder\n\t"
		".set\tnoat\n"
		"1:\tsubu\t$1,%6,%0\n\t"
		"blez\t$1,2f\n\t"
		"lw\t$1,(%5)\n\t"
		"addiu\t%5,4\n\t"
#if (_MIPS_ISA == _MIPS_ISA_MIPS2) || (_MIPS_ISA == _MIPS_ISA_MIPS3) || \
    (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5)
		"beql\t%1,$1,1b\n\t"
		"addiu\t%0,32\n\t"
#else
		"addiu\t%0,32\n\t"
		"beq\t%1,$1,1b\n\t"
		"nop\n\t"
		"subu\t%0,32\n\t"
#endif
#ifdef __MIPSEB__
#error "Fix this for big endian"
#endif /* __MIPSEB__ */
		"li\t%1,1\n"
		"1:\tand\t%2,$1,%1\n\t"
		"beqz\t%2,2f\n\t"
		"sll\t%1,%1,1\n\t"
		"bnez\t%1,1b\n\t"
		"add\t%0,%0,1\n\t"
		".set\tat\n\t"
		".set\treorder\n"
		"2:"
		: "=r" (res),
		  "=r" (dummy),
		  "=r" (addr)
		: "0" ((signed int) 0),
		  "1" ((unsigned int) 0xffffffff),
		  "2" (addr),
		  "r" (size)
		: "$1");

	return res;
}

extern __inline__ int
find_next_zero_bit (void * addr, int size, int offset)
{
	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
	int set = 0, bit = offset & 31, res;
	unsigned long dummy;
	
	if (bit) {
		/*
		 * Look for zero in first byte
		 */
#ifdef __MIPSEB__
#error "Fix this for big endian byte order"
#endif
		__asm__(".set\tnoreorder\n\t"
			".set\tnoat\n"
			"1:\tand\t$1,%4,%1\n\t"
			"beqz\t$1,1f\n\t"
			"sll\t%1,%1,1\n\t"
			"bnez\t%1,1b\n\t"
			"addiu\t%0,1\n\t"
			".set\tat\n\t"
			".set\treorder\n"
			"1:"
			: "=r" (set),
			  "=r" (dummy)
			: "0" (0),
			  "1" (1 << bit),
			  "r" (*p)
			: "$1");
		if (set < (32 - bit))
			return set + offset;
		set = 32 - bit;
		p++;
	}
	/*
	 * No zero yet, search remaining full bytes for a zero
	 */
	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
	return offset + set + res;
}

#endif /* !(__MIPSEB__) */

/*
 * ffz = Find First Zero in word. Undefined if no zero exists,
 * so code should check against ~0UL first..
 */
extern __inline__ unsigned long ffz(unsigned long word)
{
	unsigned long k;

	word = ~word;
	k = 63;
	if (word & 0x00000000ffffffffUL) { k -= 32; word <<= 32; }
	if (word & 0x0000ffff00000000UL) { k -= 16; word <<= 16; }
	if (word & 0x00ff000000000000UL) { k -= 8;  word <<= 8;  }
	if (word & 0x0f00000000000000UL) { k -= 4;  word <<= 4;  }
	if (word & 0x3000000000000000UL) { k -= 2;  word <<= 2;  }
	if (word & 0x4000000000000000UL) { k -= 1; }

	return k;
}

#ifdef __KERNEL__

/*
 * ffs: find first bit set. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */

#define ffs(x) generic_ffs(x)

/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */

#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x)  generic_hweight8(x)

#endif /* __KERNEL__ */

#ifdef __MIPSEB__

/*
 * find_next_zero_bit() finds the first zero bit in a bit string of length
 * 'size' bits, starting the search at bit 'offset'. This is largely based
 * on Linus's ALPHA routines, which are pretty portable BTW.
 */

extern __inline__ unsigned long
find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
	unsigned long result = offset & ~63UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 63UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (64-offset);
		if (size < 64)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 64;
		result += 64;
	}
	while (size & ~63UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 64;
		size -= 64;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

#endif /* (__MIPSEB__) */

#ifdef __KERNEL__

/* Now for the ext2 filesystem bit operations and helper routines. */

#ifdef __MIPSEB__

extern inline int
ext2_set_bit(int nr,void * addr)
{
	int		mask, retval, flags;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	save_and_cli(flags);
	retval = (mask & *ADDR) != 0;
	*ADDR |= mask;
	restore_flags(flags);
	return retval;
}

extern inline int
ext2_clear_bit(int nr, void * addr)
{
	int		mask, retval, flags;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	save_and_cli(flags);
	retval = (mask & *ADDR) != 0;
	*ADDR &= ~mask;
	restore_flags(flags);
	return retval;
}

extern inline int
ext2_test_bit(int nr, const void * addr)
{
	int			mask;
	const unsigned char	*ADDR = (const unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	return ((mask & *ADDR) != 0);
}

#define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

extern inline unsigned long
ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		/* We hold the little endian value in tmp, but then the
		 * shift is illegal. So we could keep a big endian value
		 * in tmp, like this:
		 *
		 * tmp = __swab32(*(p++));
		 * tmp |= ~0UL >> (32-offset);
		 *
		 * but this would decrease preformance, so we change the
		 * shift:
		 */
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	/* tmp is little endian, so we would have to swab the shift,
	 * see above. But then we have to swab tmp below for ffz, so
	 * we might as well do this here.
	 */
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}
#else /* !(__MIPSEB__) */

/* Native ext2 byte ordering, just collapse using defines. */
#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
#define ext2_find_next_zero_bit(addr, size, offset) \
                find_next_zero_bit((addr), (size), (offset))
 
#endif /* !(__MIPSEB__) */

/*
 * Bitmap functions for the minix filesystem.
 * FIXME: These assume that Minix uses the native byte/bitorder.
 * This limits the Minix filesystem's value for data exchange very much.
 */
#define minix_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif /* __KERNEL__ */

#endif /* _ASM_BITOPS_H */