Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
 *  linux/arch/i386/traps.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * 'Traps.c' handles hardware traps and faults after we have saved some
 * state in 'asm.s'.
 */
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>

#ifdef CONFIG_MCA
#include <linux/mca.h>
#include <asm/processor.h>
#endif

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/atomic.h>
#include <asm/debugreg.h>
#include <asm/desc.h>

#include <asm/smp.h>
#include <asm/pgalloc.h>

#ifdef CONFIG_X86_VISWS_APIC
#include <asm/fixmap.h>
#include <asm/cobalt.h>
#include <asm/lithium.h>
#endif

#include <linux/irq.h>

asmlinkage int system_call(void);
asmlinkage void lcall7(void);
asmlinkage void lcall27(void);

struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
		{ 0, 0 }, { 0, 0 } };

/*
 * The IDT has to be page-aligned to simplify the Pentium
 * F0 0F bug workaround.. We have a special link segment
 * for this.
 */
struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };

extern int console_loglevel;

static inline void console_silent(void)
{
	console_loglevel = 0;
}

static inline void console_verbose(void)
{
	if (console_loglevel)
		console_loglevel = 15;
}

#define DO_ERROR(trapnr, signr, str, name, tsk) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
	tsk->thread.error_code = error_code; \
	tsk->thread.trap_no = trapnr; \
	die_if_no_fixup(str,regs,error_code); \
	force_sig(signr, tsk); \
}

#define DO_VM86_ERROR(trapnr, signr, str, name, tsk) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
	lock_kernel(); \
	if (regs->eflags & VM_MASK) { \
		if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr)) \
			goto out; \
		/* else fall through */ \
	} \
	tsk->thread.error_code = error_code; \
	tsk->thread.trap_no = trapnr; \
	force_sig(signr, tsk); \
	die_if_kernel(str,regs,error_code); \
out: \
	unlock_kernel(); \
}

void page_exception(void);

asmlinkage void divide_error(void);
asmlinkage void debug(void);
asmlinkage void nmi(void);
asmlinkage void int3(void);
asmlinkage void overflow(void);
asmlinkage void bounds(void);
asmlinkage void invalid_op(void);
asmlinkage void device_not_available(void);
asmlinkage void double_fault(void);
asmlinkage void coprocessor_segment_overrun(void);
asmlinkage void invalid_TSS(void);
asmlinkage void segment_not_present(void);
asmlinkage void stack_segment(void);
asmlinkage void general_protection(void);
asmlinkage void page_fault(void);
asmlinkage void coprocessor_error(void);
asmlinkage void reserved(void);
asmlinkage void alignment_check(void);
asmlinkage void spurious_interrupt_bug(void);

int kstack_depth_to_print = 24;

/*
 * These constants are for searching for possible module text
 * segments.  VMALLOC_OFFSET comes from mm/vmalloc.c; MODULE_RANGE is
 * a guess of how much space is likely to be vmalloced.
 */
#define VMALLOC_OFFSET (8*1024*1024)
#define MODULE_RANGE (8*1024*1024)

static void show_registers(struct pt_regs *regs)
{
	int i;
	int in_kernel = 1;
	unsigned long esp;
	unsigned short ss;
	unsigned long *stack, addr, module_start, module_end;

	esp = (unsigned long) (1+regs);
	ss = __KERNEL_DS;
	if (regs->xcs & 3) {
		in_kernel = 0;
		esp = regs->esp;
		ss = regs->xss & 0xffff;
	}
	printk("CPU:    %d\nEIP:    %04x:[<%08lx>]\nEFLAGS: %08lx\n",
		smp_processor_id(), 0xffff & regs->xcs, regs->eip, regs->eflags);
	printk("eax: %08lx   ebx: %08lx   ecx: %08lx   edx: %08lx\n",
		regs->eax, regs->ebx, regs->ecx, regs->edx);
	printk("esi: %08lx   edi: %08lx   ebp: %08lx   esp: %08lx\n",
		regs->esi, regs->edi, regs->ebp, esp);
	printk("ds: %04x   es: %04x   ss: %04x\n",
		regs->xds & 0xffff, regs->xes & 0xffff, ss);
	printk("Process %s (pid: %d, stackpage=%08lx)",
		current->comm, current->pid, 4096+(unsigned long)current);
	/*
	 * When in-kernel, we also print out the stack and code at the
	 * time of the fault..
	 */
	if (in_kernel) {
		printk("\nStack: ");
		stack = (unsigned long *) esp;
		for(i=0; i < kstack_depth_to_print; i++) {
			if (((long) stack & 4095) == 0)
				break;
			if (i && ((i % 8) == 0))
				printk("\n       ");
			printk("%08lx ", *stack++);
		}
		printk("\nCall Trace: ");
		stack = (unsigned long *) esp;
		i = 1;
		module_start = PAGE_OFFSET + (max_mapnr << PAGE_SHIFT);
		module_start = ((module_start + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1));
		module_end = module_start + MODULE_RANGE;
		while (((long) stack & 4095) != 0) {
			addr = *stack++;
			/*
			 * If the address is either in the text segment of the
			 * kernel, or in the region which contains vmalloc'ed
			 * memory, it *may* be the address of a calling
			 * routine; if so, print it so that someone tracing
			 * down the cause of the crash will be able to figure
			 * out the call path that was taken.
			 */
			if (((addr >= (unsigned long) &_stext) &&
			     (addr <= (unsigned long) &_etext)) ||
			    ((addr >= module_start) && (addr <= module_end))) {
				if (i && ((i % 8) == 0))
					printk("\n       ");
				printk("[<%08lx>] ", addr);
				i++;
			}
		}
		printk("\nCode: ");
		for(i=0;i<20;i++)
			printk("%02x ", ((unsigned char *)regs->eip)[i]);
	}
	printk("\n");
}	

spinlock_t die_lock = SPIN_LOCK_UNLOCKED;

void die(const char * str, struct pt_regs * regs, long err)
{
	console_verbose();
	spin_lock_irq(&die_lock);
	printk("%s: %04lx\n", str, err & 0xffff);
	show_registers(regs);

	spin_unlock_irq(&die_lock);
	do_exit(SIGSEGV);
}

static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
{
	if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs))
		die(str, regs, err);
}

static void die_if_no_fixup(const char * str, struct pt_regs * regs, long err)
{
	if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs))
	{
		unsigned long fixup;
		fixup = search_exception_table(regs->eip);
		if (fixup) {
			regs->eip = fixup;
			return;
		}
		die(str, regs, err);
	}
}

DO_VM86_ERROR( 0, SIGFPE,  "divide error", divide_error, current)
DO_VM86_ERROR( 3, SIGTRAP, "int3", int3, current)
DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow, current)
DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds, current)
DO_ERROR( 6, SIGILL,  "invalid operand", invalid_op, current)
DO_VM86_ERROR( 7, SIGSEGV, "device not available", device_not_available, current)
DO_ERROR( 8, SIGSEGV, "double fault", double_fault, current)
DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun, current)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS, current)
DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present, current)
DO_ERROR(12, SIGBUS,  "stack segment", stack_segment, current)
DO_ERROR(17, SIGSEGV, "alignment check", alignment_check, current)
DO_ERROR(18, SIGSEGV, "reserved", reserved, current)
/* I don't have documents for this but it does seem to cover the cache
   flush from user space exception some people get. */
DO_ERROR(19, SIGSEGV, "cache flush denied", cache_flush_denied, current)

asmlinkage void cache_flush_denied(struct pt_regs * regs, long error_code)
{
	if (regs->eflags & VM_MASK) {
		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
		return;
	}
	die_if_kernel("cache flush denied",regs,error_code);
	current->thread.error_code = error_code;
	current->thread.trap_no = 19;
	force_sig(SIGSEGV, current);
}

asmlinkage void do_general_protection(struct pt_regs * regs, long error_code)
{
	if (regs->eflags & VM_MASK)
		goto gp_in_vm86;

	if (!(regs->xcs & 3))
		goto gp_in_kernel;

	current->thread.error_code = error_code;
	current->thread.trap_no = 13;
	force_sig(SIGSEGV, current);
	return;

gp_in_vm86:
	lock_kernel();
	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
	unlock_kernel();
	return;

gp_in_kernel:
	{
		unsigned long fixup;
		fixup = search_exception_table(regs->eip);
		if (fixup) {
			regs->eip = fixup;
			return;
		}
		die("general protection fault", regs, error_code);
	}
}

static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
{
	printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
	printk("You probably have a hardware problem with your RAM chips\n");

	/* Clear and disable the memory parity error line. */
	reason = (reason & 0xf) | 4;
	outb(reason, 0x61);
}

static void io_check_error(unsigned char reason, struct pt_regs * regs)
{
	unsigned long i;

	printk("NMI: IOCK error (debug interrupt?)\n");
	show_registers(regs);

	/* Re-enable the IOCK line, wait for a few seconds */
	reason = (reason & 0xf) | 8;
	outb(reason, 0x61);
	i = 2000;
	while (--i) udelay(1000);
	reason &= ~8;
	outb(reason, 0x61);
}

static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
{
#ifdef CONFIG_MCA
	/* Might actually be able to figure out what the guilty party
	* is. */
	if( MCA_bus ) {
		mca_handle_nmi();
		return;
	}
#endif
	printk("Uhhuh. NMI received for unknown reason %02x.\n", reason);
	printk("Dazed and confused, but trying to continue\n");
	printk("Do you have a strange power saving mode enabled?\n");
}

atomic_t nmi_counter[NR_CPUS];

#if CONFIG_SMP

int nmi_watchdog = 1;

static int __init setup_nmi_watchdog(char *str)
{
        get_option(&str, &nmi_watchdog);
        return 1;
}

__setup("nmi_watchdog=", setup_nmi_watchdog);

extern spinlock_t console_lock;
static spinlock_t nmi_print_lock = SPIN_LOCK_UNLOCKED;

inline void nmi_watchdog_tick(struct pt_regs * regs)
{
	/*
	 * the best way to detect wether a CPU has a 'hard lockup' problem
	 * is to check it's local APIC timer IRQ counts. If they are not
	 * changing then that CPU has some problem.
	 *
	 * as these watchdog NMI IRQs are broadcasted to every CPU, here
	 * we only have to check the current processor.
	 *
	 * since NMIs dont listen to _any_ locks, we have to be extremely
	 * careful not to rely on unsafe variables. The printk might lock
	 * up though, so we have to break up console_lock first ...
	 * [when there will be more tty-related locks, break them up
	 *  here too!]
	 */

	static unsigned int last_irq_sums [NR_CPUS] = { 0, },
				alert_counter [NR_CPUS] = { 0, };

	/*
	 * Since current-> is always on the stack, and we always switch
	 * the stack NMI-atomically, it's safe to use smp_processor_id().
	 */
	int sum, cpu = smp_processor_id();

	sum = apic_timer_irqs[cpu];

	if (last_irq_sums[cpu] == sum) {
		/*
		 * Ayiee, looks like this CPU is stuck ...
		 * wait a few IRQs (5 seconds) before doing the oops ...
		 */
		alert_counter[cpu]++;
		if (alert_counter[cpu] == 5*HZ) {
			spin_lock(&nmi_print_lock);
			console_lock.lock = 0;	// we are in trouble anyway
			printk("NMI Watchdog detected LOCKUP on CPU%d, registers:\n", cpu);
			show_registers(regs);
			printk("console shuts up ...\n");
			console_silent();
			spin_unlock(&nmi_print_lock);
			do_exit(SIGSEGV);
		}
	} else {
		last_irq_sums[cpu] = sum;
		alert_counter[cpu] = 0;
	}
}
#endif

asmlinkage void do_nmi(struct pt_regs * regs, long error_code)
{
	unsigned char reason = inb(0x61);

	atomic_inc(nmi_counter+smp_processor_id());
	if (!(reason & 0xc0)) {
#if CONFIG_SMP
		/*
		 * Ok, so this is none of the documented NMI sources,
		 * so it must be the NMI watchdog.
		 */
		if (nmi_watchdog) {
			nmi_watchdog_tick(regs);
			return;
		} else
			unknown_nmi_error(reason, regs);
#else
		unknown_nmi_error(reason, regs);
#endif
		return;
	}
	if (reason & 0x80)
		mem_parity_error(reason, regs);
	if (reason & 0x40)
		io_check_error(reason, regs);
	/*
	 * Reassert NMI in case it became active meanwhile
	 * as it's edge-triggered.
	 */
	outb(0x8f, 0x70);
	inb(0x71);		/* dummy */
	outb(0x0f, 0x70);
	inb(0x71);		/* dummy */
}

/*
 * Careful - we must not do a lock-kernel until we have checked that the
 * debug fault happened in user mode. Getting debug exceptions while
 * in the kernel has to be handled without locking, to avoid deadlocks..
 *
 * Being careful here means that we don't have to be as careful in a
 * lot of more complicated places (task switching can be a bit lazy
 * about restoring all the debug state, and ptrace doesn't have to
 * find every occurrence of the TF bit that could be saved away even
 * by user code - and we don't have to be careful about what values
 * can be written to the debug registers because there are no really
 * bad cases).
 */
asmlinkage void do_debug(struct pt_regs * regs, long error_code)
{
	unsigned int condition;
	struct task_struct *tsk = current;

	__asm__ __volatile__("movl %%db6,%0" : "=r" (condition));

	/* Mask out spurious debug traps due to lazy DR7 setting */
	if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
		if (!tsk->thread.debugreg[7])
			goto clear_dr7;
	}

	if (regs->eflags & VM_MASK)
		goto debug_vm86;

	/* Mask out spurious TF errors due to lazy TF clearing */
	if (condition & DR_STEP) {
		/*
		 * The TF error should be masked out only if the current
		 * process is not traced and if the TRAP flag has been set
		 * previously by a tracing process (condition detected by
		 * the PF_DTRACE flag); remember that the i386 TRAP flag
		 * can be modified by the process itself in user mode,
		 * allowing programs to debug themselves without the ptrace()
		 * interface.
		 */
		if ((tsk->flags & (PF_DTRACE|PF_PTRACED)) == PF_DTRACE)
			goto clear_TF;
	}

	/* If this is a kernel mode trap, we need to reset db7 to allow us to continue sanely */
	if ((regs->xcs & 3) == 0)
		goto clear_dr7;

	/* Ok, finally something we can handle */
	tsk->thread.trap_no = 1;
	tsk->thread.error_code = error_code;
	force_sig(SIGTRAP, tsk);
	return;

debug_vm86:
	lock_kernel();
	handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
	unlock_kernel();
	return;

clear_dr7:
	__asm__("movl %0,%%db7"
		: /* no output */
		: "r" (0));
	return;

clear_TF:
	regs->eflags &= ~TF_MASK;
	return;
}

/*
 * Note that we play around with the 'TS' bit in an attempt to get
 * the correct behaviour even in the presence of the asynchronous
 * IRQ13 behaviour
 */
void math_error(void)
{
	struct task_struct * task;

	/*
	 * Save the info for the exception handler
	 * (this will also clear the error)
	 */
	task = current;
	save_fpu(task);
	task->thread.trap_no = 16;
	task->thread.error_code = 0;
	force_sig(SIGFPE, task);
}

asmlinkage void do_coprocessor_error(struct pt_regs * regs, long error_code)
{
	ignore_irq13 = 1;
	math_error();
}

asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs,
					  long error_code)
{
#if 0
	/* No need to warn about this any longer. */
	printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}

/*
 *  'math_state_restore()' saves the current math information in the
 * old math state array, and gets the new ones from the current task
 *
 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
 * Don't touch unless you *really* know how it works.
 */
asmlinkage void math_state_restore(struct pt_regs regs)
{
	__asm__ __volatile__("clts");		/* Allow maths ops (or we recurse) */

	if(current->used_math)
		__asm__("frstor %0": :"m" (current->thread.i387));
	else
	{
		/*
		 *	Our first FPU usage, clean the chip.
		 */
		__asm__("fninit");
		current->used_math = 1;
	}
	current->flags|=PF_USEDFPU;		/* So we fnsave on switch_to() */
}

#ifndef CONFIG_MATH_EMULATION

asmlinkage void math_emulate(long arg)
{
	lock_kernel();
	printk("math-emulation not enabled and no coprocessor found.\n");
	printk("killing %s.\n",current->comm);
	force_sig(SIGFPE,current);
	schedule();
	unlock_kernel();
}

#endif /* CONFIG_MATH_EMULATION */

#ifndef CONFIG_M686
void __init trap_init_f00f_bug(void)
{
	unsigned long page;
	pgd_t * pgd;
	pmd_t * pmd;
	pte_t * pte;

	/*
	 * Allocate a new page in virtual address space, 
	 * move the IDT into it and write protect this page.
	 */
	page = (unsigned long) vmalloc(PAGE_SIZE);
	pgd = pgd_offset(&init_mm, page);
	pmd = pmd_offset(pgd, page);
	pte = pte_offset(pmd, page);
	__free_page(pte_page(*pte));
	*pte = mk_pte_phys(__pa(&idt_table), PAGE_KERNEL_RO);
	local_flush_tlb();

	/*
	 * "idt" is magic - it overlaps the idt_descr
	 * variable so that updating idt will automatically
	 * update the idt descriptor..
	 */
	idt = (struct desc_struct *)page;
	__asm__ __volatile__("lidt %0": "=m" (idt_descr));
}
#endif

#define _set_gate(gate_addr,type,dpl,addr) \
do { \
  int __d0, __d1; \
  __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
	"movw %4,%%dx\n\t" \
	"movl %%eax,%0\n\t" \
	"movl %%edx,%1" \
	:"=m" (*((long *) (gate_addr))), \
	 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
	:"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
	 "3" ((char *) (addr)),"2" (__KERNEL_CS << 16)); \
} while (0)


/*
 * This needs to use 'idt_table' rather than 'idt', and
 * thus use the _nonmapped_ version of the IDT, as the
 * Pentium F0 0F bugfix can have resulted in the mapped
 * IDT being write-protected.
 */
void set_intr_gate(unsigned int n, void *addr)
{
	_set_gate(idt_table+n,14,0,addr);
}

static void __init set_trap_gate(unsigned int n, void *addr)
{
	_set_gate(idt_table+n,15,0,addr);
}

static void __init set_system_gate(unsigned int n, void *addr)
{
	_set_gate(idt_table+n,15,3,addr);
}

static void __init set_call_gate(void *a, void *addr)
{
	_set_gate(a,12,3,addr);
}

#define _set_seg_desc(gate_addr,type,dpl,base,limit) {\
	*((gate_addr)+1) = ((base) & 0xff000000) | \
		(((base) & 0x00ff0000)>>16) | \
		((limit) & 0xf0000) | \
		((dpl)<<13) | \
		(0x00408000) | \
		((type)<<8); \
	*(gate_addr) = (((base) & 0x0000ffff)<<16) | \
		((limit) & 0x0ffff); }

#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ ("movw %3,0(%2)\n\t" \
	"movw %%ax,2(%2)\n\t" \
	"rorl $16,%%eax\n\t" \
	"movb %%al,4(%2)\n\t" \
	"movb %4,5(%2)\n\t" \
	"movb $0,6(%2)\n\t" \
	"movb %%ah,7(%2)\n\t" \
	"rorl $16,%%eax" \
	: "=m"(*(n)) : "a" (addr), "r"(n), "ir"(limit), "i"(type))

void set_tss_desc(unsigned int n, void *addr)
{
	_set_tssldt_desc(gdt_table+__TSS(n), (int)addr, 235, 0x89);
}

void set_ldt_desc(unsigned int n, void *addr, unsigned int size)
{
	_set_tssldt_desc(gdt_table+__LDT(n), (int)addr, ((size << 3)-1), 0x82);
}

#ifdef CONFIG_X86_VISWS_APIC

/*
 * On Rev 005 motherboards legacy device interrupt lines are wired directly
 * to Lithium from the 307.  But the PROM leaves the interrupt type of each
 * 307 logical device set appropriate for the 8259.  Later we'll actually use
 * the 8259, but for now we have to flip the interrupt types to
 * level triggered, active lo as required by Lithium.
 */

#define	REG	0x2e	/* The register to read/write */
#define	DEV	0x07	/* Register: Logical device select */
#define	VAL	0x2f	/* The value to read/write */

static void
superio_outb(int dev, int reg, int val)
{
	outb(DEV, REG);
	outb(dev, VAL);
	outb(reg, REG);
	outb(val, VAL);
}

static int __attribute__ ((unused))
superio_inb(int dev, int reg)
{
	outb(DEV, REG);
	outb(dev, VAL);
	outb(reg, REG);
	return inb(VAL);
}

#define	FLOP	3	/* floppy logical device */
#define	PPORT	4	/* parallel logical device */
#define	UART5	5	/* uart2 logical device (not wired up) */
#define	UART6	6	/* uart1 logical device (THIS is the serial port!) */
#define	IDEST	0x70	/* int. destination (which 307 IRQ line) reg. */
#define	ITYPE	0x71	/* interrupt type register */

/* interrupt type bits */
#define	LEVEL	0x01	/* bit 0, 0 == edge triggered */
#define	ACTHI	0x02	/* bit 1, 0 == active lo */

static void
superio_init(void)
{
	if (visws_board_type == VISWS_320 && visws_board_rev == 5) {
		superio_outb(UART6, IDEST, 0);	/* 0 means no intr propagated */
		printk("SGI 320 rev 5: disabling 307 uart1 interrupt\n");
	}
}

static void
lithium_init(void)
{
	set_fixmap(FIX_LI_PCIA, LI_PCI_A_PHYS);
	printk("Lithium PCI Bridge A, Bus Number: %d\n",
				li_pcia_read16(LI_PCI_BUSNUM) & 0xff);
	set_fixmap(FIX_LI_PCIB, LI_PCI_B_PHYS);
	printk("Lithium PCI Bridge B (PIIX4), Bus Number: %d\n",
				li_pcib_read16(LI_PCI_BUSNUM) & 0xff);

	/* XXX blindly enables all interrupts */
	li_pcia_write16(LI_PCI_INTEN, 0xffff);
	li_pcib_write16(LI_PCI_INTEN, 0xffff);
}

static void
cobalt_init(void)
{
	/*
	 * On normal SMP PC this is used only with SMP, but we have to
	 * use it and set it up here to start the Cobalt clock
	 */
	set_fixmap(FIX_APIC_BASE, APIC_PHYS_BASE);
	printk("Local APIC ID %lx\n", apic_read(APIC_ID));
	printk("Local APIC Version %lx\n", apic_read(APIC_LVR));

	set_fixmap(FIX_CO_CPU, CO_CPU_PHYS);
	printk("Cobalt Revision %lx\n", co_cpu_read(CO_CPU_REV));

	set_fixmap(FIX_CO_APIC, CO_APIC_PHYS);
	printk("Cobalt APIC ID %lx\n", co_apic_read(CO_APIC_ID));

	/* Enable Cobalt APIC being careful to NOT change the ID! */
	co_apic_write(CO_APIC_ID, co_apic_read(CO_APIC_ID)|CO_APIC_ENABLE);

	printk("Cobalt APIC enabled: ID reg %lx\n", co_apic_read(CO_APIC_ID));
}
#endif
void __init trap_init(void)
{
	if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24))
		EISA_bus = 1;

	set_trap_gate(0,&divide_error);
	set_trap_gate(1,&debug);
	set_intr_gate(2,&nmi);
	set_system_gate(3,&int3);	/* int3-5 can be called from all */
	set_system_gate(4,&overflow);
	set_system_gate(5,&bounds);
	set_trap_gate(6,&invalid_op);
	set_trap_gate(7,&device_not_available);
	set_trap_gate(8,&double_fault);
	set_trap_gate(9,&coprocessor_segment_overrun);
	set_trap_gate(10,&invalid_TSS);
	set_trap_gate(11,&segment_not_present);
	set_trap_gate(12,&stack_segment);
	set_trap_gate(13,&general_protection);
	set_trap_gate(14,&page_fault);
	set_trap_gate(15,&spurious_interrupt_bug);
	set_trap_gate(16,&coprocessor_error);
	set_trap_gate(17,&alignment_check);
	set_system_gate(SYSCALL_VECTOR,&system_call);

	/*
	 * default LDT is a single-entry callgate to lcall7 for iBCS
	 * and a callgate to lcall27 for Solaris/x86 binaries
	 */
	set_call_gate(&default_ldt[0],lcall7);
	set_call_gate(&default_ldt[4],lcall27);

	/*
	 * on SMP we do not yet know which CPU is on which TSS,
	 * so we delay this until smp_init(). (the CPU is already
	 * in a reasonable state, otherwise we wouldnt have gotten so far :)
	 */
#ifndef __SMP__
	cpu_init();
#endif

#ifdef CONFIG_X86_VISWS_APIC
	superio_init();
	lithium_init();
	cobalt_init();
#endif
}