Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | #define _FP_DECL(wc, X) \ _FP_I_TYPE X##_c, X##_s, X##_e; \ _FP_FRAC_DECL_##wc(X) /* * Finish truely unpacking a native fp value by classifying the kind * of fp value and normalizing both the exponent and the fraction. */ #define _FP_UNPACK_CANONICAL(fs, wc, X) \ do { \ switch (X##_e) \ { \ default: \ _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \ _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ X##_e -= _FP_EXPBIAS_##fs; \ X##_c = FP_CLS_NORMAL; \ break; \ \ case 0: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_ZERO; \ else \ { \ /* a denormalized number */ \ _FP_I_TYPE _shift; \ _FP_FRAC_CLZ_##wc(_shift, X); \ _shift -= _FP_FRACXBITS_##fs; \ _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ X##_c = FP_CLS_NORMAL; \ } \ break; \ \ case _FP_EXPMAX_##fs: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_INF; \ else \ /* we don't differentiate between signaling and quiet nans */ \ X##_c = FP_CLS_NAN; \ break; \ } \ } while (0) /* * Before packing the bits back into the native fp result, take care * of such mundane things as rounding and overflow. Also, for some * kinds of fp values, the original parts may not have been fully * extracted -- but that is ok, we can regenerate them now. */ #define _FP_PACK_CANONICAL(fs, wc, X) \ ({int __ret = 0; \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ X##_e += _FP_EXPBIAS_##fs; \ if (X##_e > 0) \ { \ __ret |= _FP_ROUND(wc, X); \ if (_FP_FRAC_OVERP_##wc(fs, X)) \ { \ _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \ X##_e++; \ } \ else \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ if (X##_e >= _FP_EXPMAX_##fs) \ { \ /* overflow to infinity */ \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ __ret |= EFLAG_OVERFLOW; \ } \ } \ else \ { \ /* we've got a denormalized number */ \ X##_e = -X##_e + 1; \ if (X##_e <= _FP_WFRACBITS_##fs) \ { \ _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ __ret |= _FP_ROUND(wc, X); \ _FP_FRAC_SLL_##wc(X, 1); \ if (_FP_FRAC_OVERP_##wc(fs, X)) \ { \ X##_e = 1; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ } \ else \ { \ X##_e = 0; \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \ __ret |= EFLAG_UNDERFLOW; \ } \ } \ else \ { \ /* underflow to zero */ \ X##_e = 0; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ __ret |= EFLAG_UNDERFLOW; \ } \ } \ break; \ \ case FP_CLS_ZERO: \ X##_e = 0; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_INF: \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_NAN: \ X##_e = _FP_EXPMAX_##fs; \ if (!_FP_KEEPNANFRACP) \ { \ _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ X##_s = 0; \ } \ else \ _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \ break; \ } \ __ret; \ }) /* * Main addition routine. The input values should be cooked. */ #define _FP_ADD(fs, wc, R, X, Y) \ do { \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ { \ /* shift the smaller number so that its exponent matches the larger */ \ _FP_I_TYPE diff = X##_e - Y##_e; \ \ if (diff < 0) \ { \ diff = -diff; \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(X)) \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ else \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ R##_e = Y##_e; \ } \ else \ { \ if (diff > 0) \ { \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(Y)) \ _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ else \ _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \ } \ R##_e = X##_e; \ } \ \ R##_c = FP_CLS_NORMAL; \ \ if (X##_s == Y##_s) \ { \ R##_s = X##_s; \ _FP_FRAC_ADD_##wc(R, X, Y); \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ { \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ R##_e++; \ } \ } \ else \ { \ R##_s = X##_s; \ _FP_FRAC_SUB_##wc(R, X, Y); \ if (_FP_FRAC_ZEROP_##wc(R)) \ { \ /* return an exact zero */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s |= Y##_s; \ else \ R##_s &= Y##_s; \ R##_c = FP_CLS_ZERO; \ } \ else \ { \ if (_FP_FRAC_NEGP_##wc(R)) \ { \ _FP_FRAC_SUB_##wc(R, Y, X); \ R##_s = Y##_s; \ } \ \ /* renormalize after subtraction */ \ _FP_FRAC_CLZ_##wc(diff, R); \ diff -= _FP_WFRACXBITS_##fs; \ if (diff) \ { \ R##_e -= diff; \ _FP_FRAC_SLL_##wc(R, diff); \ } \ } \ } \ break; \ } \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ R##_e = X##_e; \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_s = X##_s; \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_e = Y##_e; \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_s = Y##_s; \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ if (X##_s != Y##_s) \ { \ /* +INF + -INF => NAN */ \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ R##_s = X##_s ^ Y##_s; \ R##_c = FP_CLS_NAN; \ break; \ } \ /* FALLTHRU */ \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ R##_s = X##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ R##_s = Y##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ /* make sure the sign is correct */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s = X##_s | Y##_s; \ else \ R##_s = X##_s & Y##_s; \ R##_c = FP_CLS_ZERO; \ break; \ \ default: \ abort(); \ } \ } while (0) /* * Main negation routine. FIXME -- when we care about setting exception * bits reliably, this will not do. We should examine all of the fp classes. */ #define _FP_NEG(fs, wc, R, X) \ do { \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ R##_e = X##_e; \ R##_s = 1 ^ X##_s; \ } while (0) /* * Main multiplication routine. The input values should be cooked. */ #define _FP_MUL(fs, wc, R, X, Y) \ do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e + Y##_e + 1; \ \ _FP_MUL_MEAT_##fs(R,X,Y); \ \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ else \ R##_e--; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ break; \ \ default: \ abort(); \ } \ } while (0) /* * Main division routine. The input values should be cooked. */ #define _FP_DIV(fs, wc, R, X, Y) \ do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e - Y##_e; \ \ _FP_DIV_MEAT_##fs(R,X,Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_c = FP_CLS_ZERO; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ break; \ \ default: \ abort(); \ } \ } while (0) /* * Main differential comparison routine. The inputs should be raw not * cooked. The return is -1,0,1 for normal values, 2 otherwise. */ #define _FP_CMP(fs, wc, ret, X, Y, un) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = un; \ } \ else \ { \ int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ \ if (__x_zero && __y_zero) \ ret = 0; \ else if (__x_zero) \ ret = Y##_s ? 1 : -1; \ else if (__y_zero) \ ret = X##_s ? -1 : 1; \ else if (X##_s != Y##_s) \ ret = X##_s ? -1 : 1; \ else if (X##_e > Y##_e) \ ret = X##_s ? -1 : 1; \ else if (X##_e < Y##_e) \ ret = X##_s ? 1 : -1; \ else if (_FP_FRAC_GT_##wc(X, Y)) \ ret = X##_s ? -1 : 1; \ else if (_FP_FRAC_GT_##wc(Y, X)) \ ret = X##_s ? 1 : -1; \ else \ ret = 0; \ } \ } while (0) /* Simplification for strict equality. */ #define _FP_CMP_EQ(fs, wc, ret, X, Y) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = 1; \ } \ else \ { \ ret = !(X##_e == Y##_e \ && _FP_FRAC_EQ_##wc(X, Y) \ && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ } \ } while (0) /* * Main square root routine. The input value should be cooked. */ #define _FP_SQRT(fs, wc, R, X) \ do { \ _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ _FP_W_TYPE q; \ switch (X##_c) \ { \ case FP_CLS_NAN: \ R##_s = 0; \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ case FP_CLS_INF: \ if (X##_s) \ { \ R##_s = 0; \ R##_c = FP_CLS_NAN; /* sNAN */ \ } \ else \ { \ R##_s = 0; \ R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ } \ break; \ case FP_CLS_ZERO: \ R##_s = X##_s; \ R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ break; \ case FP_CLS_NORMAL: \ R##_s = 0; \ if (X##_s) \ { \ R##_c = FP_CLS_NAN; /* sNAN */ \ break; \ } \ R##_c = FP_CLS_NORMAL; \ if (X##_e & 1) \ _FP_FRAC_SLL_##wc(X, 1); \ R##_e = X##_e >> 1; \ _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ q = _FP_OVERFLOW_##fs; \ _FP_FRAC_SLL_##wc(X, 1); \ _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ _FP_FRAC_SRL_##wc(R, 1); \ } \ } while (0) /* * Convert from FP to integer */ /* "When a NaN, infinity, large positive argument >= 2147483648.0, or * large negative argument <= -2147483649.0 is converted to an integer, * the invalid_current bit...should be set and fp_exception_IEEE_754 should * be raised. If the floating point invalid trap is disabled, no trap occurs * and a numerical result is generated: if the sign bit of the operand * is 0, the result is 2147483647; if the sign bit of the operand is 1, * the result is -2147483648." * Similarly for conversion to extended ints, except that the boundaries * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and * -2^63 for s=1. * -- SPARC Architecture Manual V9, Appendix B, which specifies how * SPARCs resolve implementation dependencies in the IEEE-754 spec. * I don't believe that the code below follows this. I'm not even sure * it's right! * It doesn't cope with needing to convert to an n bit integer when there * is no n bit integer type. Fortunately gcc provides long long so this * isn't a problem for sparc32. * I have, however, fixed its NaN handling to conform as above. * -- PMM 02/1998 * NB: rsigned is not 'is r declared signed?' but 'should the value stored * in r be signed or unsigned?'. r is always(?) declared unsigned. * Comments below are mine, BTW -- PMM */ #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ do { \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ if (X##_e < 0) \ { \ /* case FP_CLS_NAN: see above! */ \ case FP_CLS_ZERO: \ r = 0; \ } \ else if (X##_e >= rsize - (rsigned != 0)) \ { /* overflow */ \ case FP_CLS_NAN: \ case FP_CLS_INF: \ if (rsigned) \ { \ r = 1; \ r <<= rsize - 1; \ r -= 1 - X##_s; \ } \ else \ { \ r = 0; \ if (!X##_s) \ r = ~r; \ } \ } \ else \ { \ if (_FP_W_TYPE_SIZE*wc < rsize) \ { \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ r <<= X##_e - _FP_WFRACBITS_##fs; \ } \ else \ { \ if (X##_e >= _FP_WFRACBITS_##fs) \ _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ else \ _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ if (rsigned && X##_s) \ r = -r; \ } \ break; \ } \ } while (0) #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ do { \ if (r) \ { \ X##_c = FP_CLS_NORMAL; \ \ if ((X##_s = (r < 0))) \ r = -r; \ /* Note that `r' is now considered unsigned, so we don't have \ to worry about the single signed overflow case. */ \ \ if (rsize <= _FP_W_TYPE_SIZE) \ __FP_CLZ(X##_e, r); \ else \ __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \ (_FP_W_TYPE)r); \ if (rsize < _FP_W_TYPE_SIZE) \ X##_e -= (_FP_W_TYPE_SIZE - rsize); \ X##_e = rsize - X##_e - 1; \ \ if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \ __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \ r &= ~((_FP_W_TYPE)1 << X##_e); \ _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \ _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ } \ else \ { \ X##_c = FP_CLS_ZERO, X##_s = 0; \ } \ } while (0) #define FP_CONV(dfs,sfs,dwc,swc,D,S) \ do { \ _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ D##_e = S##_e; \ D##_c = S##_c; \ D##_s = S##_s; \ } while (0) /* * Helper primitives. */ /* Count leading zeros in a word. */ #ifndef __FP_CLZ #if _FP_W_TYPE_SIZE < 64 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ #define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0) #else /* not _FP_W_TYPE_SIZE < 64 */ #define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffffffff) r -= 32; \ if (_t > 0xffffffff) _t >>= 32; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0) #endif /* not _FP_W_TYPE_SIZE < 64 */ #endif /* ndef __FP_CLZ */ #define _FP_DIV_HELP_imm(q, r, n, d) \ do { \ q = n / d, r = n % d; \ } while (0) |