Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*
 *	linux/arch/alpha/kernel/sys_nautilus.c
 *
 *	Copyright (C) 1995 David A Rusling
 *	Copyright (C) 1998 Richard Henderson
 *	Copyright (C) 1999 Alpha Processor, Inc.,
 *		(David Daniel, Stig Telfer, Soohoon Lee)
 *
 * Code supporting NAUTILUS systems.
 *
 *
 * NAUTILUS has the following I/O features:
 *
 * a) Driven by AMD 751 aka IRONGATE (northbridge):
 *     4 PCI slots
 *     1 AGP slot
 *
 * b) Driven by ALI M1543C (southbridge)
 *     2 ISA slots
 *     2 IDE connectors
 *     1 dual drive capable FDD controller
 *     2 serial ports
 *     1 ECP/EPP/SP parallel port
 *     2 USB ports
 */

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/reboot.h>

#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#include <asm/pci.h>
#include <asm/pgtable.h>
#include <asm/core_irongate.h>
#include <asm/hwrpb.h>

#include "proto.h"
#include <asm/hw_irq.h>
#include "pci_impl.h"
#include "machvec_impl.h"

#define dev2hose(d) (bus2hose[(d)->bus->number]->pci_hose_index)

static void
nautilus_update_irq_hw(unsigned long irq, unsigned long mask, int unmask_p)
{
	/* The timer is connected to PIC interrupt line also on Nautilus.
	   The timer interrupt handler enables the PIC line, so in order
	   not to get multiple timer interrupt sources, we mask it out
	   at all times.  */

	mask |= 0x100;
	if (irq >= 8)
		outb(mask >> 8, 0xA1);
	else
		outb(mask, 0x21);
}

static void __init
nautilus_init_irq(void)
{
	STANDARD_INIT_IRQ_PROLOG;

	enable_irq(2);			/* enable cascade */
	disable_irq(8);
}

static int __init
nautilus_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
	/* Preserve the IRQ set up by the console.  */

	u8 irq;
	pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq);
	return irq;
}

void
nautilus_kill_arch(int mode)
{
	switch (mode) {
	case LINUX_REBOOT_CMD_RESTART:
		{
			u8 t8;
			pcibios_read_config_byte(0, 0x38, 0x43, &t8);
			pcibios_write_config_byte(0, 0x38, 0x43, t8 | 0x80);
			outb(1, 0x92);
			outb(0, 0x92);
			/* NOTREACHED */
		}
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
		{
			u32 pmuport;
			pcibios_read_config_dword(0, 0x88, 0x10, &pmuport);
			pmuport &= 0xfffe;
			outl(0xffff, pmuport); /* clear pending events */
			outw(0x2000, pmuport+4); /* power off */
			/* NOTREACHED */
		}
		break;
	}
}

/* Machine check handler code
 *
 * Perform analysis of a machine check that was triggered by the EV6
 * CPU's fault-detection mechanism.
 */

/* IPR structures for EV6, containing the necessary data for the
 * machine check handler to unpick the logout frame
 */

/* I_STAT */

#define EV6__I_STAT__PAR                ( 1 << 29 )

/* MM_STAT */

#define EV6__MM_STAT__DC_TAG_PERR       ( 1 << 10 )

/* DC_STAT */

#define EV6__DC_STAT__SEO               ( 1 << 4 )
#define EV6__DC_STAT__ECC_ERR_LD        ( 1 << 3 )
#define EV6__DC_STAT__ECC_ERR_ST        ( 1 << 2 )
#define EV6__DC_STAT__TPERR_P1          ( 1 << 1 )
#define EV6__DC_STAT__TPERR_P0          ( 1      )

/* C_STAT */

#define EV6__C_STAT__BC_PERR            ( 0x01 )
#define EV6__C_STAT__DC_PERR            ( 0x02 )
#define EV6__C_STAT__DSTREAM_MEM_ERR    ( 0x03 )
#define EV6__C_STAT__DSTREAM_BC_ERR     ( 0x04 )
#define EV6__C_STAT__DSTREAM_DC_ERR     ( 0x05 )
#define EV6__C_STAT__PROBE_BC_ERR0      ( 0x06 )
#define EV6__C_STAT__PROBE_BC_ERR1      ( 0x07 )
#define EV6__C_STAT__ISTREAM_MEM_ERR    ( 0x0B )
#define EV6__C_STAT__ISTREAM_BC_ERR     ( 0x0C )
#define EV6__C_STAT__DSTREAM_MEM_DBL    ( 0x13 )
#define EV6__C_STAT__DSTREAM_BC_DBL     ( 0x14 )
#define EV6__C_STAT__ISTREAM_MEM_DBL    ( 0x1B )
#define EV6__C_STAT__ISTREAM_BC_DBL     ( 0x1C )


/* Take the two syndromes from the CBOX error chain and convert them
 * into a bit number.  */

/* NOTE - since I don't know of any difference between C0 and C1 I
   just ignore C1, since in all cases I've seen so far they are
   identical.  */

static const unsigned char ev6_bit_to_syndrome[72] =
{
	0xce, 0xcb, 0xd3, 0xd5, 0xd6, 0xd9, 0xda, 0xdc,     /* 0 */
	0x23, 0x25, 0x26, 0x29, 0x2a, 0x2c, 0x31, 0x34,     /* 8 */
	0x0e, 0x0b, 0x13, 0x15, 0x16, 0x19, 0x1a, 0x1c,     /* 16 */
	0xe3, 0xe5, 0xe6, 0xe9, 0xea, 0xec, 0xf1, 0xf4,     /* 24 */
	0x4f, 0x4a, 0x52, 0x54, 0x57, 0x58, 0x5b, 0x5d,     /* 32 */
	0xa2, 0xa4, 0xa7, 0xa8, 0xab, 0xad, 0xb0, 0xb5,     /* 40 */
	0x8f, 0x8a, 0x92, 0x94, 0x97, 0x98, 0x9b, 0x9d,     /* 48 */
	0x62, 0x64, 0x67, 0x68, 0x6b, 0x6d, 0x70, 0x75,     /* 56 */
	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80      /* 64 */
};


static int ev6_syn2bit(unsigned long c0, unsigned long c1)
{
	int bit;

	for (bit = 0; bit < 72; bit++)
		if (ev6_bit_to_syndrome[bit] == c0)	return bit;
	for (bit = 0; bit < 72; bit++)
		if (ev6_bit_to_syndrome[bit] == c1)	return bit + 64;

	return -1;                  /* not found */
}


/* Single bit ECC errors are categorized here.  */

#if 0
static const char *interr = "CPU internal error";
static const char *slotb= "Slot-B error";
static const char *membus= "Memory/EV6-bus error";
#else
static const char *interr = "";
static const char *slotb = "";
static const char *membus = "";
#endif

static void
ev6_crd_interp(char *interp, struct el_common_EV6_mcheck * L)
{
	/* Icache data or tag parity error.  */
	if (L->I_STAT & EV6__I_STAT__PAR) {
		sprintf(interp, "%s: I_STAT[PAR]\n "
			"Icache data or tag parity error", interr);
		return;
	}

	/* Dcache tag parity error (on issue) (DFAULT).  */
	if (L->MM_STAT & EV6__MM_STAT__DC_TAG_PERR) {
		sprintf(interp, "%s: MM_STAT[DC_TAG_PERR]\n "
			"Dcache tag parity error(on issue)", interr);
		return;
	}

	/* Errors relating to D-stream set non-zero DC_STAT.
	   Mask CRD bits.  */
	switch (L->DC_STAT & (EV6__DC_STAT__ECC_ERR_ST
			      | EV6__DC_STAT__ECC_ERR_LD)) {
	case EV6__DC_STAT__ECC_ERR_ST:
		/* Dcache single-bit ECC error on small store */
		sprintf(interp, "%s: DC_STAT[ECC_ERR_ST]\n "
			"Dcache single-bit ECC error on small store", interr);
		return;

	case EV6__DC_STAT__ECC_ERR_LD:
		switch (L->C_STAT) {
		case 0:
			/* Dcache single-bit error on speculative load */
			/* Bcache victim read on Dcache/Bcache miss */
			sprintf(interp, "%s: DC_STAT[ECC_ERR_LD] C_STAT=0\n "
				"Dcache single-bit ECC error on speculative load",
				slotb);
			return;

		case EV6__C_STAT__DSTREAM_DC_ERR:
			/* Dcache single bit error on load */
			sprintf(interp, "%s: DC_STAT[ECC_ERR_LD] C_STAT[DSTREAM_DC_ERR]\n"
				" Dcache single-bit ECC error on speculative load, bit %d",
				interr, ev6_syn2bit(L->DC0_SYNDROME, L->DC1_SYNDROME));
			return;

		case EV6__C_STAT__DSTREAM_BC_ERR:
			/* Bcache single-bit error on Dcache fill */
			sprintf(interp, "%s: DC_STAT[ECC_ERR_LD] C_STAT[DSTREAM_BC_ERR]\n"
				" Bcache single-bit error on Dcache fill, bit %d",
				slotb, ev6_syn2bit(L->DC0_SYNDROME, L->DC1_SYNDROME));
			return;

		case EV6__C_STAT__DSTREAM_MEM_ERR:
			/* Memory single-bit error on Dcache fill */
			sprintf(interp, "%s (to Dcache): DC_STAT[ECC_ERR_LD] "
				"C_STAT[DSTREAM_MEM_ERR]\n "
				"Memory single-bit error on Dcache fill, "
				"Address 0x%lX, bit %d",
				membus, L->C_ADDR, ev6_syn2bit(L->DC0_SYNDROME,
							       L->DC1_SYNDROME));
			return;
		}
	}

	/* I-stream, other misc errors go on C_STAT alone */
	switch (L->C_STAT) {
	case EV6__C_STAT__ISTREAM_BC_ERR:
		/* Bcache single-bit error on Icache fill (also MCHK) */
		sprintf(interp, "%s: C_STAT[ISTREAM_BC_ERR]\n "
			"Bcache single-bit error on Icache fill, bit %d",
			slotb, ev6_syn2bit(L->DC0_SYNDROME, L->DC1_SYNDROME));
		return;

	case EV6__C_STAT__ISTREAM_MEM_ERR:
		/* Memory single-bit error on Icache fill (also MCHK) */
		sprintf(interp, "%s : C_STATISTREAM_MEM_ERR]\n "
			"Memory single-bit error on Icache fill "
			"addr 0x%lX, bit %d",
			membus, L->C_ADDR, ev6_syn2bit(L->DC0_SYNDROME,
						       L->DC1_SYNDROME));
		return;

	case EV6__C_STAT__PROBE_BC_ERR0:
	case EV6__C_STAT__PROBE_BC_ERR1:
		/* Bcache single-bit error on a probe hit */
		sprintf(interp, "%s: C_STAT[PROBE_BC_ERR]\n "
			"Bcache single-bit error on a probe hit, "
			"addr 0x%lx, bit %d",
			slotb, L->C_ADDR, ev6_syn2bit(L->DC0_SYNDROME,
						      L->DC1_SYNDROME));
		return;
	}
}

static void
ev6_mchk_interp(char *interp, struct el_common_EV6_mcheck * L)
{
	/* Machine check errors described by DC_STAT */
	switch (L->DC_STAT) {
	case EV6__DC_STAT__TPERR_P0:
	case EV6__DC_STAT__TPERR_P1:
		/* Dcache tag parity error (on retry) */
		sprintf(interp, "%s: DC_STAT[TPERR_P0|TPERR_P1]\n "
			"Dcache tag parity error(on retry)", interr);
		return;

	case EV6__DC_STAT__SEO:
		/* Dcache second error on store */
		sprintf(interp, "%s: DC_STAT[SEO]\n "
			"Dcache second error during mcheck", interr);
		return;
	}

	/* Machine check errors described by C_STAT */
	switch (L->C_STAT) {
	case EV6__C_STAT__DC_PERR:
		/* Dcache duplicate tag parity error */
		sprintf(interp, "%s: C_STAT[DC_PERR]\n "
			"Dcache duplicate tag parity error at 0x%lX",
			interr, L->C_ADDR);
		return;

	case EV6__C_STAT__BC_PERR:
		/* Bcache tag parity error */
		sprintf(interp, "%s: C_STAT[BC_PERR]\n "
			"Bcache tag parity error at 0x%lX",
			slotb, L->C_ADDR);
		return;

	case EV6__C_STAT__ISTREAM_BC_ERR:
		/* Bcache single-bit error on Icache fill (also CRD) */
		sprintf(interp, "%s: C_STAT[ISTREAM_BC_ERR]\n "
			"Bcache single-bit error on Icache fill 0x%lX bit %d",
			slotb, L->C_ADDR,
			ev6_syn2bit(L->DC0_SYNDROME, L->DC1_SYNDROME));
		return;


	case EV6__C_STAT__ISTREAM_MEM_ERR:
		/* Memory single-bit error on Icache fill (also CRD) */
		sprintf(interp, "%s: C_STAT[ISTREAM_MEM_ERR]\n "
			"Memory single-bit error on Icache fill 0x%lX, bit %d",
			membus, L->C_ADDR,
			ev6_syn2bit(L->DC0_SYNDROME, L->DC1_SYNDROME));
		return;


	case EV6__C_STAT__ISTREAM_BC_DBL:
		/* Bcache double-bit error on Icache fill */
		sprintf(interp, "%s: C_STAT[ISTREAM_BC_DBL]\n "
			"Bcache double-bit error on Icache fill at 0x%lX",
			slotb, L->C_ADDR);
		return;
	case EV6__C_STAT__DSTREAM_BC_DBL:
		/* Bcache double-bit error on Dcache fill */
		sprintf(interp, "%s: C_STAT[DSTREAM_BC_DBL]\n "
			"Bcache double-bit error on Dcache fill at 0x%lX",
			slotb, L->C_ADDR);
		return;

	case EV6__C_STAT__ISTREAM_MEM_DBL:
		/* Memory double-bit error on Icache fill */
		sprintf(interp, "%s: C_STAT[ISTREAM_MEM_DBL]\n "
			"Memory double-bit error on Icache fill at 0x%lX",
			membus, L->C_ADDR);
		return;

	case EV6__C_STAT__DSTREAM_MEM_DBL:
		/* Memory double-bit error on Dcache fill */
		sprintf(interp, "%s: C_STAT[DSTREAM_MEM_DBL]\n "
			"Memory double-bit error on Dcache fill at 0x%lX",
			membus, L->C_ADDR);
		return;
	}
}

static void
ev6_cpu_machine_check(unsigned long vector, struct el_common_EV6_mcheck *L,
		      struct pt_regs *regs)
{
	char interp[80];

	/* This is verbose and looks intimidating.  Should it be printed for
	   corrected (CRD) machine checks? */

	printk(KERN_CRIT "PALcode logout frame:  "
	       "MCHK_Code       %d  "
	       "MCHK_Frame_Rev  %d\n"
	       "I_STAT  %016lx  "
	       "DC_STAT %016lx  "
	       "C_ADDR  %016lx\n"
	       "SYND1   %016lx  "
	       "SYND0   %016lx  "
	       "C_STAT  %016lx\n"
	       "C_STS   %016lx  "
	       "RES     %016lx  "
	       "EXC_ADDR%016lx\n"
	       "IER_CM  %016lx  "
	       "ISUM    %016lx  "
	       "MM_STAT %016lx\n"
	       "PALBASE %016lx  "
	       "I_CTL   %016lx  "
	       "PCTX    %016lx\n"
	       "CPU registers: "
	       "PC      %016lx  "
	       "Return  %016lx\n",
	       L->MCHK_Code, L->MCHK_Frame_Rev, L->I_STAT, L->DC_STAT,
	       L->C_ADDR, L->DC1_SYNDROME, L->DC0_SYNDROME, L->C_STAT,
	       L->C_STS, L->RESERVED0, L->EXC_ADDR, L->IER_CM, L->ISUM,
	       L->MM_STAT, L->PAL_BASE, L->I_CTL, L->PCTX,
	       regs->pc, regs->r26);

	/* Attempt an interpretation on the meanings of the fields above.  */
	sprintf(interp, "No interpretation available!" );
	if (vector == SCB_Q_PROCERR)
		ev6_crd_interp(interp, L);
	else if (vector == SCB_Q_PROCMCHK)
		ev6_mchk_interp(interp, L);

	printk(KERN_CRIT "interpretation: %s\n\n", interp);
}


/* Perform analysis of a machine check that arrived from the system (NMI) */

static void
naut_sys_machine_check(unsigned long vector, unsigned long la_ptr,
		       struct pt_regs *regs)
{
	printk("xtime %lx\n", CURRENT_TIME);
	printk("PC %lx RA %lx\n", regs->pc, regs->r26);
	irongate_pci_clr_err();
}

/* Machine checks can come from two sources - those on the CPU and those
   in the system.  They are analysed separately but all starts here.  */

void
nautilus_machine_check(unsigned long vector, unsigned long la_ptr,
		       struct pt_regs *regs)
{
	char *mchk_class;
	unsigned cpu_analysis=0, sys_analysis=0;

	/* Now for some analysis.  Machine checks fall into two classes --
	   those picked up by the system, and those picked up by the CPU.
	   Add to that the two levels of severity - correctable or not.  */

	if (vector == SCB_Q_SYSMCHK
	    && ((IRONGATE0->dramms & 0x300) == 0x300)) {
		unsigned long nmi_ctl;

		/* Clear ALI NMI */
		nmi_ctl = inb(0x61);
		nmi_ctl |= 0x0c;
		outb(nmi_ctl, 0x61);
		nmi_ctl &= ~0x0c;
		outb(nmi_ctl, 0x61);

		/* Write again clears error bits.  */
		IRONGATE0->stat_cmd = IRONGATE0->stat_cmd & ~0x100;
		mb();
		IRONGATE0->stat_cmd;

		/* Write again clears error bits.  */
		IRONGATE0->dramms = IRONGATE0->dramms;
		mb();
		IRONGATE0->dramms;

		draina();
		wrmces(0x7);
		mb();
		return;
	}

	switch (vector) {
	case SCB_Q_SYSERR:
		mchk_class = "Correctable System Machine Check (NMI)";
		sys_analysis = 1;
		break;
	case SCB_Q_SYSMCHK:
		mchk_class = "Fatal System Machine Check (NMI)";
		sys_analysis = 1;
		break;

	case SCB_Q_PROCERR:
		mchk_class = "Correctable Processor Machine Check";
		cpu_analysis = 1;
		break;
	case SCB_Q_PROCMCHK:
		mchk_class = "Fatal Processor Machine Check";
		cpu_analysis = 1;
		break;

	default:
		mchk_class = "Unknown vector!";
		break;
	}

	printk(KERN_CRIT "NAUTILUS Machine check 0x%lx [%s]\n",
	       vector, mchk_class);

	if (cpu_analysis)
		ev6_cpu_machine_check(vector,
				      (struct el_common_EV6_mcheck *)la_ptr,
				      regs);
	if (sys_analysis)
		naut_sys_machine_check(vector, la_ptr, regs);

	/* Tell the PALcode to clear the machine check */
	draina();
	wrmces(0x7);
	mb();
}



/*
 * The System Vectors
 */

struct alpha_machine_vector nautilus_mv __initmv = {
	vector_name:		"Nautilus",
	DO_EV6_MMU,
	DO_DEFAULT_RTC,
	DO_IRONGATE_IO,
	DO_IRONGATE_BUS,
	machine_check:		nautilus_machine_check,
	max_dma_address:	ALPHA_NAUTILUS_MAX_DMA_ADDRESS,
	min_io_address:		DEFAULT_IO_BASE,
	min_mem_address:	DEFAULT_MEM_BASE,

	nr_irqs:		16,
	irq_probe_mask:		(_PROBE_MASK(16) & ~0x101UL),
	update_irq_hw:		nautilus_update_irq_hw,
	ack_irq:		common_ack_irq,
	device_interrupt:	isa_device_interrupt,

	init_arch:		irongate_init_arch,
	init_irq:		nautilus_init_irq,
	init_pit:		common_init_pit,
	init_pci:		common_init_pci,
	kill_arch:		nautilus_kill_arch,
	pci_map_irq:		nautilus_map_irq,
	pci_swizzle:		common_swizzle,
};
ALIAS_MV(nautilus)